
Typescript Mini Reference
2023

A Quick Guide to Typescript Programming
Language

Harry Yoon

Version 1.0.8, 2023-05-14

Copyright
Typescript Mini Reference:
A Quick Guide to Typescript Programming Language

© 2023 Coding Books Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor its dealers and distributors
will be held liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Published: January 2023

Harry Yoon
San Diego, California

ISBN: 9798374743494

1

Preface
Typescript is a high-level programming language that is different and
distinct from Javascript. But, Typescript mostly uses the same Javascript
(or, more precisely ECMAScript) syntax. This is a curse and blessing.

On the one hand, many Javascript developers find Typescript more
approachable/accessible and easier to get started with. This is probably
one of the reasons why Typescript has been so successful, e.g., in terms
of its wide adoption.

On the other hand, few Javascript developers use Typescript to its full
potential. For many, Typescript is just Javascript with simple type
annotations. Once you you learn the fundamentals of Typescript,
however, that cannot be further from the truth. Typescript is, deep
down, a rather different language from Javascript, in many respects.

Typescript’s marketing slogan, in the early days, used to be TypeScript is
a superset of JavaScript. This phrase, when interpreted literally, does not
mean very much. For one thing, a programming language is not a
mathematical set, and hence one programming language cannot be a
superset of another. Regardless, Typescript uses the same or similar
Javascript syntax in many parts of its grammar, including (almost) all
statements and expressions.

Typescript’s extension over Javascript is primarily limited to types.
Javascript is a dynamically and loosely typed language. It has pros and
cons. For small projects, or for quick prototyping, dynamic languages
like Javascript or Python can be extremely convenient. On the other
hand, when you work on bigger and longer-term projects, using
statically typed languages tends to be increasingly more advantageous.

Typescript’s new slogan is TypeScript is JavaScript with syntax for types.
And, it emphasizes the tooling aspect of the programming language, at
any scale. Typescript is widely used with many Javascript application

2

frameworks such as Angular, React, and Vuejs, which are primarily
intended for building large-scale Javascript apps. In fact, Typescript got
a big break, as a new language, when the Angular team adopted
Typescript as their default programming language for Angular version
2.0 (and, onward). As the saying goes, the rest is history. As of this
writing (January 2023), React Native, another Javascript-based hybrid
mobile app development framework, also adopted Typescript as their
primary language.

This book is an unofficial Typescript language reference. Regardless of
your background, and your experience with Javascript and other
programming languages, you will learn the essence of Typescript, and
the core programming concepts in Typescript.

This book mostly focuses on the language features that are related to
static typing. If you have some familiarity with programming in
Javascript, you can read the book more or less from beginning to end,
and you will get the full picture of Typescript’s (rather unique) type
system, among other things. On the flip side, written as an informal
reference, this book may not be ideal for complete beginners. This book
is definitely not a tutorial on Typescript.

One thing to note is that although the official names of these two
programming languages are JavaScript and TypeScript, we mainly use
"simpler" names such as Javascript and Typescript in this book, and
even refer to them just as JS or TS, for brevity.



As stated, this book is not an authoritative language
reference. Although we have taken every effort to
ensure the accuracy of the content, there still may be
some errors or misrepresentations. The readers are
encouraged to consult the official documentation while
reading this book.

3

Dear Readers:

Please read b4 you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are
small ones and there are big ones. Some blocks are straight and some
are L-shaped. You use these lego blocks to build spaceships or
submarines or amusement parks. Likewise, you build programs by
assembling these building blocks of a given programming language.

This book is a language reference, written in an informal style. It goes
through each of these lego blocks, if you will. This book, however, does
not teach you how to build a space shuttle or a sail boat. If this
distinction is not clear to you, it’s unlikely that you will benefit much
from this book. This kind of language reference books that go through
the syntax and semantics of the programming language broadly, but not
necessarily in gory details, can be rather useful to programmers with a
wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start
learning a foreign language, for instance, you do not start from the
grammar. Likewise, this book will not be very useful to people who
have little experience in real programming. On the other hand, if you
have some experience programming in other languages, and if you
want to quickly learn the essential elements of this particular language,
then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for
you. But, as stated, this book is written for a wide audience, from
beginner to intermediate. Even experienced programmers can benefit,
e.g., by quickly going through books like this once in a while. We all
tend to forget things, and a quick regular refresher is always a good
idea. You will learn, or re-learn, something "new" every time.

Good luck!

4

Table of Contents
Copyright . 1

Preface. 2

1. Introduction. 9

2. Typescript Basics . 13

2.1. What is Typescript? . 13

2.2. Static Typing . 16

2.3. Notes on Development Process . 18

2.4. The Typescript Compiler. 20

2.5. Typescript JSON Configuration File . 22

3. Module System . 29

3.1. ES Modules . 29

3.2. Typescript Modules . 29

3.3. Module Exports . 30

3.4. Module Imports. 33

3.5. Typescript Namespaces. 35

4. Variables . 36

4.1. The const Declaration . 36

4.2. The let Declaration. 37

4.3. The var Declaration. 38

5. Basic Types. 40

5.1. Javascript Types . 40

5.2. Strict Equality . 42

5.3. Primitive Types . 44

5.4. Literal Types . 45

5.5. The any Type . 46

5.6. The unknown Type . 47

5.7. The null and undefined Types. 49

5

5.8. The never Type. 51

5.9. The void Type . 51

5.10. The object Type . 52

5.11. Function Types . 53

5.12. Array Types . 54

5.13. Tuple Types . 55

5.14. Enum Types . 57

6. Type Aliases . 58

7. Type Annotations . 60

7.1. Variable Annotations . 60

7.2. Function Annotations . 61

8. Assertions. 64

8.1. Type Assertions . 64

8.2. Const Assertions . 65

8.3. Non-Null Assertions . 67

9. Generics . 68

9.1. Why Generics?. 68

9.2. Generic Functions. 71

9.3. Generic Types . 73

9.4. Generic Type Constraints . 74

10. Arrays . 76

10.1. Generic Array<T> . 76

10.2. Generic ReadonlyArray<T> . 79

11. Algebraic Data Types. 80

11.1. Tuples . 80

11.2. Readonly Tuples . 85

11.3. Union Types . 85

11.4. Discriminated Unions . 88

11.5. Intersection Types . 89

6

12. Function Types . 91

12.1. Function Definitions . 91

12.2. Arrow Function Definitions . 92

12.3. Function Types . 93

12.4. Parameter List . 96

12.5. Optional Parameters . 98

12.6. The Rest Parameter . 99

12.7. Parameter Destructuring . 102

12.8. The this Parameter . 104

12.9. Typescript Function Overloading. 106

13. Object Types . 109

13.1. Object Literal Types . 109

13.2. Object Type Members . 111

13.3. Index Signatures. 114

13.4. Getters and Setters . 117

13.5. Member Methods . 120

13.6. Structural Subtyping . 121

14. Interfaces . 123

14.1. Interface Types . 123

14.2. Extending Interfaces . 124

15. Classes. 126

15.1. The ECMAScript Class . 126

15.2. The Typescript Class . 130

15.3. Abstract Classes . 133

15.4. Implementing Interfaces . 135

15.5. Generic Classes . 138

16. Type Narrowing . 140

16.1. Control Flow Analysis . 140

16.2. The typeof Type Guard . 140

7

16.3. The instanceof Type Guard . 141

16.4. The in Operator Narrowing . 142

16.5. Discriminated Unions . 143

17. Advanced Types . 147

17.1. Template Literal Types . 147

17.2. The typeof Type Operator . 148

17.3. The keyof Type Operator . 149

17.4. Indexed Access Types . 150

17.5. Conditional Types. 150

17.6. Mapped Types . 152

A. How to Use This Book . 153

Index . 155

About the Author . 174

About the Series . 175

Community Support . 176

8

Chapter 1. Introduction
A type determines what kind of values are valid for a given object and
what sort of operations are available for the object, among other things.
Types are the core part of all high-level programming languages. The
main difference between the dynamically typed languages like
Javascript and the statically typed languages like Typescript is when the
types are checked, e.g., run time vs build time.

Programs written in statically typed languages are generally easier to
read, whereas it tends to be easier to write programs in dynamically
typed languages. Although this is a gross oversimplification, it generally
holds true. Hence, statically typed languages are often preferred in a
large project involving multiple developers. On the flip side, there is
clearly an overhead in using statically typed languages.

That’s precisely the difference between Typescript and Javascript.
When you start using Typescript, there is an upfront cost, in term of
learning curve and general setup, etc., but as the project grows bigger,
the benefits quickly start to outweigh the additional cost.

We start the book with the absolute basics of Typescript, and the
general development process using Typescript. We go through some
basic usages of the Typescript compiler, tsc, and the configuration file,
tsconfig.json. If you have used Typescript before, you can skip most of
this first chapter.

Next, we discuss the high-level organization of Javascript and
Typescript programs using ES modules. Except for truly trivial code,
most Typescript programs will need to be organized into modules.

There are primarily two contexts in which typing is important. The
types of variables and functions. Function parameters and return
values are also variables, broadly speaking, and hence we primarily
deal with the types of variables when programming in statically typed

9

languages like Typescript. In contrast, in languages like Javascript,
variables do not have associated types. There are three different ways
to declare variables in Javascript (and hence in Typescript). We discuss
each of them in the Variable Declaration chapter.

As in any statically typed programming languages, the types of
Typescript can be divided into simple types and compound types, which
are built from other types. In the Basic Types chapter, we go through
various simple types of Typescript, including Javascript primitive types
like number, string, and boolean as well as null and undefined, and
other special types like any and unknown. In addition, Typescript allows
using simple values as types, called the literal types. We also briefly
look at some of the most fundamental (non-simple) types in Typescript,
such as arrays, tuples, enums, and functions.

In Typescript, we can define new custom types in various different
ways. Some of them are syntactically defined without names (e.g.,
union types), and we can use type aliases to give them reusable names,
if need be. As a matter of fact, it is rather convenient, although not
required, to use type aliases for any types that are to be used more than
once in a program.

In many statically typed programming languages, variables are
declared with types. In Typescript, we annotate variables. Although it is
not a precise distinction, type annotations are only relevant at build
time, and they have no runtime implications. In the Type Annotations
chapter, we describe how to annotate variables and functions. Type
annotations and type inferences are discussed throughout the book, not
just in this chapter.

Typescript’s static type checker relies on the type annotations (and, type
inference rules) to enforce type safety. In certain situations, the
developer may have certain information that is not readily available to
the type checker. In such a case, he or she can use various forms of
assertions to convey that information to the Typescript compiler.

10

Dynamically and weakly typed languages like Javascript do not, and
need not, have generics, which is sometimes called the parametrized
types. Generics permits defining a series of related types using type
parameters, each of which is still strongly typed. If you are coming from
a purely Javascript background, generics may seem a bit strange.
Therefore, we start the Generics chapter with a simple example that
motivates the use of generics.

In any programming languages, array is one of the most basic and most
fundamental data types. In Typescript, array is a generic type, and it
has two variants, the (regular) array that corresponds to Javascript
array, and the readonly array.

In the Algebraic Data Types chapter, we describe a few simple ways to
create a new type from other types. Two of the most common such
methods are union types and tuple types.

In the next chapter, Function Types, we go through some more details
of the function types. The modern Javascript gives a lot of flexibility in
defining and using functions. Typescript includes, for example, support
for annotating various kinds of function parameters. In addition,
functions can be "overloaded" in Typescript.

Everything is an object in Javascript. An object type in Typescript can be
declared using the object literal type syntax or the interface syntax.
There are some minor differences in terms of their syntax and what
not, but they serve fundamentally the same purposes, that is, giving a
Javascript object, or a variable, a specific type. It is largely a matter of
preference to choose one over the other, except for special cases. For
example, only interfaces can be implemented by classes. We go through
object literal types and interfaces in two separate chapters. But, their
common elements are distributed over the two chapters rather than to
be repeated.

In general, object literal types and interfaces play more fundamental
roles in Typescript than classes since Javascript is an object-based

11

programming language at its core. However, the modern Javascript’s
class provides a convenient way to create objects that are related to
each other through their prototype chains. When a type hierarchy is
important among a set of related types, class provides a way to support
OOP-like type inheritance in Typescript, which corresponds to the
prototype chain in Javascript at run time.

Although class was introduced to Javascript some years ago (ES2015),
it may still be considered a foreign part of Javascript by some
developers. We go through a few essential elements of ECMAScript class
in the beginning of the Classes chapter. Then we go through some of the
Typescript extensions to the ECMAScript class next.

The ultimate goal of Typescript is to reduce the chances of runtime
errors in Javascript programs, among other things. The Typescript
compiler does what is called the control flow analysis to understand, to
a certain extent, the runtime behavior of the code. Through control
flow analysis, Typescript can provide services, at compile time, that go
beyond what is explicitly annotated. This is called the type narrowing.

In the final chapter of the book, Advanced Types, we discuss a few other
ways to create a type from other types. In particular, we discuss
conditional types and mapped types in the final sections.

Note that this book illustrates Typescript grammar primarily through
examples, say, rather than using more formal (and hence more precise)
notations. When an example does not make sense to you, we
recommend that you try the example yourself. By running the example
code, you may be able to get a better insight.

As a general convention, all examples are Typescript code by default.
Javascript code uses a special notation. They are always written in
REPL, e.g., a Web browser developer console. In addition, Javascript
code in these examples does not use semicolons, as a simple visual aid
to help distinguish Javascript and Typescript code more easily.
Semicolons are optional both in Javascript and Typescript.

12

Chapter 2. Typescript Basics

2.1. What is Typescript?
Typescript is a statically typed general-purpose programming language.
Unlike many other programming languages like Javascript or Python,
however, you cannot directly run Typescript programs.

You compile (or, transpile) a Typescript program to a Javascript
program first, and you run the generated Javascript program on a
Javascript runtime such as Web browsers or Node.js. There are many
programming languages that can generate Javascript code. So, why is
Typescript special?

Typescript has a lot of syntactic similarities with Javascript. Except for
static typing (e.g., type annotations), simple Typescript programs look
almost identical to those of Javascript. There are some additional
features beyond typing in Typescript, but nonetheless Typescript is
based on Javascript.

This makes Typescript more accessible to the programmers who are
familiar with Javascript. Clearly, this is by design. But, on the flip side, it
is also incidental. There is no intrinsic reason why a language that
generates Javascript code has to be just like Javascript. At least in
theory, a program written in any programming language can be
converted to a Javascript program. (And, many modern programming
languages can produce Javascript code as their output.)

Typescript is a superset of Javascript, not just in terms of syntax but in
terms of development process. Typescript feels like such a natural
extension to Javascript-based dev workflow, and that is what makes
Typescript so special. Many people, especially many Javascript
developers, pick up Typescript, among many other languages that can
help build "better" Javascript programs, primarily for this reason.

2.1. What is Typescript?

13

Here’s a bird’s eye view of the Typescript development process:

1. Write a Typescript program,

2. Transpile it to a Javascript program, and then

3. Deploy the generated Javascript program.

In general, types determine, among other things,

• What kind of values are allowed for a given variable, and

• What kind of operations can be performed on those variables and
values.

In case of dynamically typed languages like Javascript, types are
associated with values, or objects, and they are checked and verified at
run time. The variables in those languages do not have types.

> let sum = 1 + 2 ①
> console.log(`type = ${typeof(sum)}`) ②
type = number
> sum = "hello " + "world" ③
> console.log(`type = ${typeof(sum)}`) ④
type = string

① The type of the right-hand side expression 1 + 2 is number. The
variable sum points to this value. As indicated earlier, we use this
REPL programming style to indicate that it is a Javascript program.

② The typeof(sum) returns the type of the value this variable points
to at run time, which is number.

③ The type of the right-hand side expression "hello " + "world" in
this case is string. The variable sum now points to this new value.

④ This will print out string since sum currently refers to the object
"hello world", whose type is string.

2.1. What is Typescript?

14

In the statically typed languages like Typescript, on the other hand, all
variables are associated with types as well. And, the compiler uses this
information to check and verify the correctness of a program (as far as
types are concerned), e.g., without having to wait until the program
runs (and, possibly crashes, or even worse, silently produces an
incorrect result). This is known as the static type checking.

let sum = 1 + 2; ①
// sum = "hello " + "world"; ②

① The type of the variable sum will be inferred to be a number since it
is initialized with an expression whose type is number. According to
our convention, this is a Typescript program.

② Attempting to assign a value of string will cause a compile time error.
(Technically, we are transpiling a Typescript program to Javascript
program, but the word "compilation" is more commonly and broadly
used, in general.)

As alluded in the introduction, statically typed languages are not
inherently "better", or "more correct", than dynamically typed
languages. In fact, there is really nothing wrong with the JavaScript
program shown above. It may be even puzzling to some developers why
the Typescript compiler does not allow us to do such a simple and
trivial thing in this sample code. It’s a tradeoff. By using static typing,
and adopting an arguably more restrictive programming style, we can
potentially prevent a lot of runtime errors, thanks to the static tooling.

One of the main differences between Typescript and some other
statically typed languages is that Typescript completely removes the TS-
specific static type information during the transpilation. This is called
the type erasure. This is natural because Javascript does not support
such type information. At run time, the type information is limited to
what Javascript provides.

2.1. What is Typescript?

15

2.2. Static Typing

2.2.1. Type annotations

One of the major differences between Typescript and Javascript
programs is that Typescript programs include type annotations. In
Typescript, you annotate variables, including function parameters and
return values, with particular types. Syntactically, you specify the type
after the variable, preceded by a colon :. For example,

1 let pop: number = 10_000_000_000; ①

① The variable pop is declared to be the number type, and its initial
value is consistent with the specified type.

For functions,

3 function add(a: number,
4 b: number): number { ①
5 return a + b;
6 }

① We annotate the function parameters and the return value, if any. In
this example, both parameters, a and b, as well as the return value,
are numbers.

2.2.2. Static type checking

Type annotations can be useful to other programmers who read the
program. They often serve as, or even supplant, code documentation.
But, primarily, the type annotations are used by the compiler, and other
developer tools like IDEs, to enforce certain rules so that the correct
functioning of the program can be ensured, etc.

2.2. Static Typing

16

We just declared a variable pop and a function add with specific types
above. If we try to use these variable and function "incorrectly", that is,
in the way that is inconsistent with the declared types, the compiler will
stop us from doing that.

In strongly typed languages, the very act of assigning a value of a
different type to a variable can be a fatal error, e.g., because the
memory layouts of values of different types can be fundamentally
different. For Typescript, which is transpiled to the loosely typed
language, Javascript, that is typically not the case. But, this kind of
mixup can still lead to serious errors down the line, for example, by
attempting to call a method on an object of a type that does not support
that particular method. Hence, the Typescript compiler prevents us
from doing that out of abundance of caution.

If we try to use the above variable and function incorrectly, for
instance, as follows:

8 pop = "hello"; ①
9 add("a", true);

① The line numbers indicates that all these three code snippets are
from a single script.

We will get the following errors when we try to compile the code,

index.ts:8:1 - error TS2322: Type 'string' is not assignable
to type 'number'.
8 pop = "hello";
  ~~~
index.ts:9:5 - error TS2345: Argument of type 'string' is not
assignable to parameter of type 'number'.
9 add("a", true);
      ~~~
Found 2 errors in the same file, starting at: index.ts:8

2.2. Static Typing

17

In many cases, you do not even have to compile the code to see the
errors since the IDEs that support Typescript will let you know these
errors immediately, through static analysis, while you are
programming. IDEs often use what is called intellisense as well to help
developers avoid these kinds of errors in the first place.

2.2.3. Type inference

In many cases, especially for local variable declarations, the type of the
initial value of a variable may likely be the one that is intended for that
variable. In such a case, its type may not have to be explicitly specified,
and the TS compiler can infer the type.

let billion = 1_000_000_000; ①

① The variable billion is declared with an initial number value, and
hence if it is not explicitly annotated, its type is inferred to be
number.

2.3. Notes on Development Process
Dynamic languages like Python and Javascript tend to provide faster
iteration cycles for development. You can make a quick change to the
code and run it again to see the result of the change. And, you can
repeat these steps every time you make changes.

The development process with compiled languages tends go a little bit
slower. There is an extra step of compilation at each cycle, which can
hinder rapid iteration (relatively speaking). Furthermore, Typescript
requires some upfront investment in terms of project setup, etc.

Hence, generally speaking, Typescript is not for small projects. If you
are writing a simple few line program that is going to be included in a
script tag of an HTML file, for instance, Typescript is clearly an overkill.

2.3. Notes on Development Process

18

In fact, Typescript rarely provides any benefit when you are writing a
small program because it is often a lot easier to spot some obvious
errors such as mismatched types just by looking at the code rather than
relying on tools.

As we move along the axis of scale, however, it gets more and more
beneficial for bigger and longer-term projects to use Typescript. At
some point, the overhead and benefit of using Typescript become
reversed.

One thing to note is that many modern Javascript projects go through
some kind of "build" steps before deployment. For example, tools like
Babel are often used for transpiling Javascript code to a specific target
platform, and tools like Webpack are often used for "bundling", which
often includes the Babel transpilation as one of its build steps. Some
projects may require minification and obfuscation of JS code, and so
forth.

It is not uncommon to incorporate those steps into the development
process. Hence, it is not totally out of place to include the Typescript
transpilation step into these overall development process. In fact, many
popular Javascript frameworks such as React, Angular, and Vuejs
support Typescript as part of their native development workflow.
Hence, the cost of incorporating TS into the overall development and/or
deployment process is relatively small, if not completely zero, especially
for large projects.

One additional overhead of using Typescript, if you will, is that the vast
majority of Javascript libraries are (still) primarily written in Javascript,
and they do not natively include type declarations. This is becoming
less of an issue for more widely-used Javascript libraries now that
Typescript is being widely adopted, but if you are interested in using
smaller, less used, libraries, then you may occasionally run into some
problems. You may have to go through some additional steps in order to
be able to use Javascript libraries without type definition files.

2.3. Notes on Development Process

19

This book primarily focuses on the Typescript language, and we will not
discuss all the details and nuances surrounding TS-based app
development process, but they are easy to pick up through experience
and some trials and errors. (For instance, as a trivial example, if you
want to use Typescript with Node.js, you will need to import Node’s
type definition file, i.e., @types/node, into your project as a dev
dependency.)

2.4. The Typescript Compiler
You can install the official Typescript package via npm (or, other
package managers such as yarn or NuGet), which includes Typescript
core libraries as well as the build tools such as the Typescript compiler,
tsc. For example,

$ npm i -g typescript@latest ①

① Or, you can simply add the typescript package as a dev dependency
to your project.

Let’s try the tsc command:

$ tsc --version
Version 4.9.4 ①

① Version 4.9.4 is the most recent version of Typescript, as of this
writing.

The official Typescript package does not include a Typescript REPL, and
there does not appear to be any widely-used implementation of REPL
where you can evaluate Typescript expressions and interactively run
Typescript statements. If you want to quickly test a simple TS code, you
can use the TypeScript Playground [https://www.typescriptlang.org/play].

2.4. The Typescript Compiler

20

https://www.typescriptlang.org/play

Typescript supports quite a few compiler settings that can be used to
customize the behavior of the compiler, as well as the semantics of the
language itself. Hence, it is rather common, and almost required, to use
the Typescript JSON configuration file, tsconfig.json, along with tsc.

You can generate a default tsconfig.json file as follows:

$ tsc --init

Created a new tsconfig.json with:
 target: es2016
 module: commonjs
 strict: true
 esModuleInterop: true
 skipLibCheck: true
 forceConsistentCasingInFileNames: true

$ ls
tsconfig.json

This output shows a few important settings from the tsconfig.json file.
We will look at some of these settings in the next section.

You can compile just one or a few Typescript files. For example,

$ tsc hello.ts world.ts

It is, however, a more common practice to organize one or more
Typescript files into a "project", and compile all, or most, of those file in
the project together. The location of the tsconfig.json file is the root of a
Typescript project. (In other words, tsc --init creates a new (implicit)
project in the current folder, which should generally coincide with the
root of other project-like structures, e.g., an npm project.)

For example, you can compile the project as follows:

2.4. The Typescript Compiler

21

$ ls
hello.ts tsconfig.json world.ts
$ tsc -p .
$ ls
hello.js hello.ts tsconfig.json world.js world.ts

The -p, or --project, flag is followed by the location of the
tsconfig.json file, e.g., the current folder . in this example, which in turn
designates the files to compile, either explicitly or implicitly. Note that
tsc generated two JS files corresponding to the two TS files, hello.ts
and world.ts. (Typescript, by default, treats files with extensions .ts,
.tsx, and .d.ts as TS files.)

Furthermore, tsc includes many additional options. You can try tsc
--help to view the basic usage of the compiler, or tsc --all to list all
available options. One useful option during development is the -w (or
--watch) flag, which starts the tsc command in the "watch mode". When
Typescript source files in a given project are modified, it automatically
compiles the code so that the generated JS files remain in sync with the
TS files (e.g., with some build time lag).

2.5. Typescript JSON Configuration File
Javascript, or more precisely the ECMAScript language, has two
variants. The language used with the strict mode, "use strict", and
the language used without that designation. Although the difference is
relatively small, nonetheless they are two separate and incompatible
languages.

Typescript has dozens of different variants, if not hundreds. Depending
on the compiler settings, the language behaves differently. In theory, we
have one variant of Typescript for each combination of Typescript
compiler settings, and there are many such settings that affect the
language behavior.

2.5. Typescript JSON Configuration File

22

The default tsconfig.json file generated through tsc --init, for
instance, includes many of these options, with most of them
commented out, so that they can be easily tweaked if need be.

2.5.1. Top-level options

include and exclude

The top-level include option specifies which Typescript source files are
part of a program (e.g., to be compiled by tsc). Its value is an array of
file names or glob patterns, and they are resolved relative to the
Typescript project root, e.g., the directory containing the tsconfig.json
file. For example,

{
 "compilerOptions": {},
 "include": ["src/**/*", "tests/**/*"]
}

The exclude option can be used to specify the files that should not be
part of the program from the include list. Its value is also an array of
file names or glob patterns. Both include and exclude support the
following wildcard characters for glob:

• * matches zero or more characters.

• ? matches any one character.

• **/ matches any directory nested to any level.

files

In some cases, it may be convenient to explicitly list all source files (e.g.,
TS or JS files) that make up a program. The files top-level option can
be used for that purpose. For example,

2.5. Typescript JSON Configuration File

23

{
 "files": [
 "hello-pele.ts",
 "hello-messi.ts",
 "hello-ronaldo.ts"
]
}

2.5.2. compilerOptions

All of the compilerOptions options can be important in certain
contexts, but here are a few of the more significant settings with
broader implications, in general.

target

The target value sets the target ECMAScript language version for
emitted Javascript code, and it adds any necessary polyfills. Usually, the
default value of "es2016" should be good enough.

{
 "compilerOptions": {
 "target": "es2016"
 }
}

(Note that you are not programming against this target. You program in
Typescript, which is usually in line with the most recent version of
ECMAScript. The target option determines the transpiled output,
which should be somewhat conservatively set for compatibility
reasons, even with polyfills.)

2.5. Typescript JSON Configuration File

24

module

The module value specifies the output module format. The commonjs
module is still the most dominant module format, but it can be set to
other values as well, e.g., "es2015" or "es2020" for ES modules, etc.
NPM (Node package manager service) uses certain rules to support both
"commonjs" and "es2020" modules. To use that feature, you can set
the module value to "nodenext".

{
 "compilerOptions": {
 "module": "es2020"
 }
}

allowJs

In case you are working on a large project with some part of codebase
in Javascript, you can set this value to true to include JS files in the
project. In such a case, Typescript will also treat .js and .jsx files as part
of the program by default in addition to .ts, .tsx, and .d.ts files. In
general, however, if you are starting a new application project, then
there is really no reason to mix TS and JS source files.

{
 "compilerOptions": {
 "allowJs": false
 }
}

(When you use "allowJs": false, which is recommended, you do not
generally add JS files into the source code repository. The JS files are
generated files (e.g., the compiler output), and they need not be
included in the version control system. This can be easily achieved by

2.5. Typescript JSON Configuration File

25

adding one line *.js in the .gitignore file, for instance. When you mix TS
and JS source files with "allowJs": true, on the other hand, you will
need to be a bit more creative in terms of where to put the source JS
files vs the generated JS files, etc.)

alwaysStrict

Most Javascript developers use the "use strict" mode. Many modern
ECMAScript features use the "use strict" mode by default, for
example, in class definitions, or in ES modules, with no way to "turn it
off". Typescript is based on this strict mode variant of Javascript.
Typescript, by default, also emits JS code in the "use strict" mode,
with "alwaysStrict": true.

{
 "compilerOptions": {
 "alwaysStrict": true
 }
}

Type checking

Not surprisingly, there are many options that affect the behavior of tsc
in terms of static type checking. In theory, you can tweak each of these
options to get the "perfect variant of Typescript" that you want to use.
In practice, however, that is an option that you should rarely use
(unless you are learning Typescript and need a "training wheel").

All these settings are primarily useful for transitional purposes. For
example, for migrating an existing JS project to Typescript, or for
integrating legacy code into a TS project, etc. (BTW, from the Typescript
developer’s perspective, all Javascript code is "legacy". ) We will look
at a few of the important options next.

2.5. Typescript JSON Configuration File

26

2.5.3. strict

Setting strict to true, or using --strict flag with tsc, enables all strict
type-checking options, e.g., strictNullChecks, noImplicitAny,
noImplicitThis, strictBindCallApply, strictFunctionTypes,
strictPropertyInitialization, useUnknownInCatchVariable,
and possibly any future additions related to the strict type checking.
Each individual option can be selectively disabled.

{
 "compilerOptions": {
 "strict": true
 }
}

As stated, except as a learning aid or migration tool, all strict options
should be enabled as a general rule, e.g., for all future Typescript
projects, through this one setting, "strict": true. We assume that
strict is set to true throughout this book, and we do not discuss other
possible settings, and their implications, in this book.

2.5.4. strictNullChecks

This setting affects whether null or undefined can be a valid value of
other types. With "strictNullChecks": true, a variable of the
string type, for example, cannot be assigned null or undefined,
which can prevent us from running into some (rather common) null-
related errors.

{
 "compilerOptions": {
 "strictNullChecks": true
 }
}

2.5. Typescript JSON Configuration File

27

2.5.5. noImplicitAny

The broadest possible type in Typescript is any, as we discuss later.
When you completely lack type information on a variable, for example,
you can annotate it with any, which really means that its type can be
anything. With "noImplicitAny": true, even then, you will still have
to explicitly annotate it with any. That is, you cannot expect the
compiler to automatically infer a type to be any.

{
 "compilerOptions": {
 "noImplicitAny": true
 }
}

2.5.6. noImplicitThis

With "noImplicitThis": true, which is also a part of "strict":
true, Javascript’s this needs to be explicitly type-annotated. This is
explained later with respect to the this function parameter.

{
 "compilerOptions": {
 "noImplicitThis": true
 }
}

2.5. Typescript JSON Configuration File

28

Chapter 3. Module System

3.1. ES Modules
Historically, many different formats of modules have been used in
Javascript. For example, CommonJS is one of the most widely used
module formats, which uses the global variable exports for exporting,
and the require function for importing. CommonJS has been used as
the default module format in the NPM package repository.

Since ES2015, however, the Javascript community has been (slowly)
moving more toward the ES module system, which uses the Javascript
keywords export and import for exporting and importing,
respectively. As of 2023, when this book is written, most Javascript
runtimes, including all major Web browsers, now support ES modules.
You can also publish your NPM package in the ES module format (e.g.,
by setting module to es2020 or nodenext).

In ECMAScript, a file containing a top-level import or export is a
module. Everything else is just a "script". In a module, "use strict" is
implicitly declared. Typescript follows the same convention. Unless a
Typescript file contains an import or export, it is considered a script,
and the script is executed in the global scope. As indicated, in
Typescript, "use strict" is always implied.

3.2. Typescript Modules
Syntactically, Typescript’s module system more or less follows the ES
module system. But, as indicated earlier, the actual module output
format is controlled by the module configuration value in the
tsconfig.json file. In particular, Typescript supports a number of
different module formats, including a few different variants of ES
modules, es6/es2015, es2020, es2022, and esnext. In addition, it

3.1. ES Modules

29

supports commonjs, amd, umd, system, node16, and nodenext. How
exactly these values are interpreted by Typescript is determined by the
module resolution rules, which we do not include in this book.

If you are familiar with the ES module system in Javascript, you can
skip the rest of this chapter.

3.3. Module Exports
The export declaration is used to export a reference to an object or
value from a module so it can be used by other scripts or modules.
There are two kinds of exports, "regular" exports and default exports:

export const catLives: number = 9; ①

① A type can be inferred by Typescript in this example, but we will
sometimes include explicit type annotations in this book for
illustration.

You can export any number of objects, functions, or primitive values
using this syntax. On the other hand, a module can have at most one
default export.

export default <number>9; ①

① An explicit type assertion is not required. That is, export default
9; should have sufficed in this example.

Note that the default export does not require a name.

3.3.1. (Regular) exports

The non-default exports can take a few different forms:

3.3. Module Exports

30

Variable export

export var mysteryText: string;
export var badNumber: number = 13, goodNumber: number = 7;

You can export one or more variables in one export statement.

Declaration export

You can export function, class, constant, and let declarations as
follows:

export const INTERVAL_SECS: number = 100;
export let tempDir: string = '/tmp', tempFile: string;
export function catchABreak() { }
export class BreakCatcher { }

You can export essentially multiple names using these two export
syntaxes, e.g., by using an object with properties. For instance,

export let obj1: { key: string } ①
 = { key: 'value' }; ②

① The type of the variable obj1 is { key: string }.

② obj1 is initialized with an object { key: 'value' }.

Or, using type inference,

export let obj1 = { key: 'value' };

You can also use destructuring to rename select properties of an object.
For instance, without explicit type annotation,

3.3. Module Exports

31

const obj2 = { key1: 'v1', key2: 'v2' } ①
export var { key1, key2: altKey } = obj2;

① The type of obj2 is {key1: string, key2: string}. The object
literal type is explained later in the Object Types chapter.

Name list export

class Children {};
var child1: string, child2: number = 42, child3: boolean;
export { Children };
export { child1, child2, child3, }; ①

① Note that the exported object has a type { child1: string,
child2: number, child3: boolean }.

3.3.2. Default exports

The default export declaration gives a certain syntactic convenience
to the importing modules. The default export can take a few different
forms:

Default function export

You can export a function as a module’s default export in one of the two
ways:

export default function() { };

This statement exports an anonymous function as the module’s default
export. Likewise, a named function can be exported as the module’s
default:

3.3. Module Exports

32

export default function catchMeIfYouCan() { };

Functions can also be default exported as follows:

function catchABreak() { };
export default <() => void>catchABreak; ①

① The type of the catchABreak function is () => void. The function
types are discussed later. The type assertion is unnecessary in this
example.

Default class export

You can also export a class as a module’s default export as follows:

export default class BreakCatcher { };

In the same way, we can also export a class defined earlier as the
module’s default:

class BreakCatcher { };
export default BreakCatcher; ①

① The type of the class BreakCatcher is BreakCatcher. That is, a
class declaration creates a new type.

3.4. Module Imports
The (static) import declaration is used to import the names exported by
other modules. There is also dynamic import(), which was introduced
in ES2020. We will not discuss dynamic imports in this book. There are
two kinds of import statements.

3.4. Module Imports

33

3.4.1. Module import

You can just import a module:

import './my-other-module'; ①

① This statement imports a module in a file my-other-module.ts in the
current directory.

This form of import declaration is for "side effects" only. The
statements in the imported module will be executed in the context of
the importing module.

3.4.2. import - from Declaration

We import specific names and definitions exported from other modules
using the import - from statement. This is the more typical uses of
the import declarations.

import X from './his-module';

There are a few different kinds of import - from declarations. The
ways in which we can import the names depend on how they are
exported from the imported module.

3.4.3. Default import

import catchMe from './function-module';

In this case, the 'function-module' module has a default export, and
we are naming the default exported object as catchMe. The name is
arbitrary, and any valid Typescript identifier will do.

3.4. Module Imports

34

3.4.4. Name list import

import { child1, child2, } from './her-module';

If the 'her-module' module exports child1 and child2, among
others, then we can import them by their names. We can also use the JS
as keyword to rename any of them to use different names, or aliases.

import { child1 as First, child2 as Second } from './her-
module';

3.4.5. Namespace import

You can import all exported items from a given module using the
wildcard * syntax.

import * as AlienModule from './their-module';

For example, if the imported module, from the file './their-
module.ts', is exporting a function named phoneHome, then we can
now refer to it as AlienModule.phoneHome. Note that the as clause
with the namespace alias is required in this syntax.

3.5. Typescript Namespaces
Typescript’s construct called the namespace is another module format,
which predates the ES module standard. Now that the ES module
system is becoming more widely used, the use of TS-specific
namespaces is discouraged. We do not discuss Typescript namespaces
in this book.

3.5. Typescript Namespaces

35

Chapter 4. Variables
Variables can be declared using keywords const, let, or var. In the
non-"use strict" mode, variables do not need to be first declared
before they can be used. But, as indicated, we do not use Javascript’s
non-strict mode in this book.

4.1. The const Declaration
The const declaration in Javascript declares a variable and assigns an
initial value. The variable cannot refer to anything else other than this
initial value. For example,

> const animal = "giraffe"
> animal
'giraffe'

Attempting to assign a new value to a const variable will cause an
exception.

> animal = "elephant"
Uncaught TypeError: Assignment to constant variable.

Unless there is a specific reason otherwise, the const declaration
should always be the first choice among the three different kinds of
declaration syntax.

In Typescript, a const variable can be declared in the same way:

const plant: string = "oak"; ①
// plant = "pine"; ②

4.1. The const Declaration

36

① We do not need to specify a type in cases like this, as we will further
discuss later in the Type Annotation chapter.

② The static type analyzer in the IDE would not even let us write an
incorrectly typed code. Note that, by convention, we will comment
out code that will raise a compile-time error.

Note that the terms like const or constant (or, readonly or immutable,
and so on) can have different meanings across different programming
languages, and/or in different contexts. In Javascript and Typescript, it
simply means that variables declared with const cannot be used to
refer to values other than the ones they are initially assigned to.

4.2. The let Declaration
The let declaration in Javascript is essentially the same as the const
declaration, except that

• The let variable need not be explicitly initialized in the declaration,
and

• The let variable can be used to reference different values
throughout its lifetime.

When a variable is not explicitly initialized in the let declaration, its
initial value is undefined.

> let insect
> insect
undefined

In Typescript, every variable needs to be associated with a type, and its
type cannot change (even though its associated value can).

let vegetable; ①

4.2. The let Declaration

37

let fruit: string; ②
// console.log(fruit); ③
let flower: string = "rose"; ④
// flower = 3; ⑤

① A let variable without an initial value will be assigned undefined,
and its type will be inferred to be the broadest possible type in
Typescript, any.

② We can declare a let variable with an annotation with a type.

③ But, this variable cannot be used before assignment. This is because
the Javascript’s default initial value undefined is not compatible
with the specified type, string in this example. Note that we always
assume that all Typescript strictness settings are enabled in this
book, including strictNullChecks.

④ In case of a let variable declaration with an initial value, the
variable may not have to be annotated if the inferred type is
suitable. In this particular example, the type annotation, string, is
redundant.

⑤ In Javascript, this might have been allowed. But, in Typescript,
assigning a value to a variable with an incompatible type, e.g.,
string vs number, will throw a compile-time error.

4.3. The var Declaration
The var declaration is similar to the let declaration, but they have
different scoping rules. Generally speaking, the (newer) let declaration
syntax is preferred over the (older) var declaration syntax. For top-
level variables, however, there is little difference, in practice, between
var and let.

The readers are encouraged to consult a Javascript reference for the
Javascript variable scoping rules, and in fact, for any Javascript topic
that is not covered in this book.

4.3. The var Declaration

38

In all three different types of declarations, multiple variables can be
declared in one statement. For example,

> var animal = "rabbit", count = 10;
> console.log(animal, count);
rabbit 10

In Javascript, we can reassign values of different types:

> animal = 20, count = "turtle";
> console.log(animal, count);
20 turtle

In case of Typescript, with a type annotation (which is unnecessary in
this example),

var flower: string = "tulip",
 count: number = 6;
console.log(flower, count);

Once the type is determined for a variable, either through an explicit
type annotation or type inference, it cannot change. Except for the
const variables, the variables declared with var or let can still be
modified, that is, they can refer to different values as long as their types
are compatible.

flower = "rose";
count = 12;
console.log(flower, count);

4.3. The var Declaration

39

Chapter 5. Basic Types
We will cover some simple and fundamental types in this chapter. They
are not only the most commonly used, but they also form the building
blocks of more advanced and more complex types in Typescript.

5.1. Javascript Types
Javascript includes eight fundamental types: boolean, number, bigint,
symbol, string, undefined, null, and object. The first seven types
are primitive types, and everything else is object in Javascript. Arrays
are objects, and functions are objects.

Javascript is an object-based programming language, and objects play
arguably more fundamental roles than types (or, "classes"). Arrays and
Functions are builtin objects. In fact, there are predefined objects
corresponding to all primitive types, except for null and undefined.
That is, there are Boolean for boolean, Number for number, BigInt for
bigint, Symbol for symbol, and String for string. Javascript will
automatically convert values of the primitive types to the
corresponding objects at run time, if needed. This is sometimes called
auto-boxing in some other programming languages.

Furthermore, Javascript defines a number of additional builtin, or
global, objects. (We often use the names Javascript and ECMAScript
interchangeably in this book even when the use of one over the other
may be preferred.) For example, Javascript includes builtin functions
such as parseInt and parseFloat, core language objects such as
Error and Promise, collection objects such as Map and Set, and other
builtin objects such Date, Math, RegEx, and JSON.

Typescript defines a number of types corresponding to some of these
builtin objects in Javascript. As a matter of fact, any object which is a
constructor function in Javascript can be viewed as a type since it can

5.1. Javascript Types

40

create multiple structurally equivalent objects, or "instances", based on
its prototype. The modern Javascript now uses class, and, in
Typescript, every class defines a new type.

5.1.1. The typeof operator

Javascript has a typeof operator, which takes an expression and
returns its type at run time, as a string, that is, one of 'boolean',
'number', 'bigint', 'symbol', 'string', 'undefined',
'function', or 'object'.

For example,

> typeof true
'boolean'
> typeof 2023
'number'
> typeof 3.1415
'number'
> typeof "Wizard College"
'string'
> typeof (() => undefined)
'function'
> typeof null
'object'

Note that, although null is considered a separate type in Javascript,
typeof(null) simply returns 'object'.

5.1.2. The instanceof operator

The binary instanceof operator takes an object (LHS) and a
constructor (RHS) and it returns true if the prototype property of the
constructor appears anywhere in the prototype chain of the given
object. It returns false otherwise.

5.1. Javascript Types

41

> function Bot(model) { ①
... this.model = model
... }
> Bot instanceof Function ②
true
> Bot instanceof Object ③
true
> const chatbot = new Bot('Chatbot'); ④
> chatbot instanceof Bot ⑤
true
> chatbot instanceof Object ⑥
true
> chatbot instanceof Function ⑦
false
> "Hello World Cup!" instanceof Object ⑧
false

① A simple Javascript constructor function.

② Bot is a Function object.

③ Every object in Javascript is an Object.

④ One can create an instance of Bot using the new operator.

⑤ The chatbot object is an "instance of" Bot.

⑥ The Object constructor appears in every object’s prototype chain.

⑦ chatbot is not a Function.

⑧ A value of a primitive type is not an instance of Object.

5.2. Strict Equality
Javascript has two equality and two inequality operators: Equality ==
and strict equality ===, and inequality != and strict inequality !==. The
strict versions take the operands' (run-time) types into account whereas
the non-strict versions do not.

5.2. Strict Equality

42

In Typescript, since all values and variables are associated with (static)
types, the non-strict versions of equality == and inequality != operators
work differently than in Javascript.

For example,

> 1 === "1" ①
false
> 1 == "1" ②
true

① In Javascript, the use of strict equality and inequality operators is
generally recommended.

② This returns true.

In Typescript, however, the expression 1 == "1" is invalid because the
operands have two different static types, i.e., number vs string. Hence,
in general, using non-strict equality and inequality operators is often
safe in Typescript.

Note, however, that, to be perfectly safe, the use of strict equality and
inequality operators may still be preferred. For instance, the following
example shows one gotcha of using non-strict equality and inequality
operators, even in Typescript.

let one1: number = 1;
let one2: unknown = "1"; ①
console.log(one1 == one2); ②

① The unknown type bypasses strict type checking.

② This will print true, which is most likely not the result that the
Typescript developer expected.

5.2. Strict Equality

43

5.3. Primitive Types

5.3.1. The boolean, number, and string types

Typescript supports all primitive types in Javascript, including
boolean, number, and string.

• The boolean type has two values, true and false.

• The number type includes all 64 bit integer values and 64 bit floating
point values.

• The string type represents strings such as "Hello Wizard!".

const thumbsUp: boolean = true;
const year: number = 2023;
const totalHours: number = 10040.25;
const planet: string = "Mars";

5.3.2. The bigint Type

In addition to number, Javascript also includes the BigInt type (since
ES2020), which represents the "infinite precision" integer numbers. For
example,

> typeof BigInt(1_000_000)
'bigint'
> typeof 1_000_000_000n ①
'bigint'

① The BigInt literal syntax can be used only if the target is set to
es2020 or later. Otherwise, you can use the constructor syntax, e.g.,
BigInt(1_000_000_000).

The type of BigInt values in Typescript is bigint.

5.3. Primitive Types

44

const oneMillion: bigint = BigInt(1_000_000);
const oneBillion: bigint = 1_000_000_000n;

5.3.3. The symbol type

Since ES2015, Javascript includes the Symbol type, which can be used to
create globally unique references. One can create new and unique
symbols as follows:

> const myMagic = Symbol("huff")
> const yourMagic = Symbol("huff")
> typeof myMagic
'symbol'
> typeof yourMagic
'symbol'

The type of Symbol values in Typescript is symbol.

const myMagic: symbol = Symbol("huff");
const yourMagic: symbol = Symbol("huff");

if (myMagic !== yourMagic) {
 console.log("We are not the same.");
}

5.4. Literal Types
Literal values of boolean, number, or string can be used as types,
often in union types. For instance,

const hello = "Hullo~~~";

5.4. Literal Types

45

In this example, the variable hello can represent only one specific
string "Hullo~~~" throughout the program, and hence its literal value
represents its type in Typescript. The above statement can be written as
follows using an explicit type annotation:

const hello: "Hullo~~~" = "Hullo~~~"; ①

① In this case, the literal type "Hullo~~~" is sort of a subtype of
string. Note that literal types and their values have the same
representations. Whether a literal is used as a type or a value
depends on the context.

5.5. The any Type
The any type is the broadest type in Typescript (as in "any type"), and it
is sort of a supertype of all types, builtin or user-defined, in Typescript.
But, any is a special type and its use is generally discouraged except
during development. For example, when you need a type and you don’t
know what type to use, you can temporarily use this type, any, e.g., to
avoid type checking errors, etc.

The any type implicitly includes all possible properties and all possible
methods. A value of type any can be used anywhere, it can be called
like a function, or it can be assigned to, or from, any value of any type.
That is, Typescript effectively disables all static type checking as long as
any values are involved (e.g., as if it is a Javascript code). For example,

let dubious: any = { speed: 65 }; ①
let rank: number = dubious; ②
console.log(rank, typeof rank);
dubious = 2100; ③
console.log(dubious, typeof dubious);
dubious.drive(dubious.velocity); ④

5.5. The any Type

46

① We explicitly declare the variable dubious as the any type for
illustration.

② Although rank is declared as number, this is not enforced at compile
time when an any value is involved. After the assignment, at run
time, the type of rank is object.

③ We can assign values of any type to a variable of any type. At run
time, after this assignment, the type of dubious will be number.

④ Although dubious does not have a property velocity or a method
drive, it will still compile. It will, however, throw a run time error,
just like a plain Javascript code.

As this simple example illustrates, the use of any negates virtually all
the benefits of using Typescript. Note that since we (always) use
"noImplicitAny": true, any is never automatically inferred by
Typescript. When needed, any should be explicitly specified, e.g., as a
temporary measure.

In terms of type compatibility:

• Any values of any type can be assigned to a variable annotated as
any, and

• The values of type any can be assigned to variables of any type,
except for never.

5.6. The unknown Type
The unknown type is a (type-safe) doppelganger of any. unknown is the
same as any in that it also represents the broadest type in Typescript,
but unlike any, variables of the unknown type are statically type
checked.

• Any values of any type can be assigned to a variable annotated as
unknown since it is the broadest type,

5.6. The unknown Type

47

• Values of unknown can be assigned to a variable of type any or
unknown. But, it cannot be assigned to variables of any other type
without type assertion or narrowing, and

• No properties or methods of an unknown value can be accessed
without first asserting or narrowing to a more specific type.

For example,

let dark: unknown = { shade: "gray" }; ①
dark = "chocolate"; ②
console.log(dark, typeof dark);

① We are declaring dark as the unknown type so that it can be used to
refer to values of any type.

② We can assign value of any type to the variable dark.

let dark: unknown = { shade: "gray" }; ①
// let cost: number = dark; ②
let cost: number = dark as number; ③
console.log(cost, typeof cost); ④

① The same example as above.

② This will fail static type checking since a value of the "broader" type
cannot be assigned to a variable of the "narrower" type.

③ We can "trick" the static type checker by using type assertion, for
instance.

④ At run time, the type of dark, and hence that of cost, is still object
(not number).

Another example,

let dark: unknown = { shade: "gray" };

5.6. The unknown Type

48

// console.log(dark.shade); ①
console.log((dark as { shade: string }).shade); ②
console.log((dark as { pray: () => void }).pray()); ③

① Although dark has the property shade, it cannot be directly
accessed since it is of the unknown type.

② We can use type assertion to access shade.

③ We can also "trick" Typescript to think there is something that does
not exist. This statement will pass type checking, but it will fail at
run time since dark does not have a method named pray.

5.7. The null and undefined Types
Javascript has two primitive values used to indicate an absent value or
an uninitialized value, null and undefined. TypeScript has the
corresponding types by the same names. The null type has a single
value null, and the undefined type likewise has a single value
undefined. These types are, therefore, called the "singleton types".

Note that null and undefined are two separate and distinct types in
Typescript.

let alwaysNull: null = null; ①
alwaysNull = null; ②
// alwaysNull = undefined; ③
let alwaysUndefined: undefined; ④
alwaysUndefined = undefined; ⑤
// alwaysUndefined = null; ⑥

① We declare alwaysNull as a null variable with an initial value
null.

② This variable alwaysNull can be assigned (the same) null, but
nothing else.

5.7. The null and undefined Types

49

③ We cannot even assign undefined to this variable.

④ We declare another variable alwaysUndefined as the undefined
type. Typescript initializes any variable with undefined which has
no explicit initial value, and hence the initial value is consistent with
the type annotation.

⑤ This variable is no good other than referring to one and only one
undefined.

⑥ It is illegal to assign any other value, including null, to this variable.

In Javascript, although null and undefined are two distinct values
(and types), they are largely interchangeable (as long as they are used
consistently). The biggest (conceptual) difference is that null is explicit
whereas undefined is more implicit. That is, when you declare a
variable without an initial value, its initial value is undefined. If you
use a return statement without an explicit return value in a function,
that is equivalent to returning undefined.

> (function a() { return })() ①
undefined
> (function b() { return undefined }) ()
undefined

① In Javascript (and, hence in Typescript), there is absolutely no
semantic difference between return; and return undefined;.

If you want to treat null and undefined as more or less the same, then
you can use a union type, e.g., null | undefined.

Note that we always assume that "strictNullChecks": true in this
book. Setting strictNullChecks to false will result in different
behavior of Typescript type checking when it comes to null or
undefined.

5.7. The null and undefined Types

50

5.8. The never Type
The never type has no valid value, and it indicates values that should
not occur. never is the narrowest type. That is, it can be viewed as a
subtype of all types defined in Typescript.

never can be used as the return type of a function that never returns.
For example,

function oblivion(): never {
 throw new Error("Never returns");
}

Or,

const f: (() => never) = () => { ①
 while (true) { }
}

① The function types, e.g., () => never in this example, are discussed
later.

In terms of assignability,

• No values of any type, except never itself, can be assigned to a
variable annotated as never, and

• Values of never can be assigned to variables of any type.

5.9. The void Type
The void type is typically used as a function return type to indicate that
the function does not return any value. For example,

5.8. The never Type

51

function empty(): void {
 return;
}

In this context, void is more like undefined. In fact, void is generally
considered a slightly broader type than undefined.

In terms of assignability,

• Values of void, undefined, and never types, but of no others, can
be assigned to a variable annotated with void, and

• Values of type void can be assigned to variables of void, any, or
unknown types, but to no others.

5.10. The object Type
The special type object is a supertype of any type that represents
objects in Typescript (that is, excluding values of primitive types).

For example,

const obj1: object = { prop: "value" }; ①
console.log(obj1 instanceof Object); ②
const obj2: object = [1, 2, 3]; ③
console.log(obj2 instanceof Array);
const obj3: object = new String("huh?"); ④
console.log(obj3 instanceof String);

① The object type is "compatible" with any object. It is sort of like an
ultimate base type of other object types.

② Note that Object is a builtin global object in Javascript (which is at
the top of the prototype chain for other objects). This statement will
print true.

5.10. The object Type

52

③ An array is also an object, and hence it is (indirectly) of the object
type. Both obj2 instanceof Array and obj2 instanceof
Object will return true.

④ A String object (but, not a string primitive value) is also an object,
and hence it is (indirectly) of the object type. Both obj3
instanceof String and obj3 instanceof Object will return
true.

Denoting specific object types in Typescript is discussed later in the
Object Types and Interfaces chapters. In addition, the Typescript Class,
which is based on the ES class, provides a convenient way to declare a
new type and to easily create one or more objects of the same type.

5.11. Function Types
Functions are one of the most basic building blocks in any
programming languages, including Javascript (and, hence Typescript).
In Javascript, every function is a Function object, whose prototype
chain includes both Function.prototype and Object.prototype.

For example,

> function shout() {
... console.log("HELLO, WORLD!")
... }
> shout instanceof Function
true
> shout instanceof Object
true

Typescript does not define a separate overall function type that
corresponds to Javascript’s Function object. We discuss how to
annotate a function with a specific function type later in the book, e.g.,
in the function annotations section, and the Function Types chapter.

5.11. Function Types

53

For instance,

function yell(level: number): string { ①
 switch (level) { ②
 case 1: return "hello world";
 case 2: return "Hello World";
 default: return "HELLO WORLD";
 }
}

① The function yell takes a number argument and returns a string
value.

② Any valid Javascript statement is also a valid Typescript statement.

5.12. Array Types
Arrays are used to store a sequence of items as a collection, e.g., as a
single object. All arrays in Javascript are Array objects, and they
support common array operations such as subscripting, etc., as in many
other programming languages.

For example,

> const a = [1, 2, 3] ①
> typeof a ②
'object'
> a instanceof Array ③
true
> a instanceof Object
true
> Array instanceof Object
true

① An array literal syntax. An array in Javascript can also be created
using the (overloaded) Array constructor function.

5.12. Array Types

54

② Javascript arrays are just objects.

③ In Javascript, the instanceof operator, which checks the
constructor prototype chain, can be usually more useful than the
typeof operator.

In Typescript, there is a different array type for each different element
type. For instance,

const abc: string[] = ['a', 'b', 'c']; ①

① The type of abc is string[], an "array of string elements". Array in
Typescript is a generic type. In fact, string[] is a shorthand for
Array<string>.

Unlike in Javascript, arrays in Typescript must be "homogeneous" for
the purposes of type annotations. That is, all of their elements should
belong to a single type, possibly including the broadest type unknown
(or, any).

const xyz: unknown[] = ['x', 7, false]; ①

① The array xyz includes three elements of string, number, and
boolean. We annotate it as unknown[] in this example. A "better"
type would have been (string | number | boolean)[], using
the union type of all its element types.

Typescript’s array types are further discussed in the Arrays chapter.

5.13. Tuple Types
Typescript includes additional array-like collection types called the
tuples. In fact, they are just arrays in Javascript. For example,

5.13. Tuple Types

55

> const t = ["argentina", 2022, "quatar"]
> t instanceof Array
true

The array t is no different than a in the Javascript example of the
previous section. In Typescript, however, objects like t can be best
typed as a tuple (e.g., rather than an array type with broad element
types).

let winner: [string, number] ①
 = ["france", 2018];
winner = ["argentina", 2022]; ②

① We declare the variable winner as a two-element tuple type,
[string, number].

② We assign another tuple, with the same type, to winner.

An array in Typescript can grow or shrink. That is, its size can change.
Tuples in Typescript are fixed size, with fixed element types, at least,
conceptually. In practice, however, since both arrays and tuples become
Javascript arrays upon transpilation, Typescript’s tuple support is not
perfect. For example,

winner.push(2026); ①
console.log(winner);

① Typescript does not prevent us from adding more elements to a
(fixed-size) tuple. At run time, winner will end up being
['argentina', 2022, 2026], whose proper type would have
been [string, number, number].

Typescript tuple types are further discussed later in the book, including
readonly tuples.

5.13. Tuple Types

56

5.14. Enum Types
Enum, or enumeration, types are often used to define a set of related
constants. Typescript’s enum is an addition to the language (beyond
Javascript). When Typescript code is transpiled to Javascript, the enum
values are converted to proper Javascript code (e.g., using const).

For example,

enum GOAT { "pele", "maradona" } ①
let goat: GOAT; ②
goat = GOAT.pele; ③
console.log(goat); ④

① This enum declaration defines a new type, GOAT. The valid values for
this type are pele (index 0) and maradona (index 1).

② We declare a variable goat with the type GOAT.

③ We can assign a value of the GOAT type to this variable.

④ This will print out 0, the numeric value of GOAT.pele.



Most programming languages include some kind of
enum or enum-like constructs. Enum has been a part
of Typescript from the very beginning. At this point,
however, there are many different ways to achieve the
same things, and the use of enum in Typescript is not
particularly encouraged.

Note that, at some point in the future, Javascript may
introduce its own enum construct, which may or may
not be compatible with Typescript’s enum.

5.14. Enum Types

57

Chapter 6. Type Aliases
Type aliases are primarily used to provide names to (anonymous) type
literals. But they can also be used to assign new/different names to
existing named types.

Type alias declarations, using the Typescript keyword type, are
syntactically similar to variable declarations (e.g., using const, let, or
var), and type aliases have similar semantics to variables, e.g., in terms
of scoping and shadowing, etc. But, type aliases are a purely compile-
time construct. As an example, one can declare type aliases for
primitive types as follows:

type Tax = number; ①
const iou2023: Tax = 100.0; ②

① The type Tax is just an alias to the primitive type number.

② The type of the variable iou2023 is number. Type aliases can be
useful for code documentation purposes. That is, in this example, the
number 100.0 has something to do with Tax.

Here’s a slightly more complicated example:

type Code = 400 | 401 | 404; ①
let clientCode: Code = 404; ②

① Code is a type alias to a union type with three literal types, 400, 401,
and 404.

② 404 is a valid value for the union type Code, and hence it can be
assigned to a variable of type Code.

One of the most common uses of type aliases is to give a name to an
object literal type. For instance,

58

type Point2D = { ①
 x: number;
 y: number;
};
let point: Point2D; ②
point = { x: 1.0, y: 2.0 };

① All type alias declarations have the same syntax. The keyword type
followed by a name, an equal sign =, and a target type, which is an
object literal type, { x: number; y: number; }, in this example.

② Type aliases can be used just like (regular) types.

Note that object literal types with type aliases and interface types have
overlapping use cases. We discuss this further throughout the book.

Here’s a somewhat convoluted example:

type ID = number; ①
const myID: ID = 42; ②
{ ③
 type ID = string; ④
 const yourID: ID = "forty two"; ⑤
 console.log(myID, yourID);
}

① We create a type alias ID referring to the number type.

② The type of myID is number.

③ A pair of angular brackets {} creates a new block, and a new scope,
in Javascript (and, hence in Typescript).

④ In the inner block, we declare a type alias with the same name ID.
Here, ID is an alias to string. The alias ID declared in the outer
scope is "shadowed" at this point.

⑤ The type of yourID is string.

59

Chapter 7. Type Annotations

7.1. Variable Annotations
When a variable is declared using var, let, or const, a type can be
explicitly specified for the variable with the variable : type syntax. For
example,

var apple: string; ①
let orange: number = 100; ②
const pear: boolean = true; ③

① As far as Typescript is concerned, this variable apple cannot be
used to refer to any value which is not of the string type.

② The variable orange can refer to different numbers, but only
numbers.

③ The value of the variable pear is always true throughout the
execution of the program, and nothing else.

In the second variable declaration, the type annotation is not entirely
needed because the Typescript compiler can infer the type of orange
based on its initial value, 100, which is number. Hence we could have
done

let orange = 100; ①

① The type of orange is inferred to be number.

More or less the same logic applies to the declaration for pear, which is
initialized with true and hence the type can be inferred. In case of
const variables, however, the type is inferred to be the literal type of
the initial value, if feasible. For example, in the following,

7.1. Variable Annotations

60

const pear = true;

The type of pear will be inferred to be a literal type true, not boolean.
But, since true is assignable to boolean, in practice, these two
declarations, with and without explicit type annotations, would be
more or less equivalent to each other.

In general, when a variable is initialized with a specific value of a
specific type, and that type is the desired type, type annotation is
superfluous. If the compiler-inferred type turns out to be not the
desired type, then the explicit type annotation is still needed. For
example,

let pineapple: (string | number) = "Sweet and sour"; ①
pineapple = 666; ②

① The intended type of pineapple cannot be inferred from the initial
value alone.

② We end up assigning a number to this variable.

7.2. Function Annotations
A function type annotation can be viewed as an extension of variable
type annotation. For functions, their parameters and their return
values need to be annotated.

For example,

function add(a: number, b: number): number {
 return a + b;
}

7.2. Function Annotations

61

This function add takes two arguments of the type number and it
returns a value of number. Javascript functions can also be declared
anonymously:

const add = function(a: number, b: number): number {
 return a + b;
}

Or, alternatively, using the fat arrow function syntax:

const add = (a: number, b: number): number => a + b;

The parentheses () around the function parameters, in Typescript, are
required even with one parameter when the parameters are type-
annotated. Note that the type of the variable add in this example is (a:
number, b: number) => number. Function types are discussed later.

When a function is called, the Typescript compiler checks the types of
the arguments and that of the return value so that they are compatible
with the annotated types. In general, type annotations on functions are
more important, especially type annotations on parameters. They often
carry information not only to the Typescript compiler but also to other
developers, or API clients, who use the function.

Unlike in the case of variable type annotations, functions are usually
declared and called in two different places, and therefore their relevant
types are not easily inferrable at the point of function declarations. An
exception is an (anonymous) function that is defined and called at a
single location. For instance,

const sum = ((a, b) => a + b)(3, 4);
console.log(sum);

7.2. Function Annotations

62

In this example, the arrow function, (a, b) => a + b, is declared and
called in one statement. Based on the provided arguments, 3 and 4 in
this case, the types of a and b can be inferred to be both number. The
type of the return value can also be number since addition of two
numbers yields a number.

Another related scenario is when an (anonymous) function is declared
and passed in as an argument to a higher-order function. If the
parameter type of the higher-order function is known, the arrow
function argument, for instance, does not need to be explicitly
annotated.

For example,

const m1 = [1, 2, 3].map(a => 2 * a);
const m2 = [1, 2, 3].map(
 function (a) {
 return 2 * a;
 }
);

In this example, the type of a in both cases can be easily inferred to be
number since the map function acting on a number array expects a
function of type (a: number) => number as an argument.

These two functions could have been annotated as (a: number):
number => 2 * a and function (a: number): number { return
2 * a; }, respectively.

7.2. Function Annotations

63

Chapter 8. Assertions

8.1. Type Assertions
In certain situations, you, as a developer, may know that the actual type
of a given variable may be more specific than the one statically
annotated (or, inferred). In such a case, you can explicitly declare the
type of the variable as this more specific type so that the compiler can
utilize that information. This is called the type assertion in Typescript.

Despite the name, it is not a runtime assertion. Like type annotations,
type assertions are removed at compile time, and it won’t affect the
runtime behavior of the generated Javascript code.

There are two syntactic forms of type assertion. First, we can use
Typescript’s as operator.

For example,

let puzzle: unknown; ①
let input = "forty two";
puzzle = input; ②
const upper
 = (puzzle as string).toUpperCase(); ③

① Let’s assume that the type of puzzle is initially unknown.

② At this point, we know that puzzle refers to a string value.

③ By using a type assertion puzzle as string, we can call a string
method on puzzle. Note that, without this type assertion, Typescript
would not let us call this method on the unknown value.

Alternatively, we can also use the angular bracket <> syntax. Using the
same example as above,

8.1. Type Assertions

64

const upper
 = (<string>puzzle).toUpperCase(); ①

① The type assertion <string>puzzle is the same as puzzle as
string. This angular bracket syntax cannot be used, however, in
React .tsx files.

8.2. Const Assertions
A const assertion can be used on literal type expressions, including the
object literal types, with the effect that

• No literal types in that expression should be broadened,

• Object literals get readonly properties, and

• Array literals become readonly tuples.

The syntax of const assertions is similar to that of type assertions, but
instead of using the type name, it uses the keyword const.

For example,

let u1 = 42; ①
let u2 = 42 as const; ②
let u3: 42 = 42; ③

① The type of u1 will be inferred to be number.

② With the const assertion, the type of u2 is the literal type 42.

③ This declaration with an explicit type annotation is equivalent to the
declaration in the second line with the const assertion.

When the const assertion is used with an array literal value, the type
becomes a readonly tuple:

8.2. Const Assertions

65

let v1 = ['a', 'b']; ①
let v2 = ['a', 'b'] as const; ②
let v3: readonly ['a','b'] = ['a', 'b']; ③

① The type of v1 will be inferred to be string[].

② With the const assertion, the type of v2 is a readonly tuple type
readonly ['a', 'b'].

③ This declaration with an explicit type annotation is equivalent to the
declaration in the second line with the const assertion.

Another example with an object literal value,

let w1 = { age: 42 }; ①
let w2 = { age: 42 } as const; ②
let w3: {readonly age:42} = { age: 42 }; ③

① The type of w1 will be inferred to be { age: number }.

② With the const assertion, the type of w2 is an object type with a
readonly property, { readonly age: 42 }.

③ This declaration with an explicit type annotation is equivalent to the
declaration in the second line with the const assertion.

The declarations for u2, v2, and w2 can also be written as follows using
the angular bracket assertion syntax (outside of .tsx files):

let u2 = <const>42;
let v2 = <const>['a', 'b'];
let w2 = <const>{ age: 42 };

Note that, with const assertions in this example, no type annotations
were needed. Typescript took the most specific types from the
expressions of the const assertions.

8.2. Const Assertions

66

8.3. Non-Null Assertions
Typescript also supports a special form of type assertion, in which null
and undefined are removed from a given type. More specifically,
adding a suffix ! after an expression is effectively a type assertion that
the value isn’t null or undefined.

For example,

type NullableString = string | null | undefined;
function Length(str?: NullableString): number {
 return str!.length; ①
}

① This non-null assertion tells the compiler that we are absolutely sure
that str cannot be null or undefined at run time.

Note that this only informs the static type checker of the non-nullness of
a given expression. At run time, the expression can still end up being
null or undefined, which can potentially cause a runtime error.
Hence, non-null assertions, and type assertions in general, should be
used with caution.

8.3. Non-Null Assertions

67

Chapter 9. Generics
Generics allows defining a set of related types using one or more type
parameters. Those types that are declared as a set are called
parameterized types. A particular, concrete type, from a given generic
type, can be obtained by substituting type parameters with specific type
arguments. (As with all other type support in Typescript, generics is a
strictly build-time construct.)

9.1. Why Generics?
If you are coming from Javascript background, or if you have been
mostly programming in weakly typed languages, generics can be a bit
puzzling. Why do we need it? What purpose does it serve? These are
clearly more important questions to answer even before we talk about
other things like how we use it.

Let’s (hypothetically) suppose that we need to create a data container
that can contain one number. You can add a number and retrieve it
later, like some sort of a treasure chest. (It can be viewed as a
degenerate case of stack and queue data structures, but this example is
just for illustration.) Here’s a simple implementation:

class NumberHolder { ①
 data: number | undefined; ②
 push(data: number): void { ③
 this.data = data;
 }
 pop(): number | undefined { ④
 const d = this.data;
 this.data = undefined;
 return d;
 }
}

9.1. Why Generics?

68

① Typescript classes are discussed later.

② A public field of type number | undefined.

③ A public method. The void return type annotation is optional.

④ Typescript can infer the return type of this method based on its
implementation, and hence the type annotation is redundant.

The actual implementation is not important for our discussion here, but
the point is that we have created a "type-safe" one number container
data structure. If you try to add anything other than a number to an
instance of this NumberHolder, e.g., using the push method, the static
type checker will stop you from doing that.

This type safety comes at a cost, however. Now let’s suppose that we
need a similar data structure for strings. What do we do? One option is
to make the supported type of our current NumberHolder a bit broader,
e.g., from number | undefined to number | string | undefined.
Clearly, this poses some problems. We cannot create container
instances that only hold numbers and other instances that only hold
strings. They are mixed, reducing the type safety. What if we need a
container for Date objects, or another container for StudentRecord
custom type objects, etc.? NumberHolder will eventually become
AnythingHolder, and we will lose all the benefits of using the strongly
typed language.

Another option is creating a container type for each data type. For
example, StringHolder for string type data,

class StringHolder {
 data: string | undefined;
 push(data: string) {
 this.data = data;
 }
 pop() {
 const d = this.data;

9.1. Why Generics?

69

 this.data = undefined;
 return d;
 }
}

And, another for Date, and one more for StudentRecord, and so on
and on. Clearly, this is not a scalable solution even if we are willing to
ignore the fact that we are duplicating code.

Then comes generics to the rescue. You can write one generic
implementation and use it for different data types. Here’s our generic
Holder example:

class Holder<T> { ①
 data: T | undefined; ②
 push(data: T) {
 this.data = data;
 }
 pop() { ③
 const d = this.data;
 this.data = undefined;
 return d;
 }
}

① Note the type parameter T (within angular brackets), which is
essentially a placeholder for real types. The type parameter names
are arbitrary to a large extent, e.g., as long as they are syntactically
valid identifiers.

② You can use the type parameter as if it is a real type inside the given
generic class.

③ Type inference works with the generic type parameters as well. The
return type of the pop method is T | undefined, which is the type
of this.data.

9.1. Why Generics?

70

Now, we can use this generic Holder for number data,

const numberHolder1 = new Holder<number>();
numberHolder1.push(42);
console.log(typeof numberHolder1.pop());

Or, for string data,

const stringHolder1 = new Holder<string>();
stringHolder1.push("Secret of Life");
console.log(typeof stringHolder1.pop());

Attempting to push anything other than number to numberHolder1, or
anything other than string to stringHolder1, will cause a compile
time error.

We have illustrated one use of generics with data container types in this
section. And, that is one of the most common use cases of generics. But,
one can easily imagine the use of generics in many different scenarios
in practice. In fact, generics is an essential part of any strongly typed
programming languages, and Typescript is no exception.

9.2. Generic Functions
To declare a generic function, you add one or more type parameters,
within a pair of angular brackets <>, before the function parameter list.

Here’s the general syntax:

function fn<T1, T2>(args) { /* */ } ①
function <T1, T2>(args) { /* */ } ②
<T1, T2>(args) => /* */ ③

9.2. Generic Functions

71

① A generic function declaration with a name fn. One or more generic
type parameters (T1, T2, …) are specified within angular brackets
after the function name.

② A generic anonymous function. An anonymous function declaration
can also include one or more type parameters.

③ A generic arrow function expression. Note the position of the type
parameters.

(Note that functions are described in more detail later in the Function
Types chapter.)

Here’s an example of a generic function:

function firstOrDefault<T>(list: T[], value: T): T { ①
 return list.length == 0 ? value : list[0];
}

① Note that T[] represents an array type whose element type is T. As
we discuss in the next chapter, T[] is a shorthand notation for the
generic array type, Array<T>.

This function can be called as follows:

const x = firstOrDefault<number>([10, 20, 30], 0); ①
const y = firstOrDefault<string>([], "Nothing"); ②

① Note that the parameter T has been replaced with a concrete type
argument, e.g., number in this example. The value of x is 10.

② The value of y is "Nothing".

Typescript can generally infer the generic argument types based on the
supplied arguments to the functions, and hence these function calls can
be simplified as follows:

9.2. Generic Functions

72

const x = firstOrDefault([10, 20, 30], 0);
const y = firstOrDefault([], "Nothing");

9.3. Generic Types
We have seen a simple generic class example earlier. Generic classes
are further discussed later in the Classes chapter. In case of interfaces,
there are two different ways to create a generic interface. First, an
interface can include generic functions. For example,

interface IFace {
 write<T>(arg: T): void;
 print<T>(arg: string): T;
}

Note that the two functions in this example are independent of each
other in terms of the type parameters (although we use the same
placeholder name T in both cases). That is, we can do write<string>
and print<number>, or write<object> and print<undefined>, etc.

Alternatively, and more commonly, an interface can be explicitly
made generic:

interface IFace<T> {
 write(arg: T): void;
 print(arg: string): T;
}

In this example, the type parameter T is associated with the interface
itself, and the write and print functions will end up using the same
type argument that is supplied to IFace<T>.

9.3. Generic Types

73

9.4. Generic Type Constraints
When a generic type parameter is specified without constraints, any
type can be used for that type parameter. Although they are rather
common (e.g., container types), they are still special cases. More
generally, a generic function or a generic type may work for a range of
types, but not for all types. (And, there are an infinite number of
possible types in Typescript.)

We can use the extends keyword to specify type constraints on the type
parameters, that is, to specify what kind of types can be used with this
particular generic type/function. For instance, the following
longestLength function returns the max length from the given
arguments:

function longestLength<T extends { length: number }> ①
 (...list: T[]): number { ②
 return (list.length == 0) ? 0 :
 Math.max(...list.map(e => e.length)); ③
}

① We add a type constraint extends { length: number } to the
type parameter T. This means that this function can only be used
with arguments with the types which include the length property
of the number type. Note that the keyword extends in this context
has little to do with type inheritance.

② The modern Javascript’s rest parameter is discussed later. The
longestLength function is a generic vararg function.

③ This statement uses the higher-order map function, the array spread
syntax, and an arrow function (which does not require type
annotation, as we have seen earlier), etc. But, most importantly, with
regards to the current example, the type of e is T extends {
length: number }. Without the type constraint, e.length would
not have worked for general type arguments.

9.4. Generic Type Constraints

74

Here’s an example usage of this function:

const maxLen = longestLength(①
 [3, 5], ②
 ['a', 'b', 'c'],
 { length: 10 }, ③
);
console.log(maxLen); ④

① You can only use arguments which have the length: number
property with this function. For any other values that do not satisfy
the type constraint, the compiler (or, the IDE) will issue an error.

② An array object has the built-in length property, which returns
number.

③ This object has an explicitly declared length: number property,
and hence it can be used with this function.

④ This will output 10.

9.4. Generic Type Constraints

75

Chapter 10. Arrays

10.1. Generic Array<T>
An array object in Javascript represents a sequence of items. In general,
the types of the items in a given array need not be the same. When an
array is homogeneous, that is, when every item in the array is the same
type, T, Typescript uses the T[] syntax to denote the type of the array
object. Alternatively, the parameterized type syntax can be used, e.g.,
Array<T>.

For example,

const abc: string[] = ['a', 'b', 'c']; ①
const num: Array<number> = []; ②

① The type annotation is not needed. string[] is the same as
Array<string>.

② The type annotation is necessary since the type of the initial value is
ambiguous. Array<number> is the same as number[].

For heterogeneous arrays, that is, for the arrays with different type
items, we can use the narrowest type that is compatible with all the
item types. Or, in an extreme case, we can use an array of any or
unknown. For instance,

const mix: any[] = ["one", 2, "three"]; ①

① The inferred type in this case would be (string | number)[].

Note that any[] is not the same as any. any[], or Array<any>, is an
array type, whose item types are arbitrary. On the other hand, any is a
type that does not carry any static type information.

10.1. Generic Array<T>

76

10.1.1. Array creation

An array object, in Javascript and Typescript, can be created in a few
different ways. First, the literal syntax:

const pets = ["dog", "cat"]; ①

① The inferred type of pets is string[].

Alternatively, one can use the Array constructor function:

const empty = new Array<number>(10); ①
empty[0] = 33; ②
// empty[4] = "awkward"; ③
// empty.push("smooth"); ④

① This creates a 10-element array of number, whose type is number[].
Without the generic type argument, the constructor will create an
array of the any[] type.

② You can assign a number value to any of the array slots, or add any
number values, e.g., using the push method.

③ This results in a compile-time type error.

④ Likewise, this is not allowed.

The Array constructor function is overloaded. Here’s a different way to
call the constructor:

const pets = new Array("dog", "cat"); ①

① In this case, the generic type argument is not really needed if the
intended type of pets is string[]. That is, new Array("dog",
"cat") is the same as new Array<string>("dog", "cat").

10.1. Generic Array<T>

77

An array can also be created based off another existing array. The
simplest way is to use the array spread operator (…):

const petsCopy = [...pets];

Or, using the Array.from method,

const petsCopy2 = Array.from(pets);

Another common way is to copy an array, using the slice method,

const petsCopy3 = pets.slice();

10.1.2. Array iteration

Arrays, and other iterable objects like strings, can be iterated with the
for of statement. For example,

for (const pet of pets) { ①
 console.log(pet);
}

① The type of the loop variable is automatically determined by the
iterating array. That is, the type of pet is string in this example
since the type of pets is string[]. If you need to use a different
type, then you can use the type assertion on pets. For instance,

for (const pet of pets as any[]) { ①
 console.log(pet);
}

10.1. Generic Array<T>

78

① The type of pet in this example is any.

One thing to note is that using a non-iterable object in the for - of
statement in Javascript will cause a run-time exception. In Typescript,
this kind of errors are caught at compile time.

10.2. Generic ReadonlyArray<T>
For variables referring to arrays for which no mutation is intended, we
can declare them as ReadonlyArray. The ReadonlyArray type
describes arrays that can only be read from. Any variable declared as
ReadonlyArray cannot add, remove, or replace any elements of the
array.

We can use the generic type syntax, ReadonlyArray<T> or the literal
syntax readonly T[]. For example,

const safariPets: readonly string[] ①
 = ["wolf", "lion", "rhino"];
const waterPets: ReadonlyArray<string>
 = ["goldfish", "angelfish"];

① Normally, the type inference will yield the string[] type, in this
example, and hence an explicit type annotation is needed for
readonly array types.

Readonly arrays can be created in the same way as the normal (non-
readonly) arrays, except for different type annotations on the variables,
and they can be iterated over just like normal arrays. For instance,

for (const pet of safariPets) {
 console.log(pet);
}

10.2. Generic ReadonlyArray<T>

79

Chapter 11. Algebraic Data
Types
There are a number of different ways to create a new type from
existing types. We will discuss a few of the common such methods in
this chapter, including tuple types and union types. Some other
methods are discussed later in the book, e.g., in the Advanced Types
chapter.

11.1. Tuples

11.1.1. Fixed-size tuples

Many programming languages support tuple types. Javascript doesn’t
(as of ES2023). Typescript adds the tuple support on top of Javascript. In
general, a tuple is a sequence of a fixed number of elements, possibly
with different types. The order is important.

Typescript uses a comma-separated list of elements enclosed in square
brackets [] to denote a tuple literal. Likewise, it uses a comma-
separated list of element types enclosed in square brackets [] to denote
the type of a tuple.

For example,

type StrPair = [①
 firstName: string, ②
 lastName: string,
]; ③

① StrPair is an alias to a tuple type, [firstName: string,
lastName: string].

11.1. Tuples

80

② Tuple elements can all be named, or they can all be anonymous, in a
given tuple type. When elements are named, the tuple is called a
labeled tuple.

③ This declaration is essentially equivalent to type StrPair =
[string, string].

const myName: StrPair = ["Harry", "Potter"]; ①
let grade: [string, number] = ["ID-1234", 55]; ②
// grade = myName; ③

① We use the type alias, StrPair, defined earlier to annotate the
variable myName. Its initial value is consistent with the annotated
tuple type.

② The type of grade is [string, number], a two-element tuple.

③ The variables, myName and grade, have different types, and their
values cannot be assigned to one another. This statement will cause
a type checking error.

A tuple element can be accessed using the index notation. For instance,
using the above example,

console.log(myName[1]); ①
console.log(`${grade[0]}: ${grade[1]}`); ②

① This statement will print out Potter. The type of myName[1] is
string.

② This will print out ID-1234: 55. The types of grade[0] and grade[1]
are string and number, respectively.

It should be noted that, in Typescript, a tuple type with element types
T1, T2, … and Tn extends from an array type, Array<T1 | T2 | …
Tn>, whose element type is the union type of all element types of the
given tuple type.

11.1. Tuples

81

11.1.2. Generic tuples

Tuple types are implicitly generic just like array types are. For example,
three-element tuple types like [string, string, number] and
[string, number, number], etc. may all be viewed as realizations of
an implicit generic type [T1, T2, T3].

Furthermore, we can still use the generic tuple-like syntax, when
needed. For instance,

function first<T1, T2>(tuple: [T1, T2]): T1 {
 return tuple[0];
}
const f = first([10, "hi"]); ①
console.log(typeof f); ②

① This function call is the same as first<number, string>([10,
"hi"]).

② The type of f is T1, which is number.

11.1.3. Variadic tuples

Tuple types are generally used to model sequences with fixed lengths
and specific element types in many different programming languages.

In Typescript, however, tuple types are much more flexible, for better
or worse. We just discussed labeled tuple types. In addition, tuple
elements can be made optional. Tuple types can even include the "rest"
elements, in the leading, trailing, and in fact any positions. They are
called the variadic tuples in Typescript, as in variadic functions which
support a variable number of arguments.

In fact, Typescript tuple types are sometimes used to model function
parameter lists. Tuple type’s flexibility also comes from the fact that
tuples in Typescript are eventually transpiled to arrays in Javascript.

11.1. Tuples

82

As a little digression, let’s review how array spreading and
destructuring works in Javascript.

> const arr1 = [1, 2]
> const arr2 = ['a', 'b']
> const arrX = [...arr1, ...arr2] ①
> arrX
[1, 2, 'a', 'b']

① We use the spread operator … to "spread" the elements of both arr1
and arr2 into arrX.

> const [_, ...rest] = arrX ①
> rest
[2, 'a', 'b']

① The … operator is used to collect the "rest" of the elements of arrX.
This is known as the "destructuring assignment". The first element,
after destructuring, is discarded using the _ variable in this example.

Typescript’s variadic tuples use a similar syntax. For example,

type StrNums = [string, ...number[]]; ①

① This tuple type can have one or more elements, with the first
element of the string type and the rest of the number type.

let t: StrNums = ["Hermione"]; ①
t = ["Ron", 100];
t = ["Dudley", 10, 21, 32, 43];

① Some of the valid values assignable to the variable t. The rest
element can comprise zero, one, or more elements, of the number
type in this example.

11.1. Tuples

83

Here’s another example,

type NumberPair = [number, number];
type Strings = string[];
type Structured = [...NumberPair, ...Strings, boolean];

Note that the spread operator syntax can only used with tuple or array
types, and these element types do not have to be the last element. In
this example, the type Structured is the same as [number, number,
…string[], boolean].

In addition, certain elements of a tuple type can be made optional,
using the ? suffix notation. For instance, a type [string, number?] is
more or less comparable to a union type [string] | [string,
number]. Or, a labeled tuple [one: number, two?: boolean] is
roughly equivalent to [one: number] | [one: number, two:
boolean].

Here are some more examples.

let a: [number, boolean?, string?]; ①
a = [10];
a = [20, true];
a = [25, false, "one million"];
a = [25, undefined, "future"]; ②

① Only the trailing elements in a tuple type can be made optional. The
type of an optional element automatically includes the undefined
type. That is, this particular type is equivalent to [number,
(boolean | undefined)?, (string | undefined)?].

② Note that you cannot omit non-trailing elements. In this example, we
just use undefined to "skip" the middle element.

11.1. Tuples

84

11.2. Readonly Tuples
We can prefix any tuple type with the readonly keyword to make it a
readonly tuple. Readonly tuples extend from ReadonlyArray. That is, a
readonly tuple with element types T1, T2, … and Tn inherits from
ReadonlyArray< T1 | T2 | … Tn>.

Unlike regular tuples whose slots could be written to, readonly tuples
only permit reading from those positions. The length property of a
readonly tuple is readonly as well, e.g., even when the tuple has trailing
optional or rest element types.

type Grade = readonly [string, number]; ①
let g: Grade = ["Professor Dumbledore", 95];
console.log(`Name: ${g[0]}`); ②
// g[1] = 75; ③
// g.push(30); ④

① A readonly tuple of two elements, string and number.

② We can access each element of the readonly tuple.

③ But, we cannot update the elements of readonly tuples.

④ The array’s push method cannot be used with readonly tuples.

11.3. Union Types
A type essentially represents a (mathematical) set of all possible values
belonging to the type. For example, a string type is a set of all possible
string values, like "hello", "apple", and so on. Likewise, a number
type is a set of all possible number values, like 5, 10.5, and so on.

Two or more types can be composed into a single new type by
combining all their possible values. This is called a union type. Union
types are sometimes called the sum types because they correspond (in

11.2. Readonly Tuples

85

some abstract sense) to the algebraic sum of sets, or types. In contrast,
tuple types are sometimes called the product types, again, because they
correspond to the algebraic product of sets, or types. Tuple and union
types are often called the algebraic data types for this reason.

Now we can define and use a union type of string and number, as
follows:

let x: (string | number); ①
x = "secret"; ②
console.log(x);
x = 42; ③
console.log(x);

① The | syntax is used to define a union type. Unlike the tuple types,
the order is not significant in union types.

② A string value is of the type string | number (in addition to
being of the type string).

③ A number value 42 is also of the type string | number, and hence
it can be assigned to the variable x, whose declared type is string
| number.

type TruthOrNumber = boolean | number; ①
let u: TruthOrNumber = 42;
console.log(u);
u = true;
console.log(u);

① Type aliases are commonly used for union types because aliases are
usually shorter and more meaningful, and they tend to be more
easily reusable.

As for the operations allowed on the values of a union type, they must
exist in every member type of the union. Otherwise, the operation may

11.3. Union Types

86

not be applicable for certain values of the union type. For instance,
while two numbers (of the number type) can be added, two values of a
union type number | boolean may not be addable in general since
one of the two values happens to be a boolean, and not a number.

11.3.1. Narrowing

A value that belongs to a union type also belongs to at least one of the
member types of the union. For instance, using the previous example,
while a value 100 belongs to the union type boolean | number, it is
also a value of the number type.

We can perform operations on the values of a union type if they happen
to belong to a more specific member type, through "narrowing". For
example, using type U = boolean | number,

function addOrFail(a: U, b: U): U {
 // console.log(a + b); ①
 if (typeof a == 'number' &&
 typeof b == 'number') { ②
 return a + b; ③
 } else {
 return false; ④
 }
}
console.log(addOrFail(10, 20)); ⑤
console.log(addOrFail(10, true)); ⑥

① a and b cannot be added at this point since either one or both can be
true or false. The compiler will throw an error.

② Using the "typeof type guard" is one way of type narrowing.

③ a and b can be any numbers like 100 or 2000, or true or false, at
run time, and yet the compiler knows at this point, at compile time,
that these two values must be numbers, and they can be added. So,
the compiler allows this statement.

11.3. Union Types

87

④ This function returns a number or a boolean value, which almost
reminds us of Javascript. But, note that it is still statically and
strongly typed. The type happens to be a union type of boolean and
number.

⑤ This will print 30.

⑥ This will print false.

Narrowing is further discussed later in the book. As for assignability,

• The values of any member type of a union type can be assigned to
variables of the union type.

• The reverse is not necessarily true.

11.4. Discriminated Unions
A special kind of unions whose members have the same properties but
with different values are called the discriminated unions. Those
members are called the union’s variants. The compiler can discriminate
variants based on the values of this common property, called the
discriminant. For instance,

type OKResponse = { status: 200 | 201, payload: string };
type ClientError = { status: 400 | 404, error: Error };
type ServerError = { status: 500, error: Error };
type HttpResponse = ①
 | OKResponse ②
 | ClientError
 | ServerError;

① HttpResponse is a discriminated union because each variant has
the same property, status, and their value ranges are mutually
exclusive.

② The leading | is optional.

11.4. Discriminated Unions

88

Here’s an example usage of the HttpResponse type:

function handle(response: HttpResponse): string | Error |
undefined {
 switch (response.status) {
 case 200: case 201:
 return response.payload; ①
 case 400: case 404:
 return response.error; ②
 case 500:
 throw response.error; ③
 default:
 return; ④
 }
}

① Note the narrowing in action. Not all variants of the HttpResponse
type include the payload property, but in this case we can safely use
that property in this particular switch branch.

② Ditto.

③ The return type of a function that does not return can be annotated
with never. But, never is a subtype of all other types in Typescript,
and hence never need not be explicitly specified when other types
are used, as in this example.

④ Returning no value is equivalent to returning undefined.

11.5. Intersection Types
Another way to combine two or more existing types is to take a
(mathematical) intersection among all the sets of the possible values of
the member types. This is called the intersection type. A value of an
intersection type belongs to all of its member types. On the flip side, an
operation that is allowed in any of the members types is a valid
operation for the values of the intersection type.

11.5. Intersection Types

89

For example,

type Coord = ①
 & { lat: number, alt: number } ②
 & { lon: number, alt: number };
const c: Coord = { ③
 lat: 40.7,
 lon: -73.9,
 alt: 10.0,
};
console.log(c.lat, c.lon, c.alt); ④

① Coord is (an alias to) an intersection type of two object literal types.

② An intersection type is defined using the & operator.

③ It may seem a little counterintuitive, but a value of the intersection
type Coord will need to include all three properties from all member
types. That is, in this example, Coord is equivalent to { lat:
number, lon: number, alt: number } (and, not { alt:
number }).

④ You can, therefore, access any of the properties (or, methods) from
any of the members of an intersection type, on the values of the
intersection type.

In terms of assignability,

• The values of an intersection type can be assigned to variables of
any of its member type.

• The reverse is not necessarily true.

11.5. Intersection Types

90

Chapter 12. Function Types

12.1. Function Definitions
Functions in Javascript can be declared as statements or they can be
introduced as expressions. In both cases, functions are declared with

• The keyword function, followed by

• An optional function name,

• A formal parameter list within a pair of parentheses (), and

• A function body enclosed in a curly braces block {}. The function
body comprises a series of zero or more statements. For example,

> function add(a, b) { ①
... return a + b
... }
> add instanceof Function ②
true

① A function declaration with name add, and formal parameters a and
a. The function body includes one statement, return a + b.

② The add function is an instance of Function.

The following function does not have a name,

> function(a, b) { ①
... return a + b
... }

① A function declaration without a name. Otherwise, this function
declaration is equivalent to the previous example.

12.1. Function Definitions

91

A function expression example,

> const forever42 = function() { ①
... return 42
... }

① An anonymous function is assigned to a variable forever42.

12.2. Arrow Function Definitions
An arrow function, or Lambda function, is an expression that declares a
function in Javascript. It has the general form, Arrow Function
Parameters => Arrow Function Body. The arrow function parameters
can be

• A single parameter, or

• A parenthesized list of zero, one, or more parameters.

The arrow function body can be

• A single expression (that can be used syntactically on the right hand
side of an assignment statement), or

• A function body block enclosed in a pair of curly braces {}.

For example,

> const f1 = x => x * x ①
> const f2 = () => 82828282 ②
> const f3 = (x, y) => { ③
... const h = Math.sqrt(x * x + y * y)
... console.log(h)
... return h
... }

12.2. Arrow Function Definitions

92

① The arrow function, assigned to f1, has a single function parameter
x and its body is a single expression x * x.

② f2 has an empty parameter list, and it has a single constant
expression 82828282 as its body expression.

③ f3 has two parameters, x and y, and its function body is a block,
which includes three statements.

12.3. Function Types

12.3.1. Function type expressions

Function types are syntactically similar to arrow function expressions,
using the fat arrow => operator. For example,

type Strumber = string | number;
function add(①
 a: Strumber, b: Strumber, ②
): Strumber {
 return <any>a + <any>b; ③
}

① A function declaration with name add and formal parameters a and
b. The function body includes one statement, which returns the
value of a + b.

② Both parameters and the return value are type-annotated with the
same type, Strumber. Note that the type annotations on function
parameters are generally required.

③ This is just an illustration. Type assertions are discussed earlier.

This add function takes two arguments of the Strumber type and it
returns the value of the same type. Hence, the type of add is (a:
Strumber, b: Strumber) => Strumber. The formal parameters in
the function types are required, but their exact names are ignored.

12.3. Function Types

93

Here’s the same function, written as an arrow function,

const add = (a: Strumber, b: Strumber): Strumber =>
 <any>a + <any>b;

When the parameters are type-annotated, even a single parameter
needs to be enclosed in parentheses (). For instance,

const mirror = (me: {}): {} => { ①
 return me;
}

① An arrow function expression is assigned to a variable mirror. It
takes a single argument of type {} and returns the same value (of
the same type).

A type alias can be used to name a function type. For example,

type BinaryFunction = (a: number, b: number) => number;

function doMath(fn: BinaryFunction, a: number, b: number):
number {
 return fn(a, b);
}

const multiply = (a: number, b: number) => a * b;
const x = doMath(multiply, 2, 3); ①
const y = doMath((a, b) => a + b, 5, 10); ②

① The value of x is 6.

② The value of y is 15. Note that the arrow function, (a, b) => a +
b, used as the first argument to the doMath function, does not need
to be type-annotated since its type can be inferred from the context,
e.g., from the function type of doMath.

12.3. Function Types

94

12.3.2. Function return types

• A function which does not return a value, or whose return value
will always be ignored, may be annotated with a return type void.

• A function that does not return a value but still includes a return
statement (even without a return value) can use the undefined
return type. Roughly speaking, void implicitly includes undefined.

• Likewise, a function that returns a value sometimes but doesn’t at
other times may be annotated with a union return type that
includes undefined.

• A function that never returns, e.g., because it always throws an
exception or it includes an infinite loop, has a return type of never.

• Note that, as a universal type, any can also be used as a function
return type, which essentially includes undefined, void, never,
and anything else.

12.3.3. Generic function alias

Generic functions can also be type-aliased. For example,

type SecretFunc<T> = (a: T) => 42; ①
type Swap<T1, T2> = (a: T1, b: T2) => [T2, T1];
type LengthwiseFunc<T extends { length: number }> = (a: T) =>
number;

① Note that the generic type parameters are declared with the alias,
and not with the function type.

12.3.4. The Function type

Every Javascript function is a Function object. Typescript has a type
Function corresponding to the JS global object Function constructor.
Function includes common properties like bind, call, and apply. It

12.3. Function Types

95

also has the special property that allows the values of Function to be
callable. These calls return a value of the any type.

const f: Function = (a: number) => 2 * a;
const r = f(); ①

① The variable f is "callable" since it is annotated as Function. The
inferred type of r is any. Note that this does not violate
noImplicitAny since the return type of f is explicitly any. f() is
called an untyped function call.

In Typescript, broad types like Function or Object are rarely used.
Instead, the use of more specific function or object types is generally
preferred.

12.4. Parameter List
The function parameters (within a pair of parentheses) can be

• Empty,

• A comma-separated list of one or more formal parameters,
optionally followed by a comma,

• A comma-separated list of one or more formal parameters, a
comma, and the rest parameter, or

• The rest parameter.

For example,

function f1() { } ①
function f2(a: T1, b: T2) { } ②
function f3(a: T1, b: T2,) { } ③
function f4(a: T1, b: T2, ...c: T3[]) { } ④
function f5(...c: T3[]) { } ⑤

12.4. Parameter List

96

① An empty parameter list.

② A list of one or more parameters. T1, T2, and T3 represent arbitrary
types.

③ The trailing comma has been allowed since ES2017.

④ The rest parameter …c follows the formal parameter list.

⑤ The rest parameter …c only.

12.4.1. Parameter initializers

Each formal parameter of a Javascript function can include an
initializer (e.g., a default value). This is one way to declare optional
parameters in Typescript. For instance,

function f1(a: T1, b = 10) { } ①
function f2(a = 'girl', b: T2,) { } ②
function f3(a: T1, b = "boy", ...c: T3[]) { } ③

① The second parameter b has an initializer, and hence usually it need
not be explicitly annotated. The f1 function can be called with one
or two arguments in Typescript. E.g., f1(1) or f2(1, 2). For the
former, a = 1 and b = 10 whereas for the latter, a = 1 and b = 2.

② Unlike in many other languages, the optional parameters in
Javascript functions need not be limited to the trailing portion of the
parameter list. If you call f2() with no arguments, in this example,
then a is assigned 'girl' and b is undefined. In Typescript,
however, this syntax has somewhat limited uses since all arguments
for non-optional parameters need to be provided.

③ Parameters with initializers can be used even when a function
includes the rest parameter. The rest parameter is implicitly
optional. In Typescript, this particular function f3 can be called with
one, two, or more arguments (but, not with zero arguments, which is
legal in Javascript).

12.4. Parameter List

97

12.5. Optional Parameters
In Javascript, a function parameter (or, a variable, in general) that is not
assigned an explicit value has the value, undefined. Hence, you can
omit some trailing arguments when calling a Javascript function. (That
is, all function parameters are effectively optional in Javascript.) In
Typescript, this is generally not allowed. A function should be called
with the specified number of arguments. As we have seen in the
previous section, however, the arguments for the optional parameters
with default values can be omitted, as long as they are all in the trailing
positions in a particular call.

In addition, we can also explicitly declare one or more trailing
parameters as optional, using the question mark ? suffix. For example,

function echo(msg?: string): string { ①
 if (!msg) { ②
 return "Huh?";
 }
 return msg.toUpperCase();
}

① msg is an optional parameter, for which the undefined type is
automatically union’ed to its annotated type. That is, in this example,
the type of msg is really string | undefined.

② This conditional check also acts as a type guard since it handles the
case of msg being undefined. without this, we couldn’t have called
the toUpperCase method on string | undefined.

The echo function can be called with zero or one argument. E.g.,

console.log(echo());
console.log(echo("Who's there?"));

12.5. Optional Parameters

98

This echo function signature is essentially the same as the following,
using the default value-based optional parameters:

function echo(msg: (string | undefined) = undefined): string {
 // ...
}

Note that the explicitly declared optional parameters with ? cannot
include default value initializers. That is, mixing two optional
parameter specifications is not allowed.

12.6. The Rest Parameter
Javascript supports variadic functions through the rest parameter
syntax (…), which allows a function to accept an arbitrary number of
arguments. As we have seen earlier, a function can include at most one
rest parameter as its last parameter.

For example,

function sum(...rest: number[]):number { ①
 return rest.reduce(②
 (a, b) => a + b, ③
 0, ④
);
}

① The type of the rest parameter is an array type.

② Can the argument rest be null or undefined?

③ Type annotation is not needed.

④ The initial value. Refer to a Javascript reference for more info on the
Array.reduce method.

12.6. The Rest Parameter

99

const s0 = sum(); ①
// const s1 = sum(undefined); ②
const s2 = sum(1, 2, 3); ③
const s3 = sum(...[1, 2, 3]); ④

① If we do not provide an argument, the default value is an empty
array. This is the same both in Javascript and Typescript.

② In Javascript, you can pass null or undefined, which the current
implementation of sum cannot handle well. On the other hand, in
Typescript, the rest argument is explicitly annotated to be number[],
and hence you cannot use null or undefined to call this function.

③ The variable s2 will be initialized with a number 6.

④ An alternative way to call a variadic function, e.g., using the array
spread operator. This syntax is more commonly used when you
already have an array, or a variable referring to an array.

The type of the rest parameter should be an array (Array<T> or T[]) or
a tuple. Array types are more commonly used, but here are some
examples of tuple-type rest parameters.

function first(...items: [number, number?, number?]): number {
 return items[0];
}

This function can take one, two, or three arguments, but no others.

// console.log(first()); ①
console.log(first(5));
console.log(first(5, 7, 9));
// console.log(first(5, 7, 9, 11));

① Commented-out code means they do not pass static type checking.

12.6. The Rest Parameter

100

The rest parameter with exactly three number arguments,

function threeSum(...nums: [number, number, number]): number {
 return nums[0] + nums[1] + nums[2];
}

This threeSum function can be called with three numbers, no less and
no more. In general, requiring a fixed number of arguments may not be
very useful for the rest parameters. More commonly used are tuple
types with optional element types such as the first function above or
with the spread element types. For example,

function product(...input: [string, ...number[]]): void {
 const fac = input.slice(1) as number[]; ①
 const p = fac.reduce((a, b) => a * b, 1); ②
 console.log(input[0], p);
}

① Note that the tuple type [string, …number[]] is a subtype of
Array<string | number>, and hence the type assertion is needed
here to declare fac as number[].

② Again, type annotation is not needed for this arrow function.

Note that this function is equivalent to the following, which seems a bit
simpler and a bit more readable:

function product(month: string, ...factors: number[]): void {
 const p = factors.reduce((a, b) => a * b, 1);
 console.log(month, p);
}

You can call either function implementation in the same way, with the
first string argument and zero or more trailing number arguments.

12.6. The Rest Parameter

101

console.log(product("March"));
console.log(product("April", 1, 5, 7));
// console.log(product("May", "Huh?", 100)); ①

① Illegal.

12.7. Parameter Destructuring
The modern Javascript supports destructuring assignment, as we have
briefly discussed earlier with respect to the tuple types. We can also use
objects in destructuring assignment.

For example,

const obj = { a: 1, b: 2, c: 3 }; ①
const { a, b } = obj; ②
console.log(a, b);
const { a: A, b: B } = obj; ③
console.log(A, B);
const { a: head, ...tail } = obj; ④
console.log(head, tail);

① This object has three properties of its own, a, b, and c.

② After destructuring, the new variables a and b will have the values 1
and 2, respectively.

③ We can also map the object’s properties to variables of different
names. In this example, the variables A and B will be initialized with
1 and 2, respectively.

④ The "rest" syntax. In this example, head has value 1 (obj.a) and
tail has a value, { b: 2, c: 3 }.

In addition, function parameters of Javascript functions can be declared
with the destructuring syntax. For example,

12.7. Parameter Destructuring

102

> function print({ name, grade }) { ①
... console.log(name, grade)
... }

① This function has one parameter, which is written in the
destructuring syntax. When print is called with an object, it will be
destructured, and the corresponding property values will be
assigned to these destructured variables.

> const record = {name: "Tweedledum", grade: 35}
> print(record) ①
Tweedledum 35

① Since the object record has both name and grade properties, we can
call print with record. If the function is called with an argument
with an incorrect "structure", it will raise a run time error in
Javascript.

> print({name: "Tweedledee", grade: 35}) ①
Tweedledee 35

① Although Javascript does not support the "named argument" syntax,
it can be sort of emulated with this destructuring parameter syntax.

In Typescript, the function parameters need to be annotated (unless
they can be contextually inferred). In this example, we can do this,

function print({ name, grade }:
 { name: string, grade: number } ①
): void {
 console.log(name, grade);
}

12.7. Parameter Destructuring

103

① A destructuring parameter annotated with an object literal type.

Alternatively, we can use a type alias or an interface type,

type MyRecord = { name: string, grade: number };
function print({ name, grade }: MyRecord): void {
 console.log(name, grade);
}

12.8. The this Parameter
The behavior of Javascript’s this operator can be rather confusing
even to seasoned Javascript developers. The value of this is
determined each time a (non-arrow) function is called, at run time, and
hence it can be different every time. On the other hand, arrow
functions do not provide their own this binding, and they use the this
value from the enclosing lexical scope, if any.

12.8.1. Global context

In general, the semantics of this is context-dependent. In Javascript’s
non-strict mode, the global this refers to the globalThis object. For
example, the global this object may be the Window object in a Web
browser or something else in different runtime environments such as
Node.js. For instance,

> function whatIsThis() {
... console.log(this.toString())
... }
> whatIsThis()
[object global] ①
> this === globalThis
true

12.8. The this Parameter

104

① The actual this object in the global context will be different, for
instance, depending on whether you use a Web browser’s developer
console or Node.js REPL to run this script.

In contrast, in Javascript’s "use strict" mode, this is always
undefined in the global context.

12.8.2. Function context

In a regular function context, when a function is called on an object,
this refers to the object that is called with this function. For instance,

> function whatsThis() {
... "use strict" ①
... console.log(this.toString())
... }
> const obj1 = { whatsThis, toString: () => "obj1" }
> obj1.whatsThis() ②
obj1
> const obj2 = { whatsThis, toString: () => "obj2" }
> obj2.whatsThis() ③
obj2

① In REPL, Javascript uses the non-strict mode by default (except in a
class definition, etc.). We enable the strict mode here for illustration.

② In this context, this is obj1. The fact that this object’s property,
whatsThis, and its value (a variable or function name) have the
same name is incidental, but it is a somewhat common practice in
modern Javascript programming.

③ In this context, this is obj2.

In Typescript, first of all, the global this is always undefined since
"use strict" is always implied in Typescript code. In a function or
class context, the type of this will need to be explicitly type-annotated,
with noImplicitThis set to true, which is the case in this book.

12.8. The this Parameter

105

This is done through the Typescript-specific this parameter in the
function declaration, as a first parameter. The purpose of this
parameter is to allow type annotations. Otherwise, at run time, this
follows the same Javascript semantics. For example,

function whatsThis(
 this: { whatsThis: () => void } ①
) {
 console.log(this.toString()); ②
}
const obj1 = { whatsThis, toString: () => "obj1" };
obj1.whatsThis(); ③
const obj2 = { whatsThis, toString: () => "obj2" };
obj2.whatsThis(); ④

① The this parameter will need to be annotated.

② You can use this in accordance with the annotated type. In this
particular example, we simply call the toString method, which is
part of Object.prototype.

③ The this parameter does not exist at run time, and we do not pass
in any values for this. At run time, this will be obj1. Note that we
are allowed to call the whatsThis method on this object (in the
static analysis) because the method’s function declaration takes
this parameter which include the whatsThis method property.

④ This will print out obj2.

12.9. Typescript Function Overloading
Unlike in Javascript, functions can be overloaded in Typescript. That is,
one can define multiple functions (or, function signatures) with the
same name. (In Javascript, only some of the builtin functions are
overloaded such as the Array constructor, for instance.)

12.9. Typescript Function Overloading

106

12.9.1. Overload signatures vs the implementation
signature

When you overload a function in Typescript, you provide a set of
function signatures (without implementations), called the overload
signatures, and one implementation, whose function signature is called
the implementation signature. The implementation signature is not
accessible (e.g., not callable). All overload signatures must have
different parameter lists, and the implementation signature should be
"compatible" with all overload signatures.

An example is worth a thousand words:

function aspectRatio(①
 screen: string
): number;
function aspectRatio(②
 width: number, height: number
): number;
function aspectRatio(③
 arg1: (string | number), arg2?: number
): number {
 if (typeof arg1 == "string") { ④
 switch (arg1) {
 case "Standard": return 1.33;
 case "HD": case "FHD": return 1.78;
 default: return NaN;
 }
 } else {
 return arg1 / arg2!; ⑤
 }
}

① An overload signature with one string parameter.

② An overload signature with two number parameters.

12.9. Typescript Function Overloading

107

③ An implementation signature with two parameters. Note that the
second parameter is declared as optional. When the type of the first
argument arg1 is string and the second argument is omitted, this
call is the same as calling the first overload signature. When both
arguments arg1 and arg2 are provided and they are both of the
number type, this call is the same as calling the second overload
signature. Therefore, this implementation signature covers both
overload signatures. Note that this is just one way, and there may be
other implementation signatures that are compatible with these two
overload signatures. Any function signature that can support all
overload signatures can be used as an implementation signature.

④ In this particular implementation, this type guard distinguishes
which overload signature has been used to call this overloaded
function.

⑤ We use the non-null assertion in this else branch since arg2, which
corresponds to the height parameter in the second overload
signature, cannot be null or undefined. Note that the
implementation signature cannot be directly called, and there are
only two ways for this implementation to have been invoked,
through either of the two overload signatures. Hence, the
implementation does not have to take care of all possibilities based
on its own implementation signature (which can be largely
arbitrary, as indicated).

As you can see, function overloading in Typescript works rather
differently than in most other programming languages that support
function overloading. If you are new to Typescript, we suggest that you
consider other alternatives first, such as using optional parameters or
using union type parameters, before committing on function
overloading, for any given problem.

12.9. Typescript Function Overloading

108

Chapter 13. Object Types
Everything is an object in Javascript. "Object" is one of the most
overloaded, and possibly abused, terms in programming, and what
exactly this statement means will not be entirely clear unless we know
what is the object in this sentence.

We have seen Typescript’s predefined type object earlier. The object
type is (sort of) a supertype of any type that is not a primitive type.
Javascript has the Object constructor, which is at the top of the
prototype chain for all other objects such as Array and Function.
Typescript has the corresponding type Object.

Now, in the context of the present chapter, an object refers to anything
that has, or can have, a property. And, that is indeed just about
everything. Typescript allows defining various object types based on the
object’s "shapes", or "structures", e.g., the presence and absence of
different properties.

13.1. Object Literal Types
Objects are one of the most important components in Javascript.
Likewise, object types are one of the most fundamental constructs in
Typescript.

We can declare an object type in a number of different ways. Interfaces
and classes provide two formal ways to create object types. In this
chapter, we will discuss another way, one of the simpler and more basic
methods, called the object literal types. We have been using the object
literal type syntax throughout this book. We can declare an object type
by listing pairs of its property names and their types, separated by
commas , or semicolons ;, within angular brackets {}. This is, in fact,
rather similar to the way an object literal is represented in Javascript.
For example,

13.1. Object Literal Types

109

type Song = {
 composer: string; ①
 singer: string; ②
};

① Unlike object literals, the property separators can be either commas
(,) or semicolons (;), or even mixed.

② The trailing separator is optional.

Note that all properties require explicit type annotations under
"noImplicitAny": true. Here’s another example:

const t1: { x: number } = { x: 1 }; ①
// const t2: { x: number } = { }; ②
// const t3: { x: number }
// = { x: 1, y: 2, }; ③
// const t4: { x: number } = { x: "a" }; ④

① This object type, { x: number }, could have been inferred.

② The object literal type specifies the structure of all values that belong
to that type. In this case, the object {} lacks the property x, and
hence it is not a value of the type { x: number }.

③ In this case, the object { x: 1, y: 1 } has an extra property y,
and hence it is not a value of the type { x: number } either.

④ A value { x: "a" } is not a valid value of { x: number } since
the value of the property x is of the string type, not number. Hence
this value cannot be assigned to t4, which is declared as a variable
of type { x: number }.

(Note: Refer to the structural subtyping section for additional
explanation.)

13.1. Object Literal Types

110

13.1.1. The empty object literal type

The empty object type {} is a special notation. It is sort of a supertype of
all types that have zero, one, or more properties. For example,

const t1: {} = { x: 1, };
const t2: {} = {};
const t3: {} = { x: 1, y: 2, };

The variables t1, t2, and t3 from the previous example are all values
of the broadest object literal type {}. This is even broader than the
object type. The {} type can be used to annotate values of certain
primitive types as well (that can be auto-boxed to Object).

const a: {} = 0_0_0;
const b: {} = BigInt(0_0_0); ①
const c: {} = "0_0_0";
const d: {} = Symbol("0_0_0");

① The BigInt literal syntax, e.g., 0n instead of BigInt(0), can be used
if the TS config target is set to es2020 or later.

13.2. Object Type Members
Javascript objects can include a few different kinds of properties such
as data properties and function properties, etc. Typescript object types
support all corresponding property members, with some additions.

13.2.1. Optional properties

By adding a ? after a property name, we can mark the property as
optional, similar to the optional function parameters. For example,

13.2. Object Type Members

111

type Geo = {
 name?: string; ①
 latitude: number; ②
 longitude: number;
 altitude?: number;
};

① The fields, name and altitude, are optional.

② On the other hand, latitude and longitude are required fields.

Similar to optional tuple elements and optional function parameters,
the types of an object’s optional properties are implicitly augmented
with undefined. That is, the type of name in this example is effectively
string | undefined. The type Geo with optional properties is more
flexible and it can include a range of different object structures. E.g.,

const g1: Geo = { latitude: 10, longitude: 10 };
const g2: Geo = { name: "Starbucks", latitude: 20, longitude:
-20 };
const g3: Geo = { name: "ISS", latitude: 30, longitude: -30,
altitude: 1000 };

for (const g of [g1, g2, g3]) { ①
 console.log(g.name?.length); ②
}

① The modern Javascript supports iterations through for - in and
for - of as well as through the classic C-style for loop.

② The use of the question mark ? after name is called the optional
chaining in ES2020. Typescript is always a bit ahead of ECMAScript
standards, and it has been available in Typescript for some time. In
this example, if g.name is null or undefined, it just returns
undefined. Otherwise, it returns the value of g.name.length.

13.2. Object Type Members

112

13.2.2. Readonly properties

Properties can also be marked as readonly. Readonly properties are
similar to const variables. You cannot reassign different values to
readonly properties. For instance,

type Stock = {
 readonly company: string, ①
 price: number, ②
};

① company is a readonly property.

② price is a regular (non-readonly) property.

Here’s an example usage:

const apple: Stock = { company: "AAPL", price: 1.0 };
apple.price = 2.0; ①
// apple.company = "MSFT"; ②

① This is fine.

② But, Typescript won’t let us assign a different value to the readonly
property, company.

Note that readonly properties are not truly immutable (just like const
variables are not truly immutable). The value of a readonly property
(or, const variable) can still change. For instance,

type Portfolio = {
 readonly stock1: Stock; ①
};

① A readonly property, but not truly immutable.

13.2. Object Type Members

113

const myPort: Portfolio = {
 stock1: { company: "GOOG", price: 10.0 },
};
console.log(myPort);
// myPort.stock1
// = { company: "META", price: 0 }; ①
myPort.stock1.price = 1_000_000.0; ②
console.log(myPort);

① We cannot assign a new value to the readonly stock1 property.

② But, we can still modify its value.

13.3. Index Signatures
In Javascript, properties of an object can be accessed via the member
access syntax (.). Alternatively, properties can also be accessed through
the index notation ([]).

For example,

> const obj = { a: 1, b: 2 }
> obj.a
1
> obj["a"] ①
1
> obj["b"] = 22 ②
22
> obj
{ a: 1, b: 22 }

① The expression obj["a"] is equivalent to obj.a.

② The same with the write access.

As a matter of fact, the index notation provides a lot more flexibility.

13.3. Index Signatures

114

> obj["c c"] = 33 ①
33
> obj
{ a: 1, b: 22, 'c c': 33 }

① c c (with a space in the middle) is not a valid Javascript identifier,
but it can still be used as a property key.

> obj[4] = 44 ①
44
> obj
{ '4': 44, a: 1, b: 22, 'c c': 33 }

① Numbers are converted strings.

> obj["x" + 3] = 55 ①
55
> obj
{ '4': 44, a: 1, b: 22, 'c c': 33, x3: 55 }

① An expression, which can be ultimately evaluated to string, can be
used as an index, or property key.

13.3.1. Typescript index signatures

In Typescript, all object types define more or less fixed shapes. The
index signature syntax, however, allows defining an object type with an
essentially infinite number of properties, e.g., with a particular type for
values of those properties. For instance,

type Characters = {
 [key: string]: string; ①
};

13.3. Index Signatures

115

① This index signature allows the Characters type to be usable with
any objects which have zero, one, or more properties of the string
or number type (but, nothing else). (The number type is implicitly
included because number keys are automatically converted to
string in Javascript.)

Here’s one example of an object that can be assigned to a variable of
this Characters type:

const incredibles: Characters = {
 bob: "craig", ①
 helen: "holly",
};

① Although Characters does not include fields named bob or helen,
this object is compatible with this type.

An object type with an index signature can include additional named
properties or even other index signatures with different key types, from
number, string, or symbol. However, all properties should be
"consistent" with the index signatures. That is, all value types of the
index signatures should be assignable to each other, and the types of
any named properties should be assignable to all index signatures.

For instance,

type Movie = {
 [character: string]: string; ①
 [year: number]: any; ②
 title: string; ③
// price: number; ④
};

① The value type of this index signature is string.

13.3. Index Signatures

116

② The value type of this additional index signature is any. This is legal
since any and string types are assignable to each other.

③ An extra property with an explicit name title. Since its property
type string is assignable to both string and any, this is legal.

④ The number type property is, however, not compatible with the first
index signature, whose value type is string.

Here’s one example usage:

const incredibles: Movie = {
 ['title']: "The Incredibles", ①
 ['Bob Parr']: "Nelson",
 ['Helen Parr']: "Hunter",
 [2010]: "December", ②
};

① In Javascript, the property syntax, title: "Incredibles" vs
['title']: "Incredibles", have no difference. As we can easily
see from this example, the named property is just a special case of
more general index signatures specified in the Movie type. Note,
however, that title is a required property of Movie.

② In Javascript, as indicated earlier, number type keys are converted to
string. And hence there is no practical difference between the two
index signatures defined in this example type, Movie.

13.4. Getters and Setters
Javascript supports get and set syntax, which can be used to provide
some kind of "pseudo properties". Getter and setters are method
properties, but they afford the data property access syntax. Common
use cases are to expose a computed value as a property or to add a
validation logic when a property value is set, etc.

13.4. Getters and Setters

117

In general, a getter and a setter are used together as a pair to represent
a single pseudo-property. A getter without a setter implies a readonly
property. In Typescript, the corresponding getter and setter can be
annotated with different types as long as the getter type is assignable to
the setter type.

Here’s a simple example,

const ruler = {
 get size(): number { ①
 return 12;
 },
 set size(value) { ②
 // Ignored
 }
};
console.log(ruler.size);

① A getter syntax, using the keyword get.

② A setter syntax, using the keyword set. The type of the setter
parameter can be inferred from the corresponding getter. That is, in
this example, the type of value is number.

Typescript treats a getter-setter pair as a single property for the
purposes of typing. For example, the type of ruler is { size: number
}. In case of a getter without a matching setter, it is mapped to a
readonly property.

A slightly more complex example:

const qubit = {
 angle: 0, // In radians
 get phase() { ①
 return this.angle;
 },

13.4. Getters and Setters

118

 set phase(angle:
 | number
 | [number, "deg" | "rad"]
 | "zero") { ②
 if (angle == "zero") { ③
 this.angle = 0;
 } else if (typeof angle == "number") { ④
 this.angle = angle;
 } else { ⑤
 const [a, unit] = angle; ⑥
 switch (unit) {
 case "deg":
 this.angle = a * Math.PI / 180;
 break;
 default:
 this.angle = a;
 }
 }
 },
};

① The type of the getter is inferred to be number based on the
this.angle property.

② The value of number is assignable to the setter type, a union type of
number, [number, "deg" | "rad"], and "zero", and hence this is
valid although getter and setter have different types.

③ This value equality effectively acts as a type guard for the literal
type, "zero".

④ Another type guard example using the typeof operator. At this
point, the type of the input argument angle is number.

⑤ In this else block, the type of angle must be the tuple type,
[number, "deg" | "rad"].

⑥ Typescript’s tuple destructuring is the same as array destructuring
in Javascript.

13.4. Getters and Setters

119

Here’s a test code:

qubit.phase = Math.PI / 2;
console.log(qubit.phase);
qubit.phase = [45, "deg"];
console.log(qubit.phase);
qubit.phase = "zero";
console.log(qubit.phase);

The type of qubit is

{
 angle: number;
 phase: number | [number, "deg" | "rad"] | "zero";
}

13.5. Member Methods
Method properties can use a couple of different syntax. In addition,
method properties can also be declared as optional. For instance,

type Pitcher = {
 ball(count: number): void; ①
 strike: (count: number) => void; ②
 cheer?(): string; ③
};

① A function syntax. The function return types are required even
when they are void.

② A field with an arrow function property.

③ cheer is an optional method property of Pitcher.

13.5. Member Methods

120

Here’s an example object that is compatible with, and assignable to,
Pitcher.

const p1: Pitcher = {
 ball(count: number): void { },
 strike: (count: number) => void {},
};

13.5.1. Method overloading

Methods, declared with the function syntax, can be overloaded. That is,
an object literal type can include multiple method members with the
same name as long as they have different sets of function parameters.
For instance,

type Keeper = {
 catch(ball: string): boolean;
 catch(flower: [string, number]): boolean;
};

Function overloading in Typescript is explained in the previous chapter
on function types.

13.6. Structural Subtyping
Many strongly typed programming languages use a hierarchical type
system. One type can be a subtype of another type, and one can be a
supertype of another. Many such type systems often include one top-
level base type, from which all other types in the system inherit.

The type system of Typescript works somewhat differently. With the
exception of some primitive types, the relationships among the types
are determined by their shapes, or structures.

13.6. Structural Subtyping

121

For example,

let v1 = { a: 1 }; ①
let v2 = { a: 1, b: 2 }; ②
v1 = v2; ③
// v2 = v1; ④

① The inferred type of v1 is { a: number }.

② The inferred type of v2 is { a: number, b: number }.

③ The types, { a: number } and { a: number, b: number }, have
no relationships like one being a subtype of another, etc., and yet v2
of type { a: number, b: number } is assignable to v1 of type {
a: number }.

④ The reverse does not hold true.

Even in the absence of explicit inheritance relationships, the two types
in this example are related in Typescript. Structurally, { a: number }
is broader than { a: number, b: number }, and hence assigning a
value of v2 to v1 works, in a similar manner that a value of a first type
can be assigned to a variable of a different second type as long as the
first type is a subtype of the second type, e.g., in the programming
languages with hierarchical type systems.

(Note that, in the beginning of this chapter, we showed some examples,
in which only the assignments between the same types worked. That is
an exception. When an object literal is directly used for initialization or
assignment, the types involved have to exactly match. This rule is in
place in Typescript to reduce errors due to some trivial mistakes like
having typos in the object literal property names.)

13.6. Structural Subtyping

122

Chapter 14. Interfaces
Interfaces are one of the few fundamental ways to create new types
from scratch in Typescript, along with object literal types and classes.
Interfaces are used to specify the "shape" of Javascript objects, and their
behavior at run time, just like object literal types. Interfaces can be
merged, extended, and implemented by other types.

14.1. Interface Types
An interface declaration creates an object type with a given name:

interface PointA { ①
 x: number;
 y: number;
}

① Syntactically, an interface declaration, in its most basic form,
comprises the TS keyword interface, followed by an interface
name and an object literal type. An interface can, therefore,
syntactically include all member types of object literal types, as
specified in the previous chapter.

Besides the initial name given in the declaration, other names can also
be assigned to the interface through type aliasing.

type PointB = PointA;

As indicated earlier, Typescript uses the structure-based type system,
and all object types with the same "shape" are the same type regardless
of how they are declared or how they are named. For instance,

14.1. Interface Types

123

type PointC = { x: number; y: number; }; ①

① Now, PointA, PointB, and PointC all refer to the same type.

The difference between the object literal type declarations and the
interface type declarations is not their end result, but rather the
language support in how we create an object type. In case of object
literal types, essentially we list all properties of an object. In case of
interface types, one can start by specifying each property, but
Typescript provides more high-level support like inheritance and what
not. In addition, interface declarations are "open-ended", meaning that
you can add additional properties after an interface has been defined.

interface PointA { ①
 x: number;
}
type PointB = PointA; ②
interface PointA { ③
 y: number;
}

① The type PointA has one property x.

② PointB is the same type with one property x.

③ We redeclare the PointA interface, which now includes both
properties x and y. This is known as the declaration merging. Note
that PointB is just a type alias, and hence it will end up being like
the new PointA with two properties.

14.2. Extending Interfaces
Typescript provides a syntactic shortcut for creating a structural
subtype, using an inheritance-like syntax. More specifically, a structural
subtype of an interface can be created by "extending" that interface.

14.2. Extending Interfaces

124

For example,

interface One {
 a: number;
 b: string;
}
interface Two extends One { ①
 c: boolean;
}

① One interface can extend another interface.

interface Two { ①
 a: number;
 b: string;
 c: boolean;
}

① The resulting interface Two includes all properties of its "parent
interface", One, and hence it is guaranteed to be a structural subtype
of One.

Note that effectively the same thing can be achieved using intersection
types. For example,

interface Delta {
 c: boolean;
}
type Two = One & Delta; ①

① Intersection works even when one or both of its members are object
literal types.

14.2. Extending Interfaces

125

Chapter 15. Classes
The Typescript class has some type-specific, and other syntactic,
extensions to Javascript classes, which was first introduced in ES2015.

15.1. The ECMAScript Class

15.1.1. Class declaration

Javascript classes are (implicitly) based on prototypes, and they provide
some additional features that are unique to classes. A class is a template
for creating objects. The ES2015 class is an extension of the traditional
constructor function syntax. In fact, classes are (a special kind of)
functions in Javascript.

A new class can be declared as an anonymous or named expression or
as a class declaration statement. In all three cases, the class declaration
starts with the keyword class, followed by a class name (which is
optional in case of anonymous class) and a class body enclosed in a pair
of curly braces {}. (Note that a class body is always strict mode code
even without the "use strict" directive.)

> class MyClass1 { ①
... // class body
... }
> const MyClass2 = class { ②
... // class body
... }
> const MyAlias = class MyClass3 { ③
... // class body
... }

① A class declaration statement.

15.1. The ECMAScript Class

126

② An anonymous class declaration expression, which is assigned to a
variable MyClass2. This class can be referred to by MyClass2.

③ A named class declaration expression. This class can be referred to
by the variable MyAlias, but not by the class name MyClass3.

> [typeof MyClass1, typeof MyAlias]
['function', 'function']
> [MyClass1 instanceof Function, MyAlias instanceof Function]
[true, true]
> MyAlias
[class MyClass3]
> MyClass3
Uncaught ReferenceError: MyClass3 is not defined

15.1.2. Class body

The class body comprises zero or more of the following properties:

• Instance fields,

• static fields,

• Instance methods, including at most one constructor,

• static methods,

• static initialization blocks,

• Instance getters and setters, and

• static getters and setters.

All properties are public by default. The properties whose names start
with a hash # are, on the other hand, private, and they cannot be
accessed outside the class/object. The static keyword defines a
static method or field for a class, or a static block. Static properties
cannot be directly accessed on instances of the class. Instead, they are
accessed on the class itself.

15.1. The ECMAScript Class

127

15.1.3. Fields

> class FieldDay {
... iField1; ①
... iField2 = true; ②
... #piField1; ③
... #piField2 = 100; ④
... static sField1; ⑤
... static sField2 = "Hi"; ⑥
... static #psField1; ⑦
... static #psField2 = "Hello"; ⑧
... }

① An instance field.

② Another instance field with an initializer.

③ A private instance field.

④ Another private instance field with an initializer.

⑤ A static field.

⑥ Another static field with an initializer.

⑦ A private static field.

⑧ Another private static field with an initializer.

15.1.4. Accessors

Getter and setter members can be declared using the get and set
syntax, respectively. The get syntax binds a property to a function to be
called when the value of that property is accessed. The set syntax
binds a property to a function which will be called when the value of
that property is set.

Syntactically, they are the same as those declared in object literals.

15.1. The ECMAScript Class

128

15.1.5. Methods

> class Method {
... publicMethod() {}
... #privateMethod() {}
... static publicStaticMethod() {}
... static #privateStaticMethod() {}
... }

15.1.6. Constructors

A constructor is a special instance method of a class, which is to be
used for creating and initializing an object instance of that class.

> class Frog {
... constructor(color) {
... this.color = color ①
... }
... }
> const frog = new Frog("green")

① An instance field in Javascript can be declared in a constructor.

15.1.7. Static blocks

A static initialization block of a class includes statements that are to be
evaluated during the class initialization.

> class Unpredictable {
... static capricious
... static {
... this.capricious = Math.random()
... }
... }

15.1. The ECMAScript Class

129

15.1.8. Inheritance

The extends keyword is used in a class declaration to create a class
that includes the prototype of another class in its prototype chain.

> class Egg extends Chicken { } ①

① Egg and all its instances are instaceof Chicken.

15.2. The Typescript Class
A class declaration also defines a type in Typescript.

class Hat { }
const hat: Hat = new Hat(); ①

① The type of a variable hat is Hat. Typescript can infer this type since
the variable is initialized with the constructor call expression.

15.2.1. Constructors

Pure type declarations like object literal types and interfaces do not
include constructors. The primary purpose of classes, on the other
hand, is to construct one or more instances of them, and hence they
often include constructors with specific implementations.

class Belt {
 size: number; ①
 constructor(size: number) { ②
 this.size = size;
 }
}
const belt = new Belt(42); ③

15.2. The Typescript Class

130

① The type of the field, size, could have been inferred from the
constructor implementation, and hence it is optional.

② The this parameter in a constructor function is implicit, whose type
is always the class/type being declared. Likewise, the return type of a
constructor cannot be explicitly annotated.

③ The arguments that correspond to the constructor’s parameters
need to be provided to the new constructor call expression. The type
of belt is Belt.

In Javascript, there can be no more than one constructor for a class. In
Typescript, on the other hand, constructors can be overloaded, with a
similar syntax to that of function overloading.

15.2.2. Member visibility

In Javascript, a member of a class is either public (default) or private
(for names prefixed with a hash #). In Typescript, one can use three
different kinds of modifiers, public, private, and protected, for the
by-default public members. Javascript’s private members are runtime-
private. That is, their accessibility, or more precisely lack thereof, is
enforced by Javascript runtimes. On the other hand, Typescript’s
visibility modifiers are purely compile-time constructs.

class Attire {
 public overcoat; ①
 protected shirt; ②
 private pants; ③
 #underwear; ④
 constructor(overcoat: string, shirt: string, pants:
string) {
 this.overcoat = overcoat;
 this.shirt = shirt;
 this.pants = pants;
 this.#underwear = "None";
 }

15.2. The Typescript Class

131

 toString = () => `${this.overcoat}:${this.shirt}:${
this.pants}:${this.#underwear}`;
}

const myAttire = new Attire("Burberry", "T-Shirt", "Shorts");
console.log(`${myAttire}`);
console.log(myAttire.overcoat); ⑤
// console.log(myAttire.shirt); ⑥
// console.log(myAttire.pants);
// console.log(myAttire.#underwear);

① A public instance field. The public modifier is optional. That is, all
(static or non-static) properties of a class are public by default.

② A protected field, which can be accessed in a subclass.

③ A private field, not accessible outside the class/instance.

④ A truly private field.

⑤ A public property can be accessed from anywhere.

⑥ A protected property can be only accessed within the class or its
subclasses. Typescript compiler will issue an error for this line.
Likewise, Typescript compiler will issue an error when you try to
access TS-private or JS-private members of a class.

Note that, if we had declared myAttire as any, for example, we would
have been able to access the TS-private and TS-protected members by
bypassing the static type checker. On the other hand, trying to access a
JS-private field, e.g., myAttire.#underwear, outside the class/instance
is both compile-time and run-time errors.

15.2.3. Parameter properties

The primary use of the constructors is often to initialize the instance
fields of a class, as can be easily seen from the examples above.
Typescript provides a convenience syntax to declare public instance
fields and initialize them in the constructor. For example,

15.2. The Typescript Class

132

class Velocity {
 constructor(
 public x: number, ①
 public y: number,
 public z: number,
) { }
}

① A constructor parameter declared this way, with a public modifier,
is automatically set as an instance field with the same name.

const vel = new Velocity(0.1, 0.2, 0.5);
console.log(vel.x, vel.y, vel.z); ①

① We can verify that the instance includes these (implicitly-created)
properties and they are indeed publicly accessible.

The above class declaration is equivalent to the following:

class Velocity {
 x; y; z;
 constructor(x: number, y: number, z: number) {
 this.x = x;
 this.y = y;
 this.z = z;
 }
}

15.3. Abstract Classes
A class can be declared as not implementable using the TS-specific
keyword abstract. An abstract class can include abstract
members as well. For example,

15.3. Abstract Classes

133

abstract class Soul { ①
 abstract price: number; ②
 nameYourPrice() {
 console.log(`My soul is ${this.price} dollars.`);
 }
}
// const mySoul = new Soul(); ③

① Soul is abstract. Note that when constructor is not explicitly
declared in a JS class (or a TS class, abstract or otherwise), an empty
constructor is automatically provided by the runtime/compiler.

② price is an abstract field, and it does not require an initial value,
or other implementations.

③ Abstract classes cannot be instantiated.

An abstract class can be extended. For instance,

class KittySoul extends Soul { ①
 price: number; ②
 constructor(price: number) {
 super(); ③
 this.price = price; ④
 }
}
const kittySoul = new KittySoul(2.99); ⑤
kittySoul.nameYourPrice(); ⑥

① KittySoul inherits from Soul, using the JS extends syntax.
KittySoul is not abstract. A subclass inherits all public and
protected properties from its base class.

② The super class’s abstract property needs to be implemented.

③ The constructor of the base class, even the abstract one, needs to be
explicitly called, super(), with appropriate arguments.

15.3. Abstract Classes

134

④ The value of the abstract field price of Soul is set here.

⑤ A KittySoul can be instantiated.

⑥ The inherited Soul.nameYourPrice method will use the price of
KittySoul. This function call will print My soul is 2.99 dollars.

15.4. Implementing Interfaces
The Typescript class supports the class implements interface syntax
as in many OOP programming languages. But, "implementing"
interfaces by classes works differently in Typescript from the
corresponding constructs in other languages. In particular, the
implements declaration in Typescript is optional. For example,

interface Ball { ①
 deflated: boolean;
}
class Football implements Ball { ②
 deflated: boolean = false;
 color: string = "brown";
}
class SoccerBall { ③
 deflated: boolean = true;
 readonly panels: number = 32;
}

① The interface Ball includes one public field, deflated, of the
boolean type. Note that properties of interfaces and object literal
types are always public, and they cannot be used with the class
visibility modifiers.

② The class Football implements Ball. It indeed includes the same
public field deflated with the same type from Ball, as required by
this implements syntax.

③ SoccerBall also includes the deflated field.

15.4. Implementing Interfaces

135

As far as Typescript’s structural typing is concerned, both Football
and Soccer are structurally compatible with Ball. Typescript does not
treat Football and SoccerBall any differently. For instance, the
following function expects an argument of the type Ball and it returns
Ball | undefined.

function kick(ball: Ball): Ball | undefined {
 if (!ball.deflated) {
 return ball;
 }
}

This function can be called with either Football or SoccerBall.

const football = new Football();
const soccerBall = new SoccerBall()
console.log(kick(football)); ①
console.log(kick(soccerBall)); ②

① This will print out Football { deflated: false, color: 'brown' }.

② This will print out undefined.

In fact, any object that is compatible with Ball, with or without type
names, can be used with this function:

const dodgeBall = {
 deflated: true,
 duration: 1000,
} as const; ①
console.log(kick(dodgeBall));

① The inferred type of dodgeBall is { readonly deflated: true;
readonly duration: 1000; }. The const assertion is discussed
earlier in the book.

15.4. Implementing Interfaces

136

An exception is object literal values defined at the point of use. E.g.,

// kick({ deflated: true, price: 1.0, }) ①

① This will cause a compile time error since the given object is not the
same as Ball. (It has an extra property.)

In general, the primary use of the implements declaration is to make
sure that a given class conforms to the specified interface(s). If you state
that a class implements an interface, and if you do not provide all
necessary implementations of the interface’s properties, Typescript will
catch the error through static type checking.

15.4.1. Implementing multiple interfaces

A class can extend no more than one direct base class. But, a class can
implement one or more interfaces. For example,

interface Mammal {
 legs: 2 | 4;
}
interface Flyer {
 fly(): void;
}
class Bat implements Mammal, Flyer {
 legs: 2 | 4 = 2;
 wings = 2;
 fly() { }
}

Note that the type of Bat is structurally narrower than, or it is a
subtype of, Mammal since it contains extra properties, wings and fly. It
is also structurally narrower than Flyer since it contains extra
properties, legs and fly. Now, Bat can be used in places where
Mammal or Flyer is expected.

15.4. Implementing Interfaces

137

const bat1: Mammal = new Bat();
const bat2: Flyer = new Bat();

15.5. Generic Classes
A Typescript class can also be defined generically.

class Chest<T extends {}> { ①
 private treasure;
 constructor(treasure: T) {
 this.treasure = treasure;
 }
 get content(): string { ②
 return this.treasure.toString();
 }
}

① This type constraint is needed to be able to call the
Object.toString method on the generic type value.

② The (readonly) getter property syntax.

const chest = new Chest(42); ①
console.log(chest.content); ②
type TreasureChest = Chest<{ value: number }>; ③
const treasure = new Chest({ value: 100 }); ④

① The types of both the variable and the type parameter can be
inferred, and hence they need not be explicitly specified. This
statement is the same as const chest: Chest = new
Chest<number>(42);.

② We cannot access chest's private field treasure. But, we can access
it through the content pseudo-property.

15.5. Generic Classes

138

③ We can also create a type alias from a generic type using specific
type arguments.

④ This statement is equivalent to const treasure: TreasureChest
= new Chest<{ value: number }>({ value: 100 }).

A generic class can also implement generic interfaces.

interface Safe<T> {
 asset: T;
}

class SafeHouse<T> implements Safe<T> {
 constructor(public asset: T) { } ①
}

const safe = new SafeHouse("Jason Bourne"); ②
const house = new SafeHouse(1_000_000_000); ③

① By using the constructor parameter property syntax in this example,
we satisfy the implements requirement.

② The type of safe is Safe<string>, or SafeHouse<string>. Or,
simply { asset: string }.

③ Likewise, the type of safe is Safe<number>, etc.

15.5. Generic Classes

139

Chapter 16. Type Narrowing
As we discuss throughout this book, Typescript can infer types for
certain variables and functions. In fact, it can go further. In certain
situations, Typescript can deduce the type of a variable to be more
specific or narrower than explicitly annotated, or initially inferred. This
is called the type narrowing.

16.1. Control Flow Analysis
Typescript can analyze code and decide which branches are reachable
and which are not, for instance. This analysis of code based on
reachability is called control flow analysis. TypeScript uses this flow
analysis to narrow types as it encounters type guards and assignments.

16.2. The typeof Type Guard
As indicated, the typeof operator can be used to get the run-time type
of a given value, which more or less represents one of the eight
fundamental types in Javascript (with the exception of null and
functions).

Typescript also uses any typeof expressions for static flow analysis,
e.g., to narrow types. In this context, it is called the typeof type guard.

We have seen some examples throughout this book. Here’s another
example:

function callOrDie(
 f: string | Function, ...args: any[] ①
): void {
 if (typeof f == 'function') { ②
 const result = f(...args); ③
 console.log(`Call result: ${result}`);

16.1. Control Flow Analysis

140

 } else {
 console.log("Nothing to call");
 }
}
callOrDie("hi"); ④
callOrDie((a: number) => a, 42);
callOrDie((a: number, b: number) => a + b, 1, 2);

① Calling f when f is not callable will result in a catastrophic run time
error, and Typescript will not let you do it. 

② But, with this typeof type guard…

③ Now, it is safe to call f at this point. Note, however, that using the
broad Function type is not generally considered type-safe.

④ A few examples of calling this callOrDie function.

16.3. The instanceof Type Guard
Javascript’s instanceof operator can also be used as a type guard,
which checks the prototype chain of a given object.

You can use the instanceof type guard with Javascript’s builtin objects
such as Date and Error, or any objects that are constructed with new.
More specifically, as we have seen earlier, the types based on classes
use their own prototypes, and the instanceof type guard can be useful
to check their types.

For instance, with the following example types:

class Classy {
 affirmation = "I'm classy!";
}
class Sassy {
 walkAndTalk = () => "Sassy, sassy";
}

16.3. The instanceof Type Guard

141

type Saucy = undefined;

function sayWhat(
 me: Classy | Sassy | Saucy, ①
): string {
 if (me instanceof Classy) { ②
 return me.affirmation; ③
 } else if (me instanceof Sassy) { ④
 return me.walkAndTalk(); ⑤
 }
 return "Huh?";
}

① The three members of this union type have pretty much no
commonalities. Note that a value of a union type will contain the
common properties that belong to all its member types.

② An instanceof type guard.

③ Typescript knows that, in this if branch, me is of the Classy type
and it has the property, affirmation.

④ Another instanceof type guard.

⑤ Another example of Typescript’s static flow analysis in action.

16.4. The in Operator Narrowing
Because Typescript is structurally typed, one of the best ways to check
whether a specific property exists in a given object is to use the in
operator.

In fact, this is one of the most widely used methods to check the same in
Javascript at run time. Typescript’s type narrowing using the in
operator emulates this runtime behavior. For instance,

16.4. The in Operator Narrowing

142

type Fish =
 | { weight: number; }
 | { weight: number; taste: string };

function taste(fish: Fish): string { ①
 if ("taste" in fish) { ②
 return fish.taste; ③
 }
 return "meh";
}

① The Fish type may, or not may not, have a property taste.

② Type narrowing via the in operator.

③ This is safe to do at runtime, and hence Typescript allows it as well.
In a more general context in which this pattern is commonly used in
Javascript, Typescript may not be able to infer the exact type of the
property. In such a case, the type of that field will be unknown, or the
union of all types that are allowed. One can use the type assertion to
narrow the type further.

Here’s an example use of this taste function:

let angelfish = { weight: 100 };
console.log(taste(angelfish));

let goldfish = { weight: 10, taste: "delicious" };
console.log(taste(goldfish));

16.5. Discriminated Unions
As we have seen earlier, discriminated unions can be rather useful in
many situations, and their discriminant properties can be used for the
purposes of type narrowing.

16.5. Discriminated Unions

143

Here’s another example:

interface Circle {
 readonly kind: "circle";
 radius: number;
}

interface Rectangle {
 readonly kind: "rectangle";
 width: number, height: number;
}

interface Triangle {
 readonly kind: "triangle";
 base: number, height: number;
}

type Shape = Circle | Rectangle | Triangle; ①

① The type Shape is a discriminated union since all its member types
have the common property kind with different values.

function area(shape: Shape): number {
 switch (shape.kind) {
 case "circle":
 return Math.PI * shape.radius ** 2; ①
 case "rectangle":
 return shape.width * shape.height;
 case "triangle":
 return 0.5 * shape.base * shape.height;
 default: ②
 return 0;
 }
}

① Type narrowing in action.

16.5. Discriminated Unions

144

② The type of shape at this point is never since we exhausted all
possible variants of Shape.

Note that these types Circle, Rectangle, and Triangle could have
been declared in any different ways, e.g., using object literal types or
classes. The implementation of the area function only depends on the
fact that Shape is a discriminated union.

If we use classes for these member types, we could also use the
instanceof type guards. For instance,

interface Shape {
 readonly kind: string;
}

class Circle implements Shape {
 constructor(
 public readonly kind: "circle",
 public radius: number
) { }
}

class Rectangle implements Shape {
 constructor(
 public readonly kind: "rectangle",
 public width: number,
 public height: number,
) { }
}

class Triangle implements Shape {
 constructor(
 public readonly kind: "triangle",
 public base: number,
 public height: number,
) { }
}

16.5. Discriminated Unions

145

Then, we can implement our area function as follows:

function area(shape: Shape): number {
 if (shape instanceof Circle) {
 return Math.PI * shape.radius ** 2;
 } else if (shape instanceof Rectangle) {
 return shape.width * shape.height;
 } else if (shape instanceof Triangle) {
 return 0.5 * shape.base * shape.height;
 } else {
 return 0;
 }
}

Note that this implementation is more OOP-ish, if that is a word. (In
fact, we could have even implemented a different area method for
each class.) This is very nice because Javascript’s class has runtime
support which corresponds to Typescript’s compile-time types. On the
other hand, discriminated unions are a more functional style, and they
are also very powerful tools.

As we have alluded a number of times throughout this book, there are
many different ways to achieve the same thing in Typescript. The
choice is yours. But, be reminded that our goal is to ultimately generate
a simple, efficient, and less error-prone Javascript code.

16.5. Discriminated Unions

146

Chapter 17. Advanced Types
Typescript allows expressing types using other existing types and
values. For instance, the type of an object, or the type of a particular key
of an object, can be referred to with the typeof and keyof operators,
respectively. Furthermore, a new type can be conditionally created
based on other type expressions, etc. We will go through some of the
ways in which a type can be denoted in terms of other types and values.
We have discussed abstract data types and generics in earlier chapters.

It should be note that these features are primarily used for annotating
complex Javascript code or for building special libraries, and they are
not commonly used in everyday Typescript programming.

17.1. Template Literal Types
The template literal type provides a way to create special union types as
a generalization of string literal types. It uses the modern Javascript’s
template string syntax (``). For example,

type name = "Jack-Jack Parr";
type Hero = `Super Baby: ${name}`; ①
const t: Hero = "Super Baby: Jack-Jack Parr"; ②

① The Hero type is just a string literal type, "Super Baby: Jack-Jack
Parr", although it uses the template literal type syntax.

② An example usage.

Or, a bit more realistic example:

type Lang = "en" | "es";
type Country = "US" | "MX";
type LangCode = `${Lang}_${Country}`;

17.1. Template Literal Types

147

The type LangCode is the same as the following union type:

type LangCode =
 | "en_US"
 | "en_MX"
 | "es_US"
 | "es_MX";

17.2. The typeof Type Operator
As we have discussed in the previous chapter, Javascript’s typeof
operator can be used as a type guard. Moreover, when the typeof
operator is used in the type context, with a variable or property
operand, it refers to the type of the given operand. For example,

const greeting1 = "Hello"; ①
let greeting2: typeof greeting1; ②
greeting2 = greeting1; ③

① The type of greeting1 will be inferred to be a literal type, "Hello".

② Hence, the variable greeting2 has the same type.

③ This assignment will always succeed regardless of the actual type of
greeting1.

Note that this is a purely compile-time construct, and the typeof
operator in this context behaves differently from Javascript’s typeof
operator, which returns the eight predefined string values at run time.
Here’s another example:

const item1 = { ①
 product: "Robot",
 price: 9.99,
};

17.2. The typeof Type Operator

148

type Item = typeof item1; ②
let item2: Item, item3: Item; ③
item2 = { ④
 product: "Quantum Laptop",
 price: 1_000_000_000,
};

① The type of item1 is { product: string, price: number }.

② This creates a type alias, Item, for this type.

③ Now we can use the type alias just like any other types.

④ This assignment works since the type of item2 is Item.

17.3. The keyof Type Operator
Typescript’s keyof operator takes an object type and it returns a union
type of all of its keys. For example,

const shift = { left: 1.0, right: 2.0 };
type Key = keyof typeof shift; ①
const key1: Key = "left"; ②
// const key2: Key = "Right"; ③

① The type alias Key refers to a union type "left" | "right";

② The value "left" is a valid value of the type Key.

③ A static type error.

In case of types with an index signature,

type Likes = { [k: string]: boolean }; ①
const post1: keyof Likes = "ID: 1201"; ②
const post2: keyof Likes = 1202; ③
// const post3: keyof Likes = true; ④

17.3. The keyof Type Operator

149

① The key type of this index signature is string | number. This is
because the number keys of Javascript objects are automatically
converted to string, as indicated earlier.

② Consistent.

③ Consistent.

④ Not consistent. A type error.

17.4. Indexed Access Types
We can use the indexed access syntax to refer to the type of the value of
a specific property of a given object type. For example,

type Point = { x: number, y: string };

type X = Point["x"]; ①
type Y = Point["y"]; ②

const x: X = 1.0; ③
const y: Y = "2 feet";

① The type X is number.

② The type Y is string.

③ We can also use the indexed access type syntax directly. E.g., const
x: Point["x"] = 1.0.

17.5. Conditional Types
Conditional types are those that can have one of two different types
depending on other types. Syntactically, conditional types are similar to
Javascript’s ternary (conditional) expression using the generic type
constraint syntax, namely, T extends U ? A : B. For example,

17.4. Indexed Access Types

150

interface Mammal { name: string }

interface Man extends Mammal { legs: 2, arms: 2 };
interface Dog extends Mammal { legs: 4 };
interface Cat extends Mammal { lives: 9 };

type Quadped<T> = T extends { legs: 4 } ? T : never; ①
type Pet = Quadped<Man | Dog | Cat>; ②
let pet: Pet; ③
// pet = { name: "Man", arms: 2, legs: 2 }; ④
pet = { name: "Dog", legs: 4}; ⑤
// pet = { name: "Cat", lives: 9}; ⑥

① A generic type alias for a conditional type.

② This will end up filtering out Man and Cat since they do not have a
property with type legs: 4.

③ A variable annotated as Pet.

④ A Man is not a Pet.

⑤ A Dog is a valid Pet.

⑥ A Cat is not a Pet.

Here’s another example:

type NumberHolder = { data: number };
type StringHolder = { text: string };
type BooleanHolder = { flag: boolean };

type Holder<T extends number | string | boolean>
 = T extends number ①
 ? NumberHolder
 : T extends string
 ? StringHolder
 : BooleanHolder;

17.5. Conditional Types

151

① A nested conditional type declaration. The ternary operator is left-to-
right associative.

17.6. Mapped Types
Mapped types can be created by changing the structure of an input type
using a mapping-like syntax. In particular, a mapped type syntactically
iterates over the property keys of a given input type. For instance,

type Poynt = { x: number; y: string; }; ①
type Point = {
 [Prop in keyof Poynt]: number; ②
};
const y: Point = { x: 3, y: -3 }; ③

① Not a real Point.

② The mapped type syntax. The resulting type is { x: number; y:
number; };

③ An example variable annotated with a real Point.

Mapped types are usually defined generically. Here’s an example:

type Funcfy<T> = {
 readonly [P in keyof T]: () => T[P]; ①
};
type FuncPoynt = Funcfy<Poynt>; ②

① The special prefix, readonly or -readonly, adds or removes the
readonly modifier from each key, respectively. Note that we use the
indexed access type syntax, T[P], with the generic type parameter.

② The type of FuncPoynt is { readonly x: () => number;
readonly y: () => string; }.

17.6. Mapped Types

152

A. How to Use This Book
Tell me and I forget. Teach me and I remember.
Involve me and I learn.

— Benjamin Franklin

The books in this "Mini Reference" series are written for a wide
audience. It means that some readers will find this particular book "too
easy" and some readers will find this book "too difficult", depending on
their prior experience related to programming. That’s quite all right.
Different readers will get different things out of this book. At the end of
the day, learning is a skill, which we all can learn to get better at. Here
are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some
typos. We go through multiple revisions, and every time we do that
there is a finite chance to introduce new errors. We know that some
people have strong opinions on this, but you should get over it. Even
after spending millions of dollars, a rocket launch can go wrong. All
non-trivial software have some amount of bugs.

Although it’s a cliche, there are two kinds of people in this world. Some
see a "glass half full". Some see a "glass half empty". This book has a lot
to offer. As a general note, we encourage the readers to view the world
as "half full" rather than to focus too much on negative things. Despite
some (small) possible errors, and formatting issues, you will get a lot
out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several
years ago, and it became an instant best seller. There are now many
similar books, copycats, published since then. The book is written for
"laypeople", and illustrate how computer science concepts like specific
algorithms can be useful in everyday life.

153

Inspired by this, we have some concrete suggestions on how to best
read this book. This is one suggestion which you can take into account
while using this book. As stated, ultimately, whatever works for you is
the best way for you.

Most of the readers reading this book should be familiar with some
basic algorithm concepts. When you do a graph search, there are two
major ways to traverse all the nodes in a graph. One is called the "depth
first search", and the other is called the "breadth first search". At the
risk of oversimplifying, when you read a tutorial style book, you go
through the book from beginning to end. Note that the book content is
generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially
often corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are
written to cover broad and wide range of topics, and which have many
interdependencies among the topics, it is often best to adopt the breadth
first traversal.

This advice should be especially useful to new-comers to the language.
The core concepts of any (non-trivial) programming language are all
interconnected. That’s the way it is. When you read an earlier part of
the book, which may depend on the concepts explained later in the
book, you can either ignore the things you don’t understand and move
on, or you can flip through the book to go back and forth. It’s up to you.
One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

The best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get
the high-level concepts. At each iteration, you try to get more and more
details. It is really up to you, and only you can tell, as to how many
passes would be required to get much of what this book has to offer.

Again, good luck!

154

Index
@

"allowJs": false, 25
"alwaysStrict": true, 26
"commonjs", 25
"es2016", 24
"es2020", 25
"nodenext", 25
"noImplicitAny": true, 28
"noImplicitThis": true, 28
"rest" elements, 82
"strict": true, 27-28
"strictNullChecks": true,

27
"use strict", 22, 29, 105
"use strict" directive, 126
"use strict" mode, 26, 105
& operator, 90
--strict flag, 27
-readonly, 152
.gitignore file, 26
64 bit floating point, 44
64 bit integer, 44
?, 111
? suffix notation, 84
_ variable, 83
{} type, 111
| syntax, 86
… operator, 83

A

abstract, 134

abstract, 134
abstract class, 133-134
Abstract Classes, 133
Abstract classes, 134
abstract data types, 147
abstract field, 134-135
abstract members, 133
abstract property, 134
accessibility, 131
Accessors, 128
algebraic data types, 86
algebraic product, 86
algebraic sum, 86
alias, 58-59, 80
aliases, 35, 86
allowJs, 25
alwaysStrict, 26
Angular, 19
angular bracket <>, 64
angular bracket assertion, 66
angular bracket syntax, 65
angular brackets, 72
angular brackets <>, 71
angular brackets {}, 59, 109
annotated tuple type, 81
annotated type, 98, 106
annotated types, 62
anonymous, 126
anonymous class declaration,

127
anonymous function, 32, 92
anonymous function

155

declaration, 72
any, 28, 38, 46-48, 52, 76, 79, 95
any Type, 46
any type, 46-47
any value, 47
any values, 46
any[], 76
app development process, 20
argument, 100
arguments, 62, 100
Array, 55
Array, 109
array, 53-54, 56, 76, 78
Array constructor function, 54, 77
Array creation, 77
array destructuring, 119
Array iteration, 78
array literal syntax, 54
array literal value, 65
Array literals, 65
array object, 75-77
Array objects, 54
array operations, 54
array spread operator, 78, 100
array spread syntax, 74
array spreading, 83
array type, 55-56, 72, 76, 81, 99
Array Types, 54
array types, 55, 82, 84
array-like, 55
Array.from method, 78
Array.reduce method, 99
Arrays, 54-55, 78
arrays, 54-56, 79

arrays in Javascript, 82
arrow function, 63, 74, 92-94, 101
arrow function argument, 63
arrow function body, 92
Arrow Function Definitions, 92
arrow function expression, 94
arrow function parameters, 92
arrow function property, 120
arrow functions, 104
as clause, 35
as keyword, 35
as operator, 64
asserting, 48
assignability, 51-52, 88, 90
assignable, 61, 122
assignment, 122, 148-149
assignments, 122, 140
auto-boxing, 40

B

Babel transpilation, 19
base class, 134, 137
BigInt, 44
bigint, 44
BigInt for bigint, 40
bigint Type, 44
block, 59, 93
boolean, 44-45
Boolean for boolean, 40
boolean type, 44
broader type, 52
broadest type, 47, 55
build steps, 19
build tools, 20

156

build-time construct, 68
builtin functions, 40
builtin global object, 52
builtin objects, 40, 141

C

callable, 141
class, 126-127, 129, 131-132, 137, 146
class, 129, 133, 137, 146
Class body, 127
class body, 126-127
Class declaration, 126
class declaration, 33, 126
class declaration, 130, 133
class declaration statement, 126
class definitions, 26
class initialization, 129
class name, 126-127
class visibility modifiers, 135
Classes, 73
classes, 109, 123, 126, 145
code documentation, 16, 58
collection, 54
collection types, 55
colon :, 16
common property, 144
CommonJS, 29
commonjs, 25
compatibility, 24
compatible, 76
compatible, 136
compilation, 18
compile time, 47, 64
compile time error, 15

compile time error, 71, 137
compile-time, 132
compile-time construct, 58, 148
compile-time constructs, 131
compile-time error, 37-38
compile-time type error, 77
compile-time types, 146
compiled languages, 18
compiler, 15-16, 21, 28, 64, 67, 87-88
compiler settings, 21-22
compilerOptions, 24
compilerOptions options, 24
computed value, 117
conditional type, 151
Conditional Types, 150
Conditional types, 150
conditional types, 150
configuration file, 21
const, 36-37, 60
const assertion, 65-66, 136
Const Assertions, 65
const assertions, 65-66
const Declaration, 36
const declaration, 36-37
const variable, 36
const variables, 39, 60, 113
constant expression, 93
constraints, 74
constructor, 77, 127, 129, 131-132, 134
constructor, 129, 134
constructor call, 130
constructor function, 40, 42, 131
constructor function syntax, 126
constructor implementation, 131

157

constructor parameter, 133
constructor prototype chain, 55
constructor syntax, 44
Constructors, 129-130
constructors, 130, 132
constructor’s parameters, 131
Control Flow Analysis, 140
control flow analysis, 140
curly braces block {}, 91
curly braces {}, 92, 126
current directory, 34
current folder, 21
custom type, 69

D

data properties, 111
data structure, 69
data types, 70
declaration, 123
Declaration export, 31
declaration merging, 124
declaration syntax, 36
declarations, 39, 124
declared types, 17
Default class export, 33
default export, 30, 32, 34
default export, 32
default export declaration, 32
Default exports, 32
default exports, 30
Default function export, 32
Default import, 34
default initial value, 38
default value, 100

default value initializers, 99
deployment, 19
deployment process, 19
destructured, 103
destructured variables, 103
destructuring, 83, 102
destructuring assignment, 83, 102
destructuring assignment, 102
destructuring parameter, 104
destructuring parameter syntax, 103
destructuring syntax, 102-103
dev dependency, 20
developer console, 105
developer tools, 16
development, 18-19, 22, 46
Development Process, 18
development process, 13, 18-19
development workflow, 19
discriminant, 88
discriminant properties, 143
discriminated union, 88, 144-145
Discriminated Unions, 88, 143
discriminated unions, 88
discriminated unions, 143, 146
dynamic imports, 33
Dynamic languages, 18
dynamically typed, 14-15

E

ECMAScript, 24, 29, 40
ECMAScript Class, 126
ECMAScript language, 22
ECMAScript language version, 24
ECMAScript standards, 112

158

eight fundamental types, 40, 140
element type, 55, 72, 81
element types, 55, 80-82, 84-85
elements, 55, 80
empty array, 100
empty constructor, 134
empty object literal type, 111
empty object type {}, 111
empty parameter list, 93, 97
Enum, 57
enum, 57
enum construct, 57
enum declaration, 57
Enum Types, 57
enum values, 57
enumeration, 57
equal sign =, 59
equality, 42
Equality ==, 42
equality ==, 43
errors, 18
ES class, 53
ES module format, 29
ES module standard, 35
ES module system, 29-30, 35
ES Modules, 29
ES modules, 25-26, 29
ES2015, 29, 45, 126
ES2015 class, 126
ES2017, 97
ES2020, 33, 112
es2020, 44, 111
exception, 36, 95
exclude, 23

exclude option, 23
explicit type annotation, 61, 65-66, 79
explicit type annotations, 61
export, 29
export declaration, 30
export statement, 31
exported object, 32
exporting, 29
exports, 30
expression, 92, 114-115
expressions, 91
extend, 125
extending, 124
Extending Interfaces, 124
extends keyword, 74
extends syntax, 134
extensions, 22

F

false, 44
field, 120
Fields, 128
fields, 112
file names, 23
files, 23
first argument, 108
first parameter, 106
Fixed-size tuples, 80
flow analysis, 140
for - in, 112
for - of, 112
for - of statement, 79
for loop, 112
for of statement, 78

159

formal parameter, 97
formal parameter list, 91, 97
formal parameters, 91, 93, 96
Function, 95-96, 109
function, 17, 54, 62, 91, 95, 97, 99-100,

103, 105, 136, 145-146
Function Annotations, 61
function annotations, 53
function body, 91, 93
function body block, 92
function call, 82, 135
Function constructor, 95
Function context, 105
function context, 105
function declaration, 91, 93, 106
function declarations, 62
Function Definitions, 91
function expression, 92
function implementation, 101
function name, 72, 91
Function object, 42, 53, 95
Function Overloading, 106
Function overloading, 121
function overloading, 108, 131
function parameter, 93
function parameter list, 71
function parameter lists, 82
function parameters, 16, 62, 96, 102-

103
function properties, 111
function return type, 51, 95
Function return types, 95
function return types, 120
function signature, 99, 107-108

function signatures, 107
function syntax, 120-121
Function type, 95, 141
function type, 53, 94-95
function type annotation, 61
Function Types, 53
Function types, 62
function types, 33, 51, 121
Function.prototype, 53
functional style, 146
Functions, 53, 91
functions, 16, 61-62, 72, 91

G

generated Javascript code, 64
generated Javascript program, 13-14
generated JS files, 22, 26
generic, 71, 82
generic, 73
generic anonymous function, 72
generic argument types, 72
generic array type, 72
Generic Array<T>, 76
generic arrow function expression,

72
generic class, 70, 139
generic class example, 73
Generic Classes, 138
Generic classes, 73
generic function, 71-72, 74
Generic function alias, 95
generic function declaration, 72
Generic Functions, 71
Generic functions, 95

160

generic functions, 73
generic implementation, 70
generic interface, 73
generic interfaces, 139
Generic ReadonlyArray<T>, 79
Generic tuples, 82
generic type, 55, 68, 74, 82, 139
generic type alias, 151
generic type argument, 77
generic type constraint, 150
Generic Type Constraints, 74
generic type parameter, 74, 152
generic type parameters, 70, 72, 95
generic type syntax, 79
generic type value, 138
Generic Types, 73
generic vararg function, 74
generically, 138, 152
Generics, 68
generics, 68, 70-71, 147
get, 117, 128
get syntax, 128
Getter, 117
getter, 118-119
Getter and setter, 128
getter and setter, 118-119
getter property syntax, 138
getter syntax, 118
getter type, 118
getter-setter pair, 118
Getters and Setters, 117
glob patterns, 23
Global context, 104
global context, 105

global object, 95
global scope, 29
global this, 104-105
global this object, 104
global variable, 29
globalThis object, 104

H

hash #, 127
heterogeneous arrays, 76
hierarchical type system, 121
hierarchical type systems, 122
higher-order function, 63
higher-order map function, 74
homogeneous, 76
HTML file, 18

I

IDE, 37
identifiers, 70
IDEs, 16
if branch, 142
implementation, 107-108, 146
implementation signature, 107-108
implementation signatures, 108
implementations, 134, 137
Implementing Interfaces, 135
implements declaration, 137
implements requirement, 139
implements syntax, 135
import, 29
import - from Declaration, 34
import - from declarations, 34
import - from statement, 34

161

import declaration, 33-34
import declarations, 34
import statements, 33
imported module, 34-35
importing, 29
importing module, 34
importing modules, 32
in operator, 142-143
in Operator Narrowing, 142
include, 23
include list, 23
index, 115
index notation, 81, 114
index signature, 116-117, 149-150
index signature syntax, 115
Index Signatures, 114
index signatures, 116-117
indexed access syntax, 150
indexed access type, 150
indexed access type syntax, 152
Indexed Access Types, 150
inequality, 42
inequality !=, 42-43
infer types, 140
inferred type, 38, 122, 136
infinite loop, 95
Inheritance, 130
inheritance, 124
inheritance relationships, 122
inheritance-like syntax, 124
initial name, 123
initial value, 16, 18, 36-38, 50, 60-61,

76, 81, 99, 134
initialization, 122

initializer, 97, 128
inner block, 59
input type, 152
instance, 133
instance field, 128-129, 133
Instance fields, 127
instance fields, 132
Instance getters and setters, 127
instance method, 129
Instance methods, 127
instanceof operator, 41, 55, 141
instanceof Type Guard, 141
instanceof type guard, 141-142
instanceof type guards, 145
instances, 127, 130
integer numbers, 44
interface, 73, 124
interface, 123-125, 135
interface declaration, 123
interface declarations, 124
interface name, 123
interface type, 104
interface type declarations, 124
Interface Types, 123
interface types, 59, 124
Interfaces, 53, 109, 123
interfaces, 73, 130, 137
interface’s properties, 137
Intersection, 125
intersection, 89
intersection type, 89
intersection type, 89-90
Intersection Types, 89
intersection types, 125

162

item types, 76
iterable objects, 78
iterating array, 78

J

Javascript, 13-15, 17-19, 22, 25-26, 36-
41, 45, 57, 103, 106, 109, 114,
117, 131, 140, 142

Javascript arrays, 55-56
Javascript classes, 126
Javascript code, 13, 19, 24, 26, 57, 146-

147
Javascript community, 29
Javascript developers, 13, 26, 104
Javascript frameworks, 19
Javascript function, 95, 97
Javascript functions, 62, 97, 102
Javascript keywords, 29
Javascript libraries, 19
Javascript objects, 111, 123, 150
JavaScript program, 15
Javascript program, 13-15
Javascript programs, 13, 16
Javascript reference, 38, 99
Javascript runtime, 13
Javascript runtimes, 29, 131
Javascript semantics, 106
Javascript statement, 54
Javascript Types, 40
JS class, 134
JS code, 26
JS files, 25
JS project, 26
JS-private, 132

JSON Configuration File, 22

K

key type, 150
key types, 116
keyof, 147
keyof operator, 149
keyof Type Operator, 149
keys, 117
keyword abstract, 133
keyword class, 126
keyword const, 65
keyword extends, 74
keyword function, 91
keyword get, 118
keyword interface, 123
keyword set, 118
keyword type, 59

L

labeled tuple, 81, 84
labeled tuple types, 82
Lambda function, 92
last element, 84
last parameter, 99
left-to-right associative, 152
legacy code, 26
length property, 85
let, 36, 39, 60
let Declaration, 37
let declaration, 37-38
let declarations, 31
let variable, 37-38
let variable declaration, 38

163

lexical scope, 104
libraries, 19
literal syntax, 44, 77, 79
literal type, 46, 60-61, 65, 119, 148
literal type expressions, 65
Literal Types, 45
literal types, 46, 58, 65
literal value, 46
Literal values, 45
local variable declarations, 18
loop variable, 78

M

map function, 63
mapped type, 152
mapped type syntax, 152
Mapped Types, 152
Mapped types, 152
mapping-like syntax, 152
matching setter, 118
member access syntax, 114
Member Methods, 120
member type, 86-88, 90
member types, 89-90, 123, 142, 144-

145
Member visibility, 131
members, 125
members types, 89
method, 146
method members, 121
method or field, 127
Method overloading, 121
Method properties, 120
method properties, 117, 120

method property, 106
Methods, 121, 129
middle element, 84
minification, 19
modern ECMAScript, 26
modern Javascript, 102, 105, 112
modern Javascript projects, 19
module, 25
module, 29-30
module configuration value, 29
Module Exports, 30
module format, 25, 29, 35
module formats, 29
Module import, 34
Module Imports, 33
module output format, 29
module resolution rules, 30
module system, 29
module’s default, 32
module’s default, 33
module’s default export, 32-33
multiple interfaces, 137
multiple variables, 39

N

Name list export, 32
Name list import, 35
named argument, 103
named class declaration, 127
named expression, 126
named function, 32
named properties, 116
named property, 117
named types, 58

164

namespace, 35
namespace alias, 35
Namespace import, 35
namespaces, 35
narrowest type, 51
Narrowing, 87-88
narrowing, 48, 87, 89
nested conditional type, 152
never, 51-52, 89, 95
never Type, 51
never type, 51
new class, 126
new constructor call, 131
new operator, 42
new type, 33, 41, 80, 147
new types, 123
Node.js, 20
Node.js REPL, 105
noImplicitAny, 27-28, 96
noImplicitThis, 27-28, 105
non-default exports, 30
non-iterable object, 79
non-null assertion, 67, 108
Non-Null Assertions, 67
non-null assertions, 67
non-strict mode, 36, 104-105
non-trailing elements, 84
NPM, 25
npm, 20
NPM package, 29
NPM package repository, 29
npm project, 21
null, 41, 49-50
null and undefined, 40, 49-50, 67

null or undefined, 27, 50, 67, 99-100
null type, 49
null-related errors, 27
number, 18, 44-45, 58-59
number array, 63
Number for number, 40
number type, 16, 44, 59
number value, 18

O

obfuscation, 19
Object, 52, 96
Object, 109
object, 52, 109
object, 53, 105, 110, 136
object, 109
Object constructor, 109
object instance, 129
object literal, 109, 122
object literal type, 32, 58-59, 104, 110,

121, 123-124
object literal type syntax, 109
object literal type {}, 111
Object Literal Types, 109
object literal types, 59, 65, 90, 109,

123-125, 130, 135, 145
object literal value, 66
object literal values, 137
Object literals, 65
object literals, 110, 128
object structures, 112
object Type, 52
object type, 52-53, 109, 111
object type, 66, 109-110, 115-116, 123-

165

124, 149-150
Object Type Members, 111
Object Types, 32, 53
object types, 53, 109, 115, 123
object-based, 40
Object.prototype, 53, 106
Object.toString method, 138
Objects, 109
objects, 52
objects, 102, 109, 126
OOP programming languages, 135
operation, 89
operations, 14, 86
optional, 82, 84, 108, 111-112, 120,

131-132
optional chaining, 112
optional element, 84
optional function parameters, 111-

112
optional method property, 120
optional parameter, 98-99
Optional Parameters, 98
optional parameters, 97, 108
optional parameters with ?, 99
Optional properties, 111
optional properties, 112
optional tuple elements, 112
options, 22
outer scope, 59
output module format, 25
overload a function, 107
overload signature, 107-108
Overload signatures, 107
overload signatures, 107-108

overloaded, 109
overloaded function, 108

P

parameter, 62, 97, 103
Parameter Destructuring, 102
Parameter initializers, 97
Parameter List, 96
parameter list, 97
parameter lists, 107
Parameter properties, 132
parameter property syntax, 139
parameter type, 63
parameterized type, 76
parameterized types, 68
parameters, 16, 61-62, 93-94
Parameters with initializers, 97
parent interface, 125
parentheses (), 62, 91, 94
plain Javascript code, 47
polyfills, 24
predefined objects, 40
predefined type, 109
primitive type, 58, 109
Primitive Types, 44
primitive types, 40, 44, 52, 58, 111,

121
private, 127
private, 131
private, 131
private field, 132
private field, 132, 138
private instance field, 128
private members, 131

166

private static field, 128
product types, 86
programming language, 13
programming languages, 13, 108
project setup, 18
Properties, 113
properties, 109, 114-116, 127, 133
properties of interfaces, 135
property, 117-118
property access syntax, 117
property key, 115
property keys, 152
property members, 111
property name, 111
property names, 109, 122
property separators, 110
property type, 117
property value, 117
protected, 131
protected field, 132
protected properties, 134
protected property, 132
prototype, 41
prototype chain, 41
prototype chain, 52-53, 109, 141
prototype property, 41
prototypes, 126
pseudo properties, 117
pseudo-property, 118, 138
public, 127
public, 131, 134-135
public, 131
public by default, 132
public field, 69, 135

public instance field, 132
public instance fields, 132
public members, 131
public method, 69
public modifier, 132
public property, 132
publicly accessible, 133
Pure type declarations, 130
push method, 85
Python, 18

Q

question mark ?, 112

R

rapid iteration, 18
React, 19, 65
readonly, 85
readonly, 113, 152
readonly array types, 79
Readonly arrays, 79
readonly keyword, 85
readonly modifier, 152
Readonly properties, 113
readonly properties, 65, 113
readonly property, 66, 118
readonly property, 113, 118
readonly T[], 79
readonly tuple, 65
readonly tuple, 85
readonly tuple, 85
readonly tuple type, 66
Readonly Tuples, 85
Readonly tuples, 85

167

readonly tuples, 56, 85
readonly tuples, 65
ReadonlyArray, 79, 85
ReadonlyArray type, 79
ReadonlyArray<T>, 79
REPL, 105
required fields, 112
required property, 117
rest element, 83
rest element types, 85
Rest Parameter, 99
rest parameter, 74, 96-97, 99, 101
rest parameter syntax, 99
rest parameters, 101
resulting type, 152
return statement, 50, 95
return type, 51, 69-70, 89, 95, 131
return value, 16, 50, 62-63, 95
return values, 16, 61
roperty syntax, 117
run time, 15, 41, 47, 106, 142
run time error, 47, 103, 141
run-time errors, 132
run-time exception, 79
run-time type, 140
runtime, 143
runtime assertion, 64
runtime behavior, 64, 142
runtime environments, 104
runtime error, 67
runtime errors, 15
runtime support, 146
runtime-private, 131

S

same types, 122
scope, 59
scoping, 58
scoping rules, 38
script, 29
script tag, 18
sequence of items, 54, 76
set, 117, 128
set syntax, 128
setter, 118
setter parameter, 118
setter syntax, 118
setter type, 118-119
setters, 117
shadowing, 58
shape, 123
shapes, 121
simple TS code, 20
single parameter, 94
singleton types, 49
slice method, 78
source code repository, 25
source files, 23
source JS files, 26
specified type, 16, 38
spread element types, 101
spread operator, 84
spread operator …, 83
square brackets [], 80
statement, 91, 93, 138-139
statements, 91, 93, 129
static, 127
static analysis, 18

168

static block, 127
Static blocks, 129
static field, 128
static fields, 127
static flow analysis, 140, 142
static getters and setters, 127
static initialization block, 129
static initialization blocks, 127
static keyword, 127
static methods, 127
Static properties, 127
static tooling, 15
static type analyzer, 37
static type checker, 48, 67, 69, 132
Static type checking, 16
static type checking, 15, 26, 46, 48,

100, 137
static type error, 149
static type information, 15, 76
static types, 43
Static Typing, 16
static typing, 13, 15
statically annotated, 64
statically type checked, 47
statically typed, 13, 15
strict, 27
Strict Equality, 42
strict equality ===, 42
strict inequality !==, 42
strict mode, 22, 105
strict mode code, 126
strict mode variant, 26
strict options, 27
strict type checking, 27, 43

strictBindCallApply, 27
strictFunctionTypes, 27
strictness settings, 38
strictNullChecks, 27, 38, 50
strictPropertyInitialization,

27
string, 44-45, 59, 115
String for string, 40
string literal type, 147
string literal types, 147
string type, 44
strongly typed, 121
strongly typed language, 69
strongly typed languages, 17
structural subtype, 124-125
Structural Subtyping, 121
structural typing, 136
structurally compatible, 136
structurally narrower, 137
structurally typed, 142
structure, 110, 152
structure-based type system, 123
structures, 121
subclass, 134
subclasses, 132
subtype, 121-122
sum types, 85
super(), 134
supertype, 109, 121
switch branch, 89
Symbol, 45
symbol, 45
Symbol for symbol, 40
Symbol type, 45

169

symbol type, 45
syntactic shortcut, 124

T

target, 24
target option, 24
target type, 59
template literal type, 147
template literal type syntax, 147
Template Literal Types, 147
template string syntax, 147
ternary operator, 152
this, 28, 104-106
this binding, 104
this function parameter, 28
this object, 105
this operator, 104
this Parameter, 104
this parameter, 106, 131
this value, 104
top-level base type, 121
Top-level options, 23
top-level variables, 38
toString method, 106
trailing comma, 97
trailing elements, 84
trailing optional, 85
trailing portion, 97
trailing separator, 110
transpilation, 15, 56
transpiled output, 24
true, 44
TS and JS source files, 25-26
TS class, 134

TS compiler, 18
TS files, 22
TS project, 26
TS-private, 132
TS-protected, 132
TS-specific, 133
tsc, 20-22, 26-27
tsc, 22
tsc --all, 22
tsc --help, 22
tsc --init, 21
tsc --init, 23
tsc command, 20, 22
tsconfig.json, 21
tsconfig.json file, 21-23, 29
tuple, 56, 80, 84
tuple destructuring, 119
tuple element, 81
tuple elements, 82
tuple literal, 80
tuple type, 56, 80-81, 83-85, 101
Tuple Types, 55
Tuple types, 82
tuple types, 56, 82, 86, 101-102
tuple types, 80
Tuples, 56, 80
tuples, 55-56
two-element tuple, 81
type, 14-15
type, 58
type alias, 58-59, 81, 94, 104, 124, 139,

149
Type alias declarations, 58
type alias declarations, 59

170

Type aliases, 58-59, 86
type aliases, 58-59
type aliasing, 123
Type Annotation, 37
type annotation, 31, 38-39, 46, 50, 60-

61, 69, 74, 76, 101
Type annotations, 16
type annotations, 16, 30, 62, 64, 66,

79, 106
type argument, 73
type arguments, 68, 74, 139
type assertion, 30, 33, 48-49, 64-65, 67,

78, 101, 143
Type Assertions, 64
type assertions, 64-65, 67
Type checking, 26
type checking, 49
type checking error, 81
type checking errors, 46
type compatibility, 47
type constraint, 74, 138
type constraints, 74
type context, 148
type declarations, 19
type definition file, 20
type definition files, 19
type erasure, 15
type error, 150
type expressions, 147
type guard, 98, 108, 119, 141, 148
type guards, 140
Type inference, 18, 70
type inference, 31, 39, 79
type information, 15, 28

type inheritance, 74
type literals, 58
type name, 65
type names, 136
Type narrowing, 143
type narrowing, 87, 142-143
type narrowing, 140
type Object, 109
type parameter, 70, 73-74, 138
type parameter names, 70
type parameters, 68, 71-74
type safety, 69
type system, 121
type systems, 121
type-checking options, 27
typeof, 147
typeof expressions, 140
typeof operator, 41, 55, 119, 140, 148
typeof Type Guard, 140
typeof type guard, 87, 140-141
typeof Type Operator, 148
typeof(null), 41
types, 14-15, 109
TypeScript, 140
Typescript, 13, 15-22, 24-26, 28, 36-37,

39, 45-46, 103, 105-106, 108-109,
112, 118, 122-124, 130-131, 140,
142

Typescript Class, 53, 130
Typescript class, 126, 135, 138
Typescript classes, 69
Typescript code, 57, 105
Typescript Compiler, 20
Typescript compiler, 15, 17, 20, 60, 62,

171

132
Typescript core libraries, 20
Typescript expressions, 20
Typescript file, 29
Typescript files, 21
Typescript identifier, 34
Typescript language, 20
Typescript Modules, 29
Typescript Namespaces, 35
Typescript namespaces, 35
Typescript object types, 111
Typescript package, 20
typescript package, 20
TypeScript Playground, 20
Typescript program, 13-15
Typescript programming, 147
Typescript programs, 13, 16
Typescript project, 21
Typescript project root, 23
Typescript REPL, 20
Typescript source files, 22-23
Typescript statement, 54
Typescript statements, 20
Typescript transpilation, 19
Typescript tuple types, 82
Typescript’s enum, 57

U

undefined, 37-38, 49-50, 52, 89, 95,
105, 112

undefined return type, 95
undefined type, 49-50, 84, 98
union, 87, 143
union return type, 95

union type, 50, 55, 58, 86-88, 142, 148-
149

union type, 85
union type parameters, 108
Union Types, 85
Union types, 85
union types, 45, 86, 147
unions, 88
universal type, 95
unknown, 47-48, 52, 55, 64, 76, 143
unknown Type, 47
unknown type, 43, 47-49
unknown value, 48
unknown[], 55
untyped function call, 96
useUnknownInCatchVariable, 27

V

valid value, 149
valid values, 83
validation logic, 117
value equality, 119
var, 36, 39, 60
var Declaration, 38
var declaration, 38
variable, 14, 16-18, 28, 36-39, 60-62,

64, 79
Variable Annotations, 60
variable declaration, 60
Variable export, 31
variable type annotation, 61
variable type annotations, 62
Variables, 36
variables, 14-16, 37, 39

172

variables and values, 14
variadic function, 100
variadic functions, 82, 99
Variadic tuples, 82
variadic tuples, 82
variadic tuples, 83
variant, 88
variant of Typescript, 22
variants, 22, 88
variants, 22, 88-89
version control system, 25
visibility modifiers, 131
void, 52, 95, 120
void return type, 69
void Type, 51
void type, 51
Vuejs, 19

W

watch mode, 22
weakly typed languages, 68
Web browsers, 29
What is Typescript?, 13
Why Generics?, 68
wildcard * syntax, 35
wildcard characters, 23
Window object, 104
write access, 114

Y

yarn, 20

173

About the Author
Harry Yoon has been programming for over three decades. He has
used over 20 different programming languages in his academic and
professional career. His experience spans broad areas from scientific
programming and machine learning to enterprise software and Web
and mobile app development.

He occasionally hangs out on social media:

• Instagram: @codeandtips [https://www.instagram.com/codeandtips/]

• TikTok: @codeandtips [https://tiktok.com/@codeandtips]

• Twitter: @codeandtips [https://twitter.com/codeandtips]

• YouTube: @codeandtips [https://www.youtube.com/@codeandtips]

• Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

174

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/

About the Series
We are creating a number of books under the series title, A Hitchhiker’s
Guide to the Modern Programming Languages. We cover essential
syntax of the 12 select languages in 100 pages or so, Go, C#, Python,
Typescript, Rust, C++, Java, Julia, Javascript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach
you different ways of programming, and more importantly, different
ways of thinking.

All Books in the Series
• Go Mini Reference [https://www.amazon.com/dp/B09V5QXTCC/]

• Modern C# Mini Reference [https://www.amazon.com/dp/B0B57PXLFC/]

• Python Mini Reference [https://www.amazon.com/dp/B0B2QJD6P8/]

• Typescript Mini Reference [https://www.amazon.com/dp/B0B54537JK/]

• Rust Mini Reference [https://www.amazon.com/dp/B09Y74PH2B/]

• C++20 Mini Reference [https://www.amazon.com/dp/B0B5YLXLB3/]

• Modern Java Mini Reference [https://www.amazon.com/dp/B0B75PCHW2/]

• Julia Mini Reference [https://www.amazon.com/dp/B0B6PZ2BCJ/]

• Javascript Mini Reference [https://www.amazon.com/dp/B0B75RZLRB/]

• Haskell Mini Reference [https://www.amazon.com/dp/B09X8PLG9P/]

• Scala 3 Mini Reference [https://www.amazon.com/dp/B0B95Y6584/]

• Lua Mini Reference [https://www.amazon.com/dp/B09V95T452/]

175

https://www.amazon.com/dp/B09V5QXTCC/
https://www.amazon.com/dp/B0B57PXLFC/
https://www.amazon.com/dp/B0B2QJD6P8/
https://www.amazon.com/dp/B0B54537JK/
https://www.amazon.com/dp/B09Y74PH2B/
https://www.amazon.com/dp/B0B5YLXLB3/
https://www.amazon.com/dp/B0B75PCHW2/
https://www.amazon.com/dp/B0B6PZ2BCJ/
https://www.amazon.com/dp/B0B75RZLRB/
https://www.amazon.com/dp/B09X8PLG9P/
https://www.amazon.com/dp/B0B95Y6584/
https://www.amazon.com/dp/B09V95T452/

Community Support
We are building a website for programmers, from beginners to more
experienced. It covers various coding-related topics from algorithms to
machine learning, and from design patterns to cybersecurity, and more.
You can also find some sample code in the GitLab repositories.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Please join our mailing list, join@codingbookspress.com, to receive
coding tips and other news from Coding Books Press, including free, or
discounted, book promotions. If we find any significant errors in the
book, then we will send you an updated version of the book (in PDF).
Advance review copies will be made available to select members on the
list before new books are published.

Request for Feedback
If you find any errors or typos, or if any part of the book is not very
clear to you, or if you have any general suggestions or comments
regarding the book, then please let us know. Although we cannot
answer all the questions and emails, we will try our best to address the
issues that are brought to our attention.

• feedback@codingbookspress.com

Please note that creating and publishing quality books takes a great
deal of time and effort, and we really appreciate the readers' feedback.

Revision 1.0.8, 2023-05-14

176

https://www.codeandtips.com
https://gitlab.com/codeandtips
mailto:join@codingbookspress.com
mailto:feedback@codingbookspress.com

	Typescript Mini Reference 2023: A Quick Guide to Typescript Programming Language
	Copyright
	Preface
	Chapter 1. Introduction
	Chapter 2. Typescript Basics
	2.1. �What is Typescript?
	2.2. �Static Typing
	2.3. Notes on �Development Process
	2.4. The �Typescript Compiler
	2.5. �Typescript �JSON Configuration File

	Chapter 3. Module System
	3.1. �ES Modules
	3.2. �Typescript Modules
	3.3. �Module Exports
	3.4. �Module Imports
	3.5. �Typescript Namespaces

	Chapter 4. Variables
	4.1. The �const Declaration
	4.2. The �let Declaration
	4.3. The �var Declaration

	Chapter 5. Basic Types
	5.1. �Javascript Types
	5.2. �Strict Equality
	5.3. �Primitive Types
	5.4. �Literal Types
	5.5. The �any Type
	5.6. The �unknown Type
	5.7. The �null and undefined Types
	5.8. The �never Type
	5.9. The �void Type
	5.10. The �object Type
	5.11. �Function Types
	5.12. �Array Types
	5.13. �Tuple Types
	5.14. �Enum Types

	Chapter 6. Type Aliases
	Chapter 7. Type Annotations
	7.1. �Variable Annotations
	7.2. �Function Annotations

	Chapter 8. Assertions
	8.1. �Type Assertions
	8.2. �Const Assertions
	8.3. �Non-Null Assertions

	Chapter 9. Generics
	9.1. �Why Generics?
	9.2. �Generic Functions
	9.3. �Generic Types
	9.4. �Generic Type Constraints

	Chapter 10. Arrays
	10.1. �Generic Array<T>
	10.2. �Generic ReadonlyArray<T>

	Chapter 11. Algebraic Data Types
	11.1. �Tuples
	11.2. �Readonly Tuples
	11.3. �Union Types
	11.4. �Discriminated Unions
	11.5. �Intersection Types

	Chapter 12. Function Types
	12.1. �Function Definitions
	12.2. �Arrow Function Definitions
	12.3. Function Types
	12.4. �Parameter List
	12.5. �Optional Parameters
	12.6. The �Rest Parameter
	12.7. �Parameter Destructuring
	12.8. The �this Parameter
	12.9. Typescript �Function Overloading

	Chapter 13. Object Types
	13.1. �Object Literal Types
	13.2. �Object Type Members
	13.3. �Index Signatures
	13.4. �Getters and Setters
	13.5. �Member Methods
	13.6. �Structural Subtyping

	Chapter 14. Interfaces
	14.1. �Interface Types
	14.2. �Extending Interfaces

	Chapter 15. Classes
	15.1. The �ECMAScript Class
	15.2. The �Typescript Class
	15.3. �Abstract Classes
	15.4. �Implementing Interfaces
	15.5. �Generic Classes

	Chapter 16. Type Narrowing
	16.1. �Control Flow Analysis
	16.2. The �typeof Type Guard
	16.3. The �instanceof Type Guard
	16.4. The �in Operator Narrowing
	16.5. �Discriminated Unions

	Chapter 17. Advanced Types
	17.1. �Template Literal Types
	17.2. The �typeof Type Operator
	17.3. The �keyof Type Operator
	17.4. �Indexed Access Types
	17.5. �Conditional Types
	17.6. �Mapped Types

	A. How to Use This Book
	Index
	About the Author
	About the Series
	Community Support

