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Preface
The legend has it that Rust was born from C++ father and Haskell mother.

Well, we just made that up.  But, once you start using Rust, you will most likely
agree with that statement. Rust was undoubtedly influenced by many different
programming languages including imperative languages like C#, Go, and Python
and functional languages like Lisp, F#, and Scala, among many others. But, Rust is
ultimately a hybrid language built from C/C++ and OCaml/Haskell.

If you are experienced with one or the other lineage, or both, then you will feel
right at home with Rust. It will be pretty easy for you to learn and use. On the flip
side, if you don’t have much experience with either side, then Rust will be a rather
difficult language for you. You should ask yourself why you want to learn and use
Rust before embarking on this (potentially long) journey of "oxidation". To put it
bluntly, Rust is not for everyone.

Rust is a paradox. Although it was originally created to be a low-level systems
programming language, it includes many high-level constructs, largely influenced
by functional programming languages.

At the risk of oversimplification, a programming language can be classified into
one of two categories. There are languages, on the one hand, that handle memory
management on behalf of the programmers, for example, by providing some kind
of garbage collection implementations. These languages are generally considered
more high level.

Those in the other category, on the other hand, give as much control to the
programmers as possible, which generally makes them more low level. In C, for
instance, programmers need to take care of all memory allocations and de-
allocations. C++ provides slightly more high level constructs like constructors and
destructors. But, in the end, it is the responsibility of the programmer to manage
the memory use of their programs.
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Rust, interestingly, lies somewhere between these two categories. In a sense, Rust
belongs to the second category. There is no garbage collection runtime built into
Rust. Programmers should take care of memory management, e.g., by strictly
following certain rules imposed by Rust. In another sense, Rust belongs to the first
high-level language category. As long as the programmers follow these rules
imposed by Rust, they do not have to worry about memory-related problems.
Unlike the run time garbage collection, however, Rust does memory management
at build time, through what is called the "borrow checker". A large part of this
idea is "borrowed" (no pun intended ) from other language like C++, but Rust
raises it to another level.

In Rust, as long as your program compiles, you do not have to worry about a
certain class of memory-related errors. The program, if you can build it, is
guaranteed to be free of this kind of errors.

Another unique feature of Rust is emphasis on expressions. Although Rust is an
imperative language, most programming logic is carried out through expressions
rather than statements. But, unlike expressions of (pure) functional programming
languages, expressions in Rust can have side effects. Again, the separation of
expressions vs statements is pretty unique in Rust. It lies somewhere between
imperative languages and functional languages.

This book is a "mini language reference". It is a reference on the Rust
programming language grammar, and it is not, for example, a tutorial on
programming in Rust. It is a mini reference in that it does not cover all the
language details in depth.

As suggested, if you have some experience with programming in any of the
related languages, imperative or functional, you can pick up Rust rather easily by
reading this reference. Alternatively, this book can also be useful to programmers
who used before, or who are currently using, Rust. It can be used as a quick
refresher of some of the essential concepts of Rust, or as an annotated cheatsheet,
if you will. This book is, however, not for real beginners.
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Dear Readers:

Please read this before you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are small
ones and there are big ones. Some blocks are straight and some are L-shaped. You
use these lego blocks to build spaceships or submarines or amusement parks.
Likewise, you build functioning programs by assembling these building blocks of
a given programming language.

This book is a language reference, written in an informal style. It goes through
each of these lego blocks, if you will. This book, however, does not teach you how
to build a space shuttle or a sail boat. If this distinction is not clear to you, it’s
unlikely that you will benefit much from this book. This kind of language
reference books that go through the syntax and semantics of the programming
language broadly, but not necessarily in gory details, can be rather useful to
programmers with a wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start learning a
foreign language, for instance, you do not start from the grammar. Likewise, this
book will not be very useful to people who have little experience in real
programming. On the other hand, if you have some experience programming in
other languages, and if you want to quickly learn the essential elements of this
particular language, then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for you. But, as
stated, this book is written for a wide audience, from beginner to intermediate.
Even experienced programmers can benefit, e.g., by quickly going through books
like this once in a while. We all tend to forget things, and a quick regular refresher
is always a good idea. You will learn, or re-learn, something "new" every time.

Good luck!
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Chapter 1. Introduction
Rust is a general purpose programming language originally created for systems
programming. Rust is widely used for Web applications and Web Assembly
development, beyond system-level programming. Rust is a relatively new
language, which is still rapidly evolving at this point. Rust currently has a six week
release cycle.

Although we are primarily focusing on the Rust language in this book, we will
briefly go through some non-language related aspects in this first chapter such as
the basics of Rust software development. You can skip most of this chapter if you
have some experience with programming in Rust.

1.1. Rust Tools
Rust provides pretty much all the standard tools when it comes to software
development. For virtually all developers, the starting point is the rustup
command. You can install it from the official download page:

• Install Rust - Rust Programming Language [https://www.rust-lang.org/tools/install]

1.1.1. Rustup

Rustup is used to manage Rust toolchains. A Rust toolchain is, roughly speaking, a
combination of a Rust build from a particular channel (e.g., the Rust compiler and
libraries) and a target platform(s). Rust has three standard channels, nightly, beta,
and stable. Any feature, or commit, that is merged into the master branch is
included in the daily nightly build. Every six weeks, a set of features are selected
and a beta build is released. After six weeks, the beta build is then promoted to the
stable build. Hence, there is a new nightly build every day, and there are new
versions of beta and stable Rust every six weeks.

1.1. Rust Tools
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For example, on the author’s computer,

$ rustup show
Default host: x86_64-unknown-linux-gnu
rustup home:  /home/harry/.rustup

installed toolchains                     ①
--------------------
stable-x86_64-unknown-linux-gnu (default)
beta-x86_64-unknown-linux-gnu

installed targets for active toolchain   ②
--------------------------------------
wasm32-unknown-unknown
x86_64-unknown-linux-gnu

active toolchain                         ③
----------------
stable-x86_64-unknown-linux-gnu (default)
rustc 1.69.0 (84c898d65 2023-04-16)

① On this particular computer, the beta and stable builds are installed, but not
the nightly build.

② This computer has an x86_64 cpu (Intel or AMD), and we are currently building
Rust programs for the native platform only, other than the Web Assembly
target (wasm32). Rust tools can be used for cross-architecture development.

③ Although we have both beta and stable toolchains, we are currently using the
stable build by default. The current version of the Rust compiler (rustc) is 1.69,
as of this writing. Going through each tool, and their sub-commands and their
options, is beyond the scope of this book. The readers who are new to Rust
development are encouraged to consult the help/man pages of each tool. For
example, you can start from rustup -h.

1.1. Rust Tools
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1.1.2. Rustc

Each Rust toolchain includes three essential tools, rustc, cargo, and rustdoc,
among other things. rustc is the Rust compiler, which is no doubt the most
important tool in Rust software development. But, in practice, rustc is rarely, if
ever, used directly. Here’s a simple usage example:

$ ls
main.rs
$ cat main.rs
fn main() {
    println!("Hello, world!");
}
$ rustc main.rs                          ①
$ ls
main  main.rs
$ ./main                                 ②
Hello, world!

① Again, try rustc -h for usage information and other available options.

② The main file is the build output (e.g., an executable) in this example.

1.1.3. Cargo

Cargo is a project and dependency management tool in Rust. Although it is an
"optional" tool, it is the de-facto standard tool for building and managing Rust
projects. Cargo uses rustc under the hood to compile the Rust source code.

If you are new to Rust development, cargo init, or cargo new, creates a new Cargo
project. cargo build builds the project, e.g., for the target platforms of the currently
active toolchain, and you can use cargo run to quickly build and run a program
during development. A relatively new addition, cargo add, can be used to add
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dependent packages to your project. (Cargo uses the Rust package repository,
crates.io.) Try cargo -h for more information. For example,

$ pwd
/.../code/intro
$ ls                                     ①
$ cargo init                             ②
     Created binary (application) package
$ tree .                                 ③
.
├── Cargo.toml
└── src
    └── main.rs
1 directory, 2 files
$ cat Cargo.toml                         ④
[package]
name = "intro"
version = "0.1.0"
edition = "2021"

# See more keys and their definitions at https://doc.rust-
lang.org/cargo/reference/manifest.html

[dependencies]                           ⑤
$ cat src/main.rs                        ⑥
fn main() {
    println!("Hello, world!");
}
$ cargo build                            ⑦
   Compiling intro v0.1.0 (/.../code/intro)
    Finished dev [unoptimized + debuginfo] target(s) in 0.66s
$ ls                                     ⑧
Cargo.lock  Cargo.toml  src  target
$ cargo run                              ⑨
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    Finished dev [unoptimized + debuginfo] target(s) in 0.01s
     Running `target/debug/intro`
Hello, world!                            ⑩

① The current directory is empty.

② Try cargo init -h or cargo new -h for more information.

③ cargo init created two files, Cargo.toml and src/main.rs.

④ We briefly describe the Cargo project manifest file, Cargo.toml, below. Note
that the project or package name, intro in this example, is taken from the name
of the current directory. (See the pwd output above.)

⑤ This (new) project has currently no external crate dependency.

⑥ The default scaffolded file for the binary crate type.

⑦ Try cargo build -h for more information.

⑧ Note that the build output is stored in a directory named target. In general, this
should not be included in the source code repository (e.g., by including this
entry in the .gitignore file, if you are using git).

⑨ You can use cargo run -q if you want to display only the program output,
without the compiler log messages. Try cargo run -h.

⑩ Yay, Hello, world!

1.1.4. Cargo manifest file

The Cargo package manifest file, Cargo.toml, uses the TOML file format, and it is
similar to various project files used in other programming language ecosystems,
e.g., project.json for a Node project and the .csproj file for a C# project, etc. As
indicated in the comment in the scaffolded Cargo.toml file in the above example,
you can find more information on the manifest file on the Rust reference website.

We discuss the edition = "2021" line in the next section on Rust editions.
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1.1.5. Rustdoc

The rustdoc command generates a documentation for the given source code files.
Try rustdoc -h for more information. But, as with rustc, the cargo command is
usually used to indirectly invoke rustdoc for the current Cargo project.

For instance, using the same example,

$ cargo doc --open                       ①
 Documenting intro v0.1.0 (/.../code/intro)
    Finished dev [unoptimized + debuginfo] target(s) in 0.28s
$ ls                                     ②
Cargo.lock  Cargo.toml  doc  src  target

① You can use cargo doc -h to get more information on this command. The --open
flag opens the generated (HTML) documentation in the default Web browser
after generating the docs.

② The documentation output is saved into the doc directory by default.

We briefly explain how to add doc comments to your source code in the next
chapter, on lexical analysis.

1.2. Rust Editions
Rust has made some backward incompatible changes over the years since its first
public release, version 1.0. In software engineering, backward incompatible
changes are generally considered cardinal sins, especially for software that are as
fundamental as coding languages.

But, sometimes, they are unavoidable. Rust’s solution to this is to create new
language variants every three years. These language variants are called the
editions in Rust. Effectively, no changes in the Rust programming language
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grammar are backward incompatible since those are only introduced to the new
editions. The programs written in the older editions will never break. This
strategy is not necessarily new or unique in Rust. JavaScript, for example,
introduced a new (more modern) language variant through the use of the "use
strict" declaration. Languages like C# include (effectively) a number of different
language variants, e.g., using the configuration settings, etc.

Now, if you are starting a new Rust project, you should always use the most recent
edition. The 2021 edition is the current edition, as of this writing, as illustrated by
the example in the previous section. When Rust introduces a new edition, which is
newer than the edition you are using for your project, you have two choices.
Either you can keep it as is, or you can upgrade your project to use the newly
defined edition. In general, you should try, or at least consider, upgrading your
project unless there are any significant breaking changes that affect your project.
This discussion is, however, beyond the scope of this book.

As shown earlier, a Rust package’s edition is set in the Cargo.toml file using the
edition entry. There are three editions at this point. 2015, 2018, and 2021, and,
for example, a new edition will be added in 2024. We will not discuss the
differences between different editions in this book. We only use the 2021 edition.
(Incidentally, we do not discuss the "unsafe Rust" in this book either.)

1.3. The Language vs Standard Libraries
The separation between the core language and its standard libraries does not exist
any more in the modern programming languages. Or, at least, the traditional
dichotomy is no longer valid. The line between the language grammar and the
supporting libraries has been increasingly becoming blurred (e.g., from the
viewpoint of the application programmers).

This is especially true for Rust. The Rust programming language defines the
syntax for a number of expressions and statements, and includes some primitive
types, and so forth, but much of the language features come from the standard
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libraries. Whether types like Option and Result are built into the language or
not is (almost) completely irrelevant, to application programmers. They are truly
part of the language. You cannot write any non-trivial programs beyond the "Hello
World" without using these features.

The Rust language heavily relies, for example, on a number of traits defined in the
standard library. In fact, they are so tightly integrated that certain language
behavior is defined by those traits. Some of them are included in the Standard
Library Prelude, and from the programmer’s perspective, the distinction between
Builtin vs Prelude has no real significance. Even beyond the Prelude, there are
many traits and types, and functions, in various modules of the standard library
that should be really viewed as an integral part of the language.

We include some of those core concepts in this book although technically they are
not part of the language. On the flip side, we leave out so many of the important
and widely-used types and traits in Rust, among other things. The readers are
encouraged to consult appropriate references on the standard libraries.

1.4. Content
Rust is, despite its relatively short history, a rather complex language. This book
covers all the essential, and fundamental, elements of Rust, including types, traits,
variables, lifetimes, generics, functions, closures, patterns and pattern matching,
statements, expressions, operators, operator overloading, basics of iterators, and
error handling, as well as a few fundamental types and core traits, etc.

On the other hand, the book does not cover concurrency, async programming,
many common collection types, type conversions, attributes, macros, IO functions,
and runtime polymorphism in any depth, among many other things. We do not
include unsafe Rust nor FFI (foreign function interfaces) either. Furthermore, we
do not cover the "absolute basics" of programming in this book such as arithmetic,
operator precedence, type inference, basic control flow using conditional and loop
statements, etc. (In fact, control flow is done through expressions in Rust.)

1.4. Content
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Chapter 2. Lexical Elements
The programming language grammar generally has three layers, lexical structure,
syntax, and semantics, from bottom up. We primarily focus on the Rust language
syntax and semantics in this book. We briefly touch on the lexical structure of
Rust programs in this chapter, however.

2.1. Input Format
As with most modern programming languages, Rust uses Unicode. In particular,
the Rust lexer interprets a given Rust program as a sequence of Unicode
characters encoded in UTF-8.

2.2. Comments
Rust supports both the C++-style line comments (//...) and the C-style block
comments (/* ... */). In addition, Rust supports doc comments with a rich set
of features. Comments are interpreted as a form of whitespace.

2.2.1. Line comments

A line comment starts from the character sequence // and it extends until the end
of the line.

// I'm a line comment
const NAH: &str = "I'm not // a comment";      ①
const TRU: i32 = 42;  // I'm also a comment
///////// I'm also a line comment /////////

① The sequence // in a string literal does not start a comment.

2.1. Input Format
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2.2.2. Block comments

Unlike in most C-style languages, Rust supports "nested" block comments. (Why
would anybody need nested block comments? No comment. ) For example,

/*                                       ①
I'm a comment.
/*
I'm a comment too.
*/                                       ②
I'm a comment three.
*/                                       ③

① It starts a block comment.

② This character sequence */ does not end the current block comment due to the
intervening character sequence /* in the comment.

③ It ends the current block comment. Note that comments are not really nested.
It’s just that the character sequence */ can be included inside the Rust’s block
comment as long as it is paired with the matching /*.

2.2.3. Doc comments

Doc comments are used by the rustdoc command to generate code
documentations. They are interpreted as a special syntax for builtin doc attribute.
That is, Rust converts doc comments into semantically equivalent doc attributes.
Attributes are briefly discussed later in the book. Some of the builtin attributes
are also included, in the relevant chapters, throughout the book.

An outer line doc comment, ///..., with exactly three slashes, or an outer block
doc comment, /** ... */, precedes an item, and it provides the code
documentation for the given item. ("Outer", in the sense that they are associated
with their following items.)

2.2. Comments
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/// I'm a mathematical pi.               ①
/// I'm very accurate.
pub const PI: f32 = 3.14;

/**                                      ②
 * I'm an edible pie.
 * I'm very edible.
 */
pub const PIE: &str = "American Pie";

① This is equivalent to a doc attribute, #[doc="I’m a mathematical
pi.\nI’m very accurate."]. Note that multiple line comments form
essentially a single doc comment.

② This is equivalent to #[doc="I’m an edible pie.\nI’m very edible."].
Note that the leading asterisk * and spaces in each line are ignored.

An inner line doc comment of the form //!... or an inner block doc comment of
the form /*! ... */ provides documentation for the parent item of the
comment. They must appear before any other items in their parents. ("Inner", in
the sense that they are associated with their enclosing items.)

 1 //! I'm about this module.               ①
 2 //! I'm about this module too.
 3 
 4 pub fn demo() {
 5     /*!                                  ②
 6     I'm about the demo function.
 7     */
 8     /// I'm about X.                     ③
 9     const X: i32 = 3;
10 }
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① No other items in the module can precede this inner doc comment. This two-
line doc comment is equivalent to the doc attribute, #![doc="I’m about
this module.\nI’m about this module too."].

② This inner doc comment provides the documentation for its parent, the demo
function, and it is placed before any other items in the function body.

③ This outer line doc comment provides documentation for the following item, X,
in the function body.

The Rust doc comment syntax allows the Markdown format, and it can be used to
add markups, e.g., for emphasis and linking, etc., to the generated document. It
also allows including code snippets through Markdown syntax, e.g., using the
triple-backquote code blocks.

/// The `sum` function always returns 42.
/// ```                                  ①
/// # use comments::sum;                 ②
/// let a = sum(1, 2);                   ③
/// # print!("sum = {a}");
/// assert_eq!(a, 42);                   ④
/// ```
pub fn sum(_a: i32, _b: i32) -> i32 { 42 }

① A code block. This starting ``` is equivalent to ```rust.

② The lines starting with a hash symbol, #, are not included in the generated doc.

③ The code example in the doc comment can be "executed", e.g., for testing, or
for verifying the validity of the code. The lines with the leading hashes are also
executed in this context.

④ You can run the example code in the doc comment in a couple of different
ways. For example, cargo test --doc will test this code snippet. (Note that you
can only run unit tests on library crates.)

2.2. Comments

24



2.3. Tokens
The lexer reads the Rust source input and produces a sequence of tokens, e.g.,
after removing whitespaces and what not. The parser then reads these lexical
tokens and creates an abstract syntax tree (AST) for further processing.

Tokens in Rust belong to one of the following six categories:

• Delimiters,

• Operators and other punctuation symbols,

• Identifiers,

• Keywords,

• Lifetimes, and

• Literals.

2.4. Delimiters
Rust uses three kinds of brackets as delimiters. An open bracket must always be
paired with the corresponding close bracket.

• Parentheses, (),

• Curly braces, {}, and

• Square brackets, [].

They are used in many different contexts. For example, parentheses are used for
expression grouping and function calls, and curly braces are used for expression
blocks, among other things. Their specific uses are explained in the relevant
chapters throughout the book.
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2.5. Operaotrs and Other Punctuation
The following punctuation symbols are used for operators:

+   -   *   /
%   ^   !   &   |
&&  ||  <<  >>
+=  -=  *=  /=  %=
^=  &=  |=  <<=  >>=
=   ==  !=  >   <   >=  <=

Other punctuation symbol tokens used in Rust:

@   _    .    ..   ..=  ...
,   ;    :    ::
->  =>   #    $    ?

Uses of some of these tokens, including operators, are explained in the relevant
part of this book. Otherwise, they generally have the same usual meanings as in
most other C-style programming languages. (E.g., the + symbol is usually used as
an arithmetic addition operator, possibly in addition to other uses. In Rust, the +
token is also used in the trait bounds, among other things.)

2.6. Identifiers
In general, Unicode letters (e.g., Unicode Standard Annex #31), numbers 0 through
9, and underscore character _ are allowed in identifiers. (There are some
exceptions, but we will not go through them in this book.) An identifier cannot
start with a number.
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Identifiers may not be a strict or reserved keyword, but they can be "escaped"
using the raw identifier syntax (except for crate, super, self, and Self). A raw
identifier is prefixed by r# (which is not part of the identifier). For example,

fn demo() {
  let r#let = 333;                     ①
  let doubled = r#let * 2;
  println!("{let} * 2 = {doubled}");   ②
}

① let is a strict keyword, and we use the raw identifier syntax here.

② Note that, in this context, let refers to the variable declared in the current
scope, and not the keyword let. This will print out 333 * 2 = 666.

The single underscore name _ has special uses in Rust. Otherwise, identifiers
starting with an underscore are only used, by convention, in places where they
are intentionally unused (e.g., temporarily during the development). The Rust
compiler will not issue the unused warnings for those identifiers. For example,

fn repeat(s: &str, times: i32) -> String {
  todo!();
}

The todo! macro takes care of returning a placeholder String value, etc. But, the
compiler, with #[warn(unused_variables)], will still issue warnings for
unused variables. However, there will be no warnings for the following version.

fn repeat(_s: &str, _times: i32) -> String {
  todo!();
}

2.6. Identifiers
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2.7. Keywords
Rust keywords belong to one of the following three categories:

Strict Keyword

Strict keywords can only be used in particular syntactic contexts where they
are specifically designed for. In particular, these keywords cannot be used as
the names of any items, variables and function parameters, fields and variants,
type parameters, lifetime parameters or loop labels, macros or attributes,
macro placeholders, and crates.

as       async     await     break
const    continue  crate     dyn
else     enum      extern    false
fn       for       if        impl
in       let       loop      match
mod      move      mut       pub
ref      return    self      Self
static   struct    super     trait
true     type      unsafe    use
where    while

As to what these keywords mean, we will explain them as they appear in the
relevant contexts throughout the book.

Weak Keywords

These keywords have special meaning only in certain contexts, and they can
be, for example, used as variable or function names.

'static  union     macro_rules
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Reserved Keywords

These identifiers are not currently used as keywords, but they are reserved for
possible future use. Reserved keywords have the same restrictions as strict
keywords.

abstract become    box       do
final    macro     override  priv
try      typeof    unsized   virtual
yield

2.8. Lifetimes and Loop Labels
A lifetime token comprises a single quote/apostrophe character (') followed by
any valid identifier or keyword. '_ is also a valid lifetime token. The lexer accepts
lifetime tokens as valid tokens, and hence they can be used, for example, in
macros. Lifetime tokens that comprise non-keyword identifiers after the ' prefix
can be used as lifetime parameters and loop labels. For example,

fn fst<'a>(x: &'a str, _y: &'a str) -> &'a str {
  x
}

Loop labels are used with break and continue expressions.

fn label_demo() {
  'label: for i in 0..10 {
    if i > 5 { break 'label }
  }
}

2.8. Lifetimes and Loop Labels
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2.9. Literals
Literals are special kinds of tokens that represent constant expressions of certain
builtin types. Furthermore, literals postfixed with (non-raw) identifier suffixes are
also considered lexically valid literal tokens in Rust (although they may or may not
correspond to syntactically valid literals, e.g., representing constant expressions).
The literal tokens with suffixes that are not valid literal expressions in Rust are
typically used for macro processing. The macro implementations can decide what
to do with those tokens.

Rust itself only considers the following as valid literals. In the interest of space, we
only briefly describe them here. Other references can be consulted for more
detailed lexical and syntactic rules. If you are familiar with any C-style languages,
they all have rather similar literal syntax, including Rust.

2.9.1. Boolean literals

The literal tokens, true and false, represent the two values of the bool type, the
logical true and false, respectively.

2.9.2. Number literals

A number literal can be either integer literal or floating-point literal. Rust includes
12 primitive types, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, and
isize for integers, and 2 types, f32 and f64, for floating-point numbers.

2.9.3. Integer literals

Rust supports the four integer literal forms that are commonly found in most
other programming languages, namely, decimal literals, hexadecimal literals, octal
literals, and binary literals, with essentially the same lexical rules. The type of an
integer literal can be inferred through Rust’s type inference rules. Alternatively,
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the type of a literal can be explicitly set using one of the integer literal suffixes, u8,
i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, or isize, corresponding to
one of the integral types. For example,

use std::any::{Any, TypeId};
fn integers() {
  let a: u64 = 0;                        ①
  assert_eq!(TypeId::of::<u64>(), a.type_id());
  let b = 0x42;                          ②
  assert_eq!(TypeId::of::<i32>(), b.type_id());
  let c = 0o7000i16;                     ③
  assert_eq!(TypeId::of::<i16>(), c.type_id());
  let d = 0b1010_0000_u8;                ④
  assert_eq!(TypeId::of::<u8>(), d.type_id());
}

① The integer literal 0 is assigned to a u64 variable.

② The type of an integer literal is i32 by default. 0x42 is a hex literal.

③ 0o7000i16 is an octal literal with the i16 suffix. Hence, its type is i16. Note
that if the number is too big to fit into the specified type, it is a static type
error.

④ 0b1010_0000_u8 is a binary literal of the u8 type. All number literals, both
integer and floating point literals, allow _ as a visual separator. They do not
affect the value of the literal.

2.9.4. Tuple index

A certain subset of integer literals can be used as a tuple index, which refers to a
field of tuples, tuple structs, or tuple variants. In particular, decimal literals
without the literal suffix that is equal to, or bigger than, 0 are lexically valid tuple
indices. For example,
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fn tuple_indices() {
  let crabby = ("crab", "lobster");      ①
  let crab = crabby.0;                   ②
  let lobster = crabby.1;                ③
  println!("Crab is {crab}.");           ④
  println!("Lobster is {lobster}.");
}

① Tuple types are described later.

② Syntactically, tuple indices start with 0 and they increment by 1.

③ For example, crabby.1 refer to the second element of the tuple, crabby.

④ This will output Crab is crab.

2.9.5. Floating-point literals

Rust’s floating-point literals are again more or less the same as those found in
other similar languages, except that, in Rust, the type-specifying literal suffix,
either f32 or f64, can be used with a floating point literal. For example,

use std::any::{Any, TypeId};
fn floats() {
  let a: f32 = 10.;                      ①
  let b = 100.;                          ②
  println!("a + b = {}", a + b);
  assert_eq!(TypeId::of::<f32>(), b.type_id());
  let c = 3.14159265358979;              ③
  assert_eq!(TypeId::of::<f64>(), c.type_id());
  let d = 3E+15f32;                      ④
  assert_eq!(TypeId::of::<f32>(), d.type_id());
  let e = 1_0__0___0____f32;             ⑤
  assert_eq!(TypeId::of::<f32>(), e.type_id());

2.9. Literals

32



}

① A floating-number literal without a literal suffix needs to include a period (.)
or the exponent symbol e or E. The float literal 10.0 is assigned to the variable
a of the f32 type in this example.

② The type of b is inferred to be f32 because of the addition in the next line. In
Rust, only the values of the same type can be added, and hence b has to be f32.

③ In the under-constrained context, the type of a float literal is f64 by default.

④ A floating-point literal with an exponent. It has the literal suffix f32 and hence
its type is f32.

⑤ Like the integer literals, float literals can include _ as visual separators. The
type of e is f32, and its value is 1000.0. Note that this literal does not require a
period or e/E since its type is explicitly specified using the literal suffix.

2.9.6. Character literals

A character literal is a single Unicode character, e.g., encoded in UTF-8 in the
source, which is enclosed in a pair of single quotes ('). The single quote itself
needs to be escaped as '. Rust also supports C-style escape sequence syntax for a
few well-defined set of characters such as the newline, e.g., '\n', and tab
characters, e.g., '\t'.

2.9.7. String literals

A string literal is a sequence of characters enclosed in a pair of double quotes (").
The double quote character needs to be escaped as \". String literals can include
escape characters.

In Rust, line breaks, e.g., \n and \r\n, can be included in a string literal without
escaping, and they become part of the string value. To escape a line break, one can
put a backslash (\), again without escaping, just before the line break. In such a
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case, all leading white spaces in the next line, if any, are also ignored along with
the backslash and line break characters. For example,

fn strings() {
  let emily = "I heard a fly buzz -
    When I died.";                       ①
  println!("{emily}");
  let william1 = "My heart leaps up";    ②
  let william2 = "My heart \
                    leaps up";           ③
  println!("{william1} (vs) {william2}");
}

① Rust’s string literals are naturally "multiline strings". Note the four leading
spaces in the second line. Those are part of this string literal.

② This string literal …

③ … and this string literal are equivalent. Note that, although you cannot see
(and hence some people prefer not to use this kind of syntax), there is no
trailing white spaces, other than the newline, after the backslash character.

2.9.8. Raw string literals

Unlike the (normal) string literals, raw string literals do not process escape
characters. They start with a character sequence, the prefix r, any number of
hashes #, and a double quote ", and it ends with a character sequence comprising
a double quote and the same number of hashes.

Raw string literals can include special characters such as \ without escaping. For
example, " and \\ are considered both two-character sequences, \ followed by "
and \ followed by another \, respectively. The only limitation is that a raw string
literal cannot include its closing character sequence, for the obvious reason.
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For example,

fn raw_strings() {
  let raw1 = r"Rust is your oyster.";    ①
  let raw2 = r#"I love "oyster"."#;      ②
  let raw3 = r##"Oyster is #1 \
  the most loved food by the crabs."##;  ③
  println!("{raw1}\n{raw2}\n{raw3}");
}

① This raw string literal starts with r" and ends with ".

② This literal starts with r#" and ends with "#.

③ This literal starts with r##" and it ends with "##, and hence it cannot include
the same character sequence "##. Note that the backslash and newline on the
first line and the two leading spaces on the second line are part of the string.

2.9.9. Byte literals

A character in the ASCII range can be used to represent the corresponding byte.
This is called the byte literal, and it is lexically similar to the character literals,
except that it uses the prefix b. The single quote character needs to be escaped as
b'\''. For example, b'a' is a byte literal corresponding to 97. (The ASCII code of
'a' is a decimal number 97.) As a matter of fact, a byte in Rust is equivalent to an
unsigned 8-bit integer number (u8).

fn byte_literal() {
  let b1 = b'A';                         ①
  let b2 = 65;                           ②
  assert_eq!(b1, b2);                    ③
}

2.9. Literals
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① The type of b1 is u8, the unsigned 8-bit integer type.

② The type of b2 is inferred to be u8, because of the statement in the next line.
Rust’s type inference uses contextual information, and, for example, not just
the declaration statement.

③ Both b1 and b2 have the same type, u8, and they have the same value, 65u8.
And, hence this assertion will succeed.

2.9.10. Byte string literals

Just like a string literal represents a sequence of characters, a byte string literal
represents a sequence of bytes. The byte string literal is lexically similar to string
literals, but it starts with the prefix b, and it can only contain bytes, or ASCII
characters. The type of a byte string literal of length n is &'static [u8; n].

For example,

fn byte_strings() {
    let s1 = b"Hello' \"World\"!";       ①
    let s2 = &[                          ②
        b'H', b'e', b'l', b'l', b'o', b'\'', b' ',
        b'"', b'W', b'o', b'r', b'l', b'd', b'"', b'!',
    ];
    assert_eq!(*s1, *s2);                ③
}

① A byte string literal, consisting of 15 bytes.

② A shared reference (&) to an array, consisting of 15 byte elements. Note the
escape byte syntax.

③ This assertion will succeed since these two values have exactly the same type
and the same value. In fact, assert_eq!(s1, s2) will also succeed.

2.9. Literals
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2.9.11. Raw byte string literals

A raw byte string literal is again lexically similar to a raw string literal, except that

• It starts with the prefix b, followed by the raw string prefix r, and

• It can only include ASCII-range characters, which represent bytes (or, u8).

Hence, raw byte string literals start with the prefix br, any number of hashes #,
and a double quote ", and they end with a double quote and the same number of
hashes. The type of a raw byte string literal of length n is also &'static [u8; n].
For example,

fn raw_byte_strings() {
  let crab1 = br"You cannot teach a crab
  to walk straight";
  let crab2 = br##"~`!@#$%^&*(){}[]<>\|\ ①
;:'"#,.\n\t\'\"\\?/\"##;                 ②
  let len1 = crab1.len();
  let len2 = crab2.len();
  println!("Crab1 ({len1}): {crab1:?}"); ③
  println!("Crab2 ({len2}): {crab2:?}"); ④
}

① This literal starts with br##" and ends with "##.

② Note that \n, for example, is counted as two bytes in the raw byte string
literals, that is, \ followed by n. It is not an escape sequence, e.g., a newline.

③ This println! macro statement will print, Crab1 (42): [89, 111, ..., 116]. For
reference, "You cannot teach a crab to walk straight".len() is 40.

④ Likewise, this will print, Crab2 (42): [126, 96, ..., 92]. In both crab1 and crab2,
the (invisible) newline characters at the end of their first lines are part of the
raw byte string literals.

2.9. Literals
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Chapter 3. Using Attributes
Rust uses attributes to affect various core aspects of the language as well as the
build processes, including compilation and diagnostics, etc. This is a common
pattern used in many different programming languages, and most people reading
this book should be familiar with them. For example, Rust’s attribute system is
originally based on that of C#. Other languages like Java, Python, and TypeScript
also support similar constructs. Rust’s attributes can be classified into the
following four categories:

• Builtin attributes,

• Macro attributes,

• Derive macro attributes, and

• Tool attributes.

We will go over some of the builtin attributes of Rust in the special sections named
"Builtin Attributes" throughout this book. You can skip them if you are only
interested in reviewing the language grammar. In general, an attribute adds a
certain type of free-form metadata to the program, or more specifically, to a
particular item or crate targeted by the attribute, and it affects the generation of
the build output in some way. Syntactically, attributes are enclosed in square
brackets ([]), and there are two kinds of attributes:

Inner attributes

An inner attribute is written with a hash followed by a bang (#!). They apply to
the item that encloses the attribute. Note that an attribute applied to a whole
crate can only use the inner attribute syntax, e.g., #![crate_attribute].

Outer attributes

An outer attribute is starts with a hash (#), without the bang. They apply to the
thing that follows the attribute. For example, #[item_attribute] ITEM.
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Here are some examples:

#![crate_type = "lib"]                   ①

① The attribute crate_type is used to set the create type, bin vs lib. This inner
attribute applies to the entire crate.

#![allow(unused_variables)]              ①

① A module-level attribute, to suppress the unused_variables lint warning.

fn some_function() {
  #![allow(non_camel_case_types)]        ①
  let _crab_case = ();
  let _lobster_case = ();
}

① Another lint attribute applied to the whole function.

#[test]                                  ①
fn test_cancer() { /* ... */ }

① It indicates that the attributed function is a unit test.

#[cfg(target_os = "linux")]              ①
mod driver { /* ... */ }

① A conditionally-compiled module. We do not cover the cfg attribute in this
book, but it will be worthwhile to look it up if you are just starting with Rust
programming.
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Chapter 4. Using Macros
Macros provide a way to extend the functionality and syntax of Rust. They are
defined and invoked through consistent and type-safe syntax. There are two ways
to define new macros:

• Declarative macros: Simple macros can be created in a declarative way, e.g.,
using the macro_rules! macro.

• Procedural Macros: One can define a function that takes an input token
stream and outputs a transformed token stream to create function-like
macros, custom derives, and custom attributes.

When a macro is invoked, with a sequence of input tokens, it is expanded and
ultimately replaced with its result, e.g., in the abstract syntax tree. This happens at
compile time. Macros may be invoked in the following situations:

• Patterns,

• Types,

• Expressions and statements,

• Items and associated items, and

• macro_rules! transcribers.

Macros are rather commonly used in Rust programming, for various reasons. For
example, Rust does not support vararg functions, and we can define and use a
function-like macro that takes an arbitrary number of "arguments". Macros are
often used to reduce boilerplate code. They are also used to affect various aspects
of Rust programs and even the build process. And so on and on.

We will not discuss macros any further in this book, e.g., as to how to create your
own macros, etc. Instead, we will just list a few commonly used macros in this
chapter for the readers who have had a limited exposure to Rust.
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4.1. The format! Macro
The format! macro creates a String based on a provided format string, e.g., in
the form of a string literal, and other runtime expressions. It essentially does a
string interpolation. The format string uses the {} token as placeholders. There
are three different forms.

fn format_macro_demo() {
  let s1 = format!("{} {} {}", 1, 2, 3); ①
  println!("{}", s1);
  let s2 = format!("{0} {0}", 10);       ②
  println!("{0}", s2);
  let s3 = format!("{a}", a = 666);      ③
  println!("{s3}");
}

① Each of the {} tokens in a format string is matched to each of the parameters
following the format string, e.g., one by one, in sequence.

② The indices included in the {index} refer to the following parameters, e.g.,
from left to right.

③ Named arguments can also be used. For instance, in this example, a inside {a}
refers to the variable defined in the parameter list. The order is not important.

4.2. The print! and println! Macros
The print macros use the same convention as the format! macro. They take a
format string as a first argument and create an interpolated string using the
trailing arguments. Instead of returning the result string, print! and println!
prints out the result to the standard out. The println! macro additionally
appends a newline at the end.

4.1. The format! Macro
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4.3. The eprint! and eprintln! Macros
The eprint macros work the same way as print macros. But, instead of
outputting the result to the standard out, they print the output to the standard err.
Similar to println!, the eprintln! macro adds a trailing newline.

4.4. The write! and writeln! Macros
The write! and writeln! macros are likewise similar to print! and println!
macros, respectively. But, they take an output stream as their first argument, and
emit the formatted string to that stream.

A simple illustration:

use std::io::Write;
fn write_macro_demo() -> Result<(), Error> {
  let mut buf = Vec::new();
  write!(&mut buf, "Hello {} times!", 42)?;
  // ...                                 ①
  let text = String::from_utf8_lossy(&buf);
  println!("{text}");
  Ok(())
}

① Now that we have a Vec<u8>, we can do something with it.

4.5. The panic! Macro
The panic! macro unconditionally causes a runtime panic, which immediately
terminates the current thread. If the main thread panics, then it will terminate all
other threads and end the program.

4.3. The eprint! and eprintln! Macros
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One can provide a string argument in the panic! macro, which is provided to the
caller. For example,

fn panic_macro_demo_1() {
  panic!();                              ①
}
fn panic_macro_demo_2() {
  panic!("Long time no see!");           ②
}
fn panic_macro_demo_3() {
  panic!(
    "Well, it's been {} years.", 1000    ③
  );
}

① The trailing pair of parentheses is required when invoking function-like
macros even if there are no arguments to pass.

② The panic! macro can take a string argument.

③ In fact, it can also use string formatting using the format macro-like syntax.

If we run the following main program, for example, it will panic.

main.rs

fn main() {
  panic_macro_demo_2();
}

$ cargo run -q
thread 'main' panicked at 'Long time no see!', src/main.rs:6:3

4.5. The panic! Macro
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4.6. The assert!, assert_eq!, and
assert_ne! Macros
The assert macros are used to invoke the panic! macro when certain conditions
are, or they are not, met at run time.

The assert! macro

The assert! macro takes a boolean expression, and it asserts that its value is
true. That is, if the expression evaluates to false at run time, it will panic.

The assert_eq! macro

This macro takes two expressions, and it asserts that they are equal to each other
(using PartialEq). On panic, it will print the values of the expressions.

The assert_ne! macro

It asserts that the given two expressions are not equal to each other.

All three assert macros take an optional string expression as the last argument,
which will be used as a custom panic message. They can also be used with format
strings, e.g., with any trailing arguments. For example,

fn assert_macros() {
  assert!(true == true, "True must be true");
  let t = 333;
  assert_eq!(333, t, "How can 333 be not {t}?");
  assert_ne!("hello", "world", "Is hello world?");
}

4.6. The assert!, assert_eq!, and assert_ne! Macros
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4.7. The dbg! Macro
The dbg! macro evaluates a given expression, it prints the value to standard
error, and it returns the value. This macro is mainly used for quick and dirty
debugging during development. For example,

fn dbg_macro_demo() {
  let a = 963;
  let x = dbg!(a + 36);                  ①
  assert_eq!(x, 999);
  let b = String::from("Rust");
  let y = dbg!(&b);                      ②
  println!("{y}");
}

① This dbg! macro invocation will print something like this to standard error
(stderr), [src/main.rs:6] a + 36 = 999.

② The dbg! macro can take ownership of the given expression, and hence it is
often better to invoke it with a borrowed reference (&), e.g., not to affect the
normal flow of the program.

4.8. The todo! Macro
The todo! macro is commonly used as a placeholder. It indicates unfinished code.
This macro is especially useful in the early stage of development when you just
need to make your code compile, etc. Note that it will always panic at run time.

fn todo_macro_demo(x: i32, y: f32) -> Option<bool> {
  todo!("to do or not to do?");          ①
}

4.7. The dbg! Macro
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① Note that, although the function is supposed to return a value of
Option<bool>, this code still compiles. The todo! macro does the magic.

4.9. The unimplemented! Macro
The unimplemented! macro is generally used to indicate a code that is not
implemented, e.g., because you are just prototyping, or because you don’t plan to
provide actual implementations for things that are otherwise required
syntactically. For example, they are commonly used when you are implementing
only a subset of the required methods of a trait. This macro, when invoked, panics
with a message, not implemented.

The difference between unimplemented! and todo! is that they indicate
different intentions. The todo! macro clearly indicates that the code is to be
implemented, whereas unimplemented! does not make such a claim.
Furthermore, IDEs may use todo entries for various purposes.

4.10. The vec! Macro
This is also one of the most commonly used macros. To create and initialize an
instance of the Vec type, we will generally have to go through multiple steps. The
vec! macro allows a Vec to be defined more easily. For example,

fn vec_macro_demo() {
  let _v = vec![1, 2, 3];                ①
  let _v = vec![10; 3];                  ②
}

① It creates a Vec with the specified elements.

② It creates a Vec from a given element (e.g., 10) and size (e.g., 3).

4.9. The unimplemented! Macro
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Chapter 5. Rust Programs
A Rust program is generally written in one or more source files, and they are
compiled into either a binary crate or a library crate. We will go through the high-
level structures of Rust programs in this chapter, both physical and logical.

5.1. Source Files
Rust source code files have the extension .rs. A Rust source code is lexically a
sequence of character-based tokens, as we briefly discuss in the previous chapter,
Lexical Analysis. Syntactically, a Rust source file comprises a sequence of item
definitions such as modules and what not. It may include optional inner attributes
in the beginning.

A source file that is the starting point of compilation, e.g., through rustc myprog.rs,
corresponds to a crate module (of that build output), which can contain other
dependent module definitions, and other items, either in the same or other source
files. In general, the module of a source file, and its name and its location in the
module tree, may be defined by its referencing (or, "parent") source file.

5.2. Crates
Crates are the basic units of Rust programs. A crate, as a whole, is used for
building, distributing, and runtime loading. The Rust compiler takes, as an input, a
single Rust source file of a source crate (and, indirectly other files in the crate),
and it produces an executable or a library crate as an output. A crate contains one
or more modules, organized in a tree-like hierarchy. The top level module is
anonymous, and all other modules have canonical module paths within the tree.
(If you are new to Rust programming, it can take a little while to get used to this
dual structure of the crate’s physical (files) and logical (modules) hierarchies. We
will go through the modules in some more detail later in this chapter.)

5.1. Source Files

47



Builtin Attributes

The crate_name Attribute
The Rust compiler rustc, by default, uses the (top-level) source file name as
the crate name. But, it can be overridden by the command line flag --crate
-name. Or, if you use cargo, you can set the crate name using the name field
in the [package] section. Note, however, that these options are not part of
the language specification per se. We mostly focus on the Rust language in
this book (although there are some exceptions).

As indicated, Rust’s compilation process starts by taking a single target
source file, which corresponds to a crate, and which may end up loading
other source files as dependent modules. We can include the crate_name
attribute, at the top of this top-level source file (e.g., as an inner attribute), to
set the target crate’s name. For example,

my-fantastic-rust-program.rs

#![crate_name = "my_fantastic_crate"]    ①

// Other items in the source file here...

① The dashes, -, seem to be more commonly used in file names (on certain
platforms) and package names on crates.io, , e.g., as word separators.
But, dashes are not valid characters in identifiers (e.g., the crate or
module names). If you specify a dash-separated name in Cargo.toml,
then Cargo seems to automatically, and implicitly, "normalize" it, if you
will, to the corresponding name with underscores. Hence, in this
particular context, dashes and underscores are mostly interchangeable.
For example, if we publish this crate with a package name, my-fantastic-
crate, to crates.io, other developers can use it with the crate name

5.2. Crates
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my_fantastic_crate. This is cargo-specific, and as far as we know, it is not
a part of the language specification. Some Rust developers simply do
away with dashes, e.g., to avoid any potential complications.

As stated, although this kind of information can be rather important in
practice when you develop Rust programs, it is beyond the scope of this
reference, which covers the core language features, and, in fact, only a
subset. The readers are encouraged to consult other resources for more
practical information that is not covered in this book.

5.3. Items
A source crate contains what is called the items in Rust, which are processed at
compile time. All items belong to modules, which themselves are also items. As
stated, modules in a crate are organized in a tree-like structure, starting from the
single top-level anonymous module corresponding to the crate. All other items
within the crate have paths within the module tree.

The following are items:

• Modules,

• use declarations,

• Function definitions,

• Trait definitions,

• Type aliases,

• The struct definitions,

• The union definitions,

• The enum definitions,

5.3. Items
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• Implementations (impl's),

• Constant items,

• Static items,

• extern crate declarations, and

• extern blocks.

We will briefly go through some of these items, in this and the next few chapters,
including the Items chapter. Some of the more important items, along with other
essential language constructs like statements and expressions, are explained in
more detail, and referenced, throughout this book.

5.4. Modules
A module is a container for items, including other modules. Modules can nest. As
indicated, a crate defines, or corresponds to, an implicit anonymous module,
which may be called the crate module, or top-level module, etc. All items in a crate
implicitly belong to this crate module. For example,

hello.rs

pub const A: &str = "A";                 ①

① The item A belongs to the crate module.

Otherwise, new named module items can be introduced into the tree of modules
of the given crate using module declarations. More specifically, a module can be
defined using the mod keyword in the following two different ways:

• A module with a body, e.g., in the same referencing file, or

• A module with its body in a separate file.

5.4. Modules
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5.4.1. A module with a body

In the first syntactic form,

mod MOD-NAME {
  ITEMS
}

A module is declared with a name, denoted by MOD-NAME in this notation, followed
by a pair of curly braces, which forms a body block. Inside this block, zero or
more other items, denoted by ITEMS here, can be included.



Note that all-caps names are placeholders in this (rather
informal) notation, as they are used throughout this book. That
is, proper syntactic elements, e.g., identifiers or statements, etc.,
need to be substituted for these placeholders to create
syntactically valid Rust code. The readers are encouraged to look
up more precise grammar, e.g., written in EBNF, if necessary.

For example, in a file named hello.rs,

hello.rs

mod my_mod {
  pub const A: &str = "I'm an A";
}

This declaration introduces a new module, with a name my_mod, as a child of the
current module (that corresponds to the hello.rs source file, which may or may not
be the top-level file for a crate). This module includes one item, e.g., a public
constant, in this example.

5.4. Modules
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The declaring, or parent, module can refer to the items in this inline module using
the (relative) path syntax, as we describe in the next chapter. Using the same
example module, my_mod, in the hello.rs file, for instance,

hello.rs

mod my_mod {
  pub const A: &str = "I'm an A";
}

fn print_a() {
  println!("{}", my_mod::A);             ①
}

① When the print_a function is called, this statement will print I’m an A. The
keyword fn is used to declare a new function item in Rust. The commonly used
macro function println, and how it works, is explained a bit later in the book,
if you are totally new to Rust.

Note that modules and types share the same namespace in Rust, but it becomes
rarely an issue. By convention, we use the snake case names for modules and
functions and the upper camel case (or, pascal case) for types and variants, which
help avoid name conflicts.

5.4.2. A module in a file

In the alternative syntax, a named module can be declared without a body.

mod MOD-NAME;

A module without a body, or its content, is loaded from an external file. Where
exactly that file is located depends on various factors.

5.4. Modules
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First, the path attribute can be used for loading nested external file modules, e.g.,
by specifying the file path. The file path is generally relative to the directory
where the declaring source file is located. But, more commonly, in the vast
majority of cases, we simply use a set of conventions, integrated into Cargo. We
will use the newer convention, which is the recommended way moving forward.

At the top-level, as stated, the name of the crate module is essentially the same as
the crate name. When a module declares another (child) module, the child module
name is used as the base of the external module file. For example,

world.rs

mod my_mod_b;

The (parent) module in the world.rs file declares a module named my_mod_b in
this example. Then, by default, the body of this module is found in a file named
my_mod_b.rs in the same directory as world.rs. For instance,

my_mod_b.rs

pub const B: &str = "I'm a Bee";

Then, the items in this module can be referred to in the same way as before, e.g.,
using the path syntax. In fact, the two module declaration forms, with and without
a body, are semantically equivalent. Here’s an updated world.rs file,

world.rs

mod my_mod_b;                            ①
fn print_b() {
  println!("{}", my_mod_b::B);           ②
}

5.4. Modules
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① The nested module declaration, without a body, as before.

② An example usage. When print_b is called, this will print I’m a Bee.

One thing to note is that, due to the way how the older convention works (which
we do not describe in this book), one cannot have two files named ./abc.rs and
./abc/mod.rs at the same time. For instance, we cannot have ./my_mod_b/mod.rs
in this particular example since we already have ./my_mod_b.rs.



If you are new to Rust, and especially if you are coming from
other programming languages, this can be somewhat confusing.
The Rust module system works rather differently than in most
other languages. Note, for instance, that the my_mod_b.rs file
does not declare the my_mod_b module. It is declared in its
parent module, e.g., world.rs in this example. The my_mod_b.rs
file includes the body of the my_mod_b module (which can,
incidentally, include its own child module declarations, etc.).

Builtin Attributes

The path Attribute
The path attribute affects the directories and files used for loading external
file modules. In the newer convention, the file path is always relative to the
directory which the source file is in. For example,

src/a/seafood.rs

#[path = "delicious-crab.rs"]            ①
mod crab;                                ②

5.4. Modules
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① The path attribute is, or is used as, an outer attribute, which affects the
item following the attribute, e.g., the crab module in this example.

② The body of the nested module crab is included in the src/a/delicious-
crab.rs file. The path of this module is crate::a::seafood::crab.

As another example,

src/a.rs

mod seafood {                            ①
  #[path = "delicious-crab.rs"]          ②
  mod crab;                              ③
}

① A module declaration with its body in the declaring file. The module
corresponding to the a.rs file may be referred to as crate::a. Then this
seafood module has a full path, crate::a::seafood.

② This attribute indicates that the body of the nested external file module
crab is included in the src/a/seafood/delicious-crab.rs file.

③ The full path of the crab module is crate::a::seafood::crab. The
path is further discussed in the next chapter.

5.5. The main Function
A Rust binary crate should (normally) contain a main function, which is the entry
point to the program. main should have one of the following two signatures:

fn main() -> ();                         ①

5.5. The main Function
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① () refers to the unit type. That is, it indicates that the function returns (->)
nothing. This signature is equivalent to fn main().

The main function can also have the following signature:

fn main() -> Result<(), E: Error>;       ①

① The Result type is described later in the book.

Alternatively, one can return the program exit code directly to the caller (e.g., the
operating system) by calling the std::process::exit(code: i32) function, etc.
Some examples are given at the end of the book. But, it should be noted, in
general, that Rust is a constantly evolving language, and the content provided in
this book may not be completely up-to-date or even entirely accurate. For
example, we describe one additional way of declaring main, which was stabilized
in Rust 1.62, at the end of the book, in the error handling chapter.

Builtin Attributes

The no_main Attribute
In a special circumstance, e.g., when main is defined in some other object
being linked to, one can use the no_main attribute to disable emitting the
main symbol for an executable binary output. This attribute can be applied
at the crate level. For example,

my-main-program.rs

#![no_main]
// The rest of the code without the main function ...

5.5. The main Function
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Chapter 6. Names and Paths
A Rust program comprises various entities that can be referred to in the source
code, e.g., using their names, or paths. Entities include types, items, lifetimes,
variables, fields, and attributes, etc. Various declaration statements introduce new
names for entities. Entity names are valid within a lexically defined scope. Some
names are implicitly declared in the language, and they can be referred to
throughout the lifetime of the program. In Rust, names are segregated into a few
different namespaces, based on their entity kinds, and the same names belonging
to different namespaces do not cause name conflict.

6.1. Paths
Paths are used to refer to certain items or local variables. Syntactically, a path is a
sequence of one or more optional path qualifiers followed by one or more (non-
qualifier) path segments, separated by namespace qualifiers (::). Path qualifiers
include crate, $crate, super, self, and in some cases, Self. Path segments
must be lexically valid identifiers.

6.1.1. Simple paths

A simple path can optionally start with one of crate, $crate, super, or self (a
path qualifier), and comprises one or more identifiers (simple path segments),
separated by ::. Simple paths are used in

• use declarations,

• Attributes,

• Macros, and

• Visibility specifiers.

6.1. Paths
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For example,

use serde_derive::*;                     ①
use std::fmt::{Display, Formatter, Result};

#[derive(Serialize)]                     ②
#[serde(rename_all = "PascalCase")]
struct Car {
  num_wheels: u8,
  is_electric: bool,
}

① use directives. The curly brace {} syntax is explained later.

② Attributes.

6.1.2. Paths in expressions

Paths in expressions and patterns can optionally include generic arguments, e.g.,
as a path segment, ::<T>. This is commonly known as "turbofish" syntax.

For instance,

#[derive(Debug)]
struct Gene<'a, T: Copy> {               ①
  dna: &'a [T],
}

impl<'a, T: Copy> Gene<'a, T> {          ②
  fn first(gene: &Self) -> Option<T> {
    if let &[f, ..] = gene.dna {         ③
      Some(f)
    } else {
      None

6.1. Paths
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    }
  }
}

fn turbofish_demo<'a>() {
  let g = Gene::<'a, u8> {               ④
    dna: &[1, 2, 3]
  };
  println!("{g:?}");

  let f = Gene::<'a, u8>::first(&g);     ⑤
  println!("First element: {f:?}");
}

① The struct types, and generics, are explained in the Struct and Generics
chapters, respectively.

② The implementations are also explained later in the Implementations chapter.

③ Likewise, refer to the later part of the book, e.g., on pattern matching and the
if let expressions. If you are completely new to Rust, you do not have to
understand all sample code at this point. All essential elements are clearly
described throughout the book.

④ This is known as the struct literal, or the struct expression, and it constructs a
new instance of a struct, e.g., Gene in this example. Gene is a generic type, and
we use the turbofish syntax here to explicitly specify its generic arguments.
Normally, Rust can infer generic arguments. Note that, unlike in many similar
languages that support generics, Rust generally requires the leading :: before
the generic arguments. (See the next section, however.)

⑤ Another turbofish example. Just like the generic parameter declarations,
generic arguments in expressions need to be specified in the order of lifetime,
type, and const generic arguments.
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6.1.3. Paths in types

Unlike the paths in general expressions, when type paths are used within type
definitions, trait bounds, type parameter bounds, and other qualified paths, the
leading :: token can be omitted. For instance,

mod genetics {
  pub struct Gene<'a, T: Copy> {
    pub dna: &'a [T],
  }
  // etc...
}

fn splice(gene: genetics::Gene<u8>) {    ①
  // Do something with the gene...
}

① In the type context, as in this example, Gene<u8> is the same as Gene::<u8>.

Note that, in the expression and type context, the leading qualifier Self can also
be used in paths, e.g., in addition to what is permitted in the simple paths.

6.2. Path Qualifiers
Paths can be denoted with a few different qualifiers, which affect their semantics.

6.2.1. Token ::

Paths starting with :: must be followed by the name of a crate in the extern
prelude, and they are considered, and resolved, to be paths originating from that
crate. Other identifiers in the path must resolve to items in that extern crate.

6.2. Path Qualifiers
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6.2.2. crate

The crate qualifier path segment resolves the path relative to the current crate.

6.2.3. $crate

The special qualifier, $crate, can only be used within macro transcribers, and it
refers to a path to access the item from the top level of the crate where the macro
is defined.

6.2.4. self

The path with the qualifier self, with a lowercase s, is resolved relative to the
current module. Note that the identifier self is also used in the method context,
as we describe later in the book.

6.2.5. Self

Self refers to the implementing type within traits and implementations. You can
find some example uses of Self, and other path qualifiers, throughout this book.

6.2.6. super

The super qualifiers in a path resolve to their parent modules. Unlike other
leading path qualifiers, they can be used after self::, and they can also be
repeated, e.g., as in super::super::super::xyz.

For example,

fn crab() {
  println!("Just crab!");
}

6.2. Path Qualifiers
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mod sea {
  fn crab() {
    println!("Sea crab!");
  }
  pub mod world {                        ①
    pub fn crab() {
      super::super::crab();              ②
      self::super::crab();               ③
    }
  }
}

① The pub visibility marker is discussed next.

② If we call sea::world::crab(), this statement will print out Just crab!.

③ This will print out Sea crab!. In the current context, self::super::xyz, for
instance, is the same as super::xyz.

6.3. Visibility
Items in Rust can be either public or private. Public items are accessible to the
outside world, so to speak. Otherwise, private items are only accessible from the
same module. Associated items in a pub trait are public by default. Likewise,
enum variants in a pub enum are also public, and their visibility cannot be
separately specified.

6.3.1. Scope-based visibility

In a publicly visible item, additional items can be made public using a few
different scope-specific visibility markers, e.g., in addition to the plain pub. Note
that, to be able to access an item, all of its parent items up to the given scope must
all be visible as well.

6.3. Visibility
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pub(crate) This makes an item visible within the current crate.

pub(super) This makes an item visible to the parent module.

pub(self) This makes an item visible to the current module, which
holds true by default, without this visibility marker.

pub(in PATH) This makes an item visible within the provided path, PATH.
The PATH cannot be arbitrary, and it must refer to an
ancestor module of the given item.

6.4. The use Declarations
The use declarations create local name bindings based on some other paths. They
can be used in modules and blocks, and they are usually placed at the top. Note
that, unlike in some other common programming languages, the use directives
are not used to "import" external items. In Rust, use is mainly used to shorten the
name, or path, required to refer to an external item. That is, in general, use is not
always required. A use declaration starts with the keyword use, and it is followed
by some form of path specifications. We will not include the exact syntax, but here
are some examples:

use a::b::c;                             ①

① a::b::c can now be referred to as c.

use a::{b, c::d};                        ①

① This declaration is essentially the same as two declarations, use a::b; and
use a::c::d;. And hence, a::b and a::c::d can now be referred to as b and
d, respectively.

6.4. The use Declarations
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use a::b::{self, c};                     ①

① a::b and a::b::c can now be referred to as b and c, respectively.

use a::{self as x, c as y};              ①

① a and a::c can now be referred to as x and y, respectively. The as aliasing is
commonly used to avoid name conflicts.

use a::*;                                ①

① Wildcard use syntax. For example, a::x, a::y, and a::z::w, assuming that
they are valid paths, can now be referred to as x, y, and z::w, respectively.

6.4.1. pub use

The use declaration items are normally private to the containing module, like all
other items. One can use the pub use syntax to make certain items public in the
specified paths. The pub use declaration is syntactically the public version of the
use declaration, but it provides the "export", or "re-export", mechanism from Rust
modules, e.g., in addition to providing shorter names or aliases for longer paths.
For example,

house.rs

mod dealer {
  pub use self::deck::deal_one;          ①
  mod deck {                             ②
    pub fn deal_one() -> i32 { 42 }      ③
  }
}

6.4. The use Declarations
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pub fn pub_use_demo() {
  // let uno = dealer::deck::deal_one(); ④
  let one = dealer::deal_one();          ⑤
  println!("dealt = {one}");
}

① "Re-exporting" the function item, deal_one.

② Note that the module, dealer::deck, is not visible from outside the dealer
module.

③ On the other hand, the "re-exported" items still need to be visible. That is, you
cannot make a private item public by declaring it in pub use.

④ The deal_one item cannot be accessed using the normal path since the item in
the path, e.g., the deck module in this example, is not visible.

⑤ However, this "shortcut" works because of the pub use declaration.

6.4.2. The underscore alias

The use declaration can be used without binding names, e.g., by aliasing the path
to an underscore (_). E.g.,

use self::me_mod::second::ThirdTraitor as _;

There are a few use cases. For example,

• To link an external crate without using any of its names,

• To "hide" a name from an otherwise imported set of names, and

• To import a trait, without importing its name, so that its methods can still be
used.

6.4. The use Declarations
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6.5. Preludes
In general, the term "prelude" is often used in programming to refer to a
collection of names that are automatically brought into scope in a program. Rust’s
standard library prelude includes names that are automatically imported, that is,
unless the no_std attribute is used. These names are defined in, and/or re-
exported from the std::prelude::v1 module. They are always available in
every module of any (non-no_std) Rust program.

These items can be referred to in a program without qualifications. We will go
through a few of the types, such as Option and Result, and some of the traits,
such as Copy, Clone, Debug, and (many) others, from the standard library
prelude. As indicated, they are really part of the Rust language. even though they
are defined in the "library".

6.5.1. Library preludes

Although they are not technically "preludes", many third-party libraries export
names via the prelude convention.

A library crate may include a number of disparate modules, e.g., organized
according to their functionalities, etc., and each of them may include a number of
different items. In many cases, certain items may be considered more important,
or more foundational, or more commonly used, etc., than others. The library
authors often select a certain set of (crucial) items and put them in a module
conventionally named prelude, e.g., using the pub use declarations.

Then, the users/clients of the library can conveniently (albeit explicitly) import all
names from this special module, e.g., using one use directive. For example,

use killer_lib::prelude::*;

6.5. Preludes
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Builtin Attributes

The no_std Attribute
The standard library prelude, or the std crate, includes everything from the
std::prelude::v1 module. By default, they are automatically included in
the crate root module, as if they are all a native part of the current module.

The no_std inner attribute may be applied at the crate level to prevent the
std crate from being automatically added into scope. Furthermore, in
no_std programs, Rust uses the names from the core::prelude::v1
module instead. Note that no_std is often used on platforms where the
standard library capabilities are not readily available. For example, on
some platforms, there may not be heap memory available. Then, dynamic
memory allocation may not be used on such platforms. On some platforms,
they may lack file or network capabilities.

Builtin Attributes

The no_implicit_prelude Attribute
The no_implicit_prelude attribute works similarly to no_std. But,
no_implicit_prelude can be applied at the crate level, as well as on a
module, and they only affect the targeted module and their descendants.
Note that Rust prelude can be classified into a few different categories, and
no_std and no_implicit_prelude may work slightly differently. But,
these details are beyond the scope of this book.

6.5. Preludes
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Chapter 7. Items
As stated, a Rust crate is made up of a (nested) set of items. Every crate has a
single outermost item, i.e., an anonymous top-level module. All other items are
organized within this module, and they have paths within the module tree of the
crate. Some items form an implicit scope for the declaration of their subitems.
That is, within a function or module, item declarations can be mixed with other
statements, or control blocks, etc.

Rust defines a number of different items, as illustrated earlier. Let’s briefly go over
each of those items in this chapter.

7.1. Modules
Module items have been described earlier, in the context of the Rust program top-
level structure.

7.2. Use Declarations
A use declaration creates one or more local name bindings synonymous with
some other path. Use items have been described in the previous chapter, where
we go through the basic uses of names and paths in Rust programs.

7.3. Constant Values
A const item represents an explicitly typed constant value with the 'static
lifetime, which outlives all other lifetimes in a Rust program. Const items are
evaluated at build time, and they are inlined. One implication of this optimization
is that a const item may not be associated with a single memory address. This is
further discussed later in the const Items chapter.

7.1. Modules
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7.4. Static Values
A static item is similar to a const item, except that it represents a single specific
memory location in the program. All static items also have the 'static lifetime.
More details are provided later in the static Items chapter.

7.5. Type Aliases
Rust allows defining new names, or aliases, for an exiting type using the type
alias declaration syntax. Type aliases are in a sense similar to the use items.
Instead of providing short names for general item paths, type aliases provide a
shorthand notation for other types, including generic types.

7.6. Struct Items
In Rust, the user can define custom types using struct, union, and enum. Structs
are a generalization of the builtin tuple types. A struct type can include zero or
more named or unnamed fields. For example,

struct Point {                           ①
  x: f32,
  y: f32,
  z; f32,
}

① A struct type with three named fields, x, y, and z, each of which is declared to
be of the f32 type.

We go through all essential elements of Rust’s struct in some detail later in the
struct Types chapter.

7.4. Static Values
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7.7. Union Items
The union declaration uses essentially the same syntax as the struct declaration,
except that unions can have one and only one field. Rust’s union is similar to that
of the C programming language. Reading from unions is only allowed in unsafe
code in Rust, and we will not further discuss unions in this book.

But, here’s a quick example:

#[repr(C)]
union RiskyUnion {                       ①
  are_u: u32,
  press_f: f32,
}

fn union_demo() {
  let u = RiskyUnion { are_u: 1 };       ②
  let f = unsafe { u.are_u };            ③
  println!("{f}");
}

① A union includes one field, which can be interpreted in different types. In this
example, it can be one of u32 or f32 types.

② An instance of a union type can be created using the syntax similar to the
struct expression. In this example, we use the u32 field. But, we can use the
f32 field as well.

③ Reading from a union field is inherently unsafe since we do not know the type
of any given instance of the given union type. If we try to read the field of u as
f32, e.g., as u.press_f, the program might panic. Or, even worse, we may end
up with a completely wrong value, without any explicit errors.

7.7. Union Items
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7.8. Enum Items
Enums in Rust are much closer to Haskell’s data types than C’s enums. Rust’s
enum definition comprises a set of constructors, known as the variants. Enum
values are often used in pattern matching, as we will further discuss later in the
Enums chapter. A quick example:

enum Diet {                              ①
  Keto,
  Paleo(u8, i128),
  Mediterranean(bool),
}

① This enum type consists of three variants.

7.9. Function Items
Functions in Rust are declared with the keyword fn, and they are rather similar to
those found in other (imperative) programming languages, both syntactically and
semantically. Functions can have zero or more input parameters, through which
the caller passes arguments into the function, and they can return a value back to
the caller on completion. Here’s a simple example:

fn add_ten(arg: i32) -> i32 {
  arg + 10                               ①
}

① The last expression in a function body, if any, becomes the return value from
the function.

Function are further discussed in some detail later in its own chapter.

7.8. Enum Items
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7.10. Trait Items
Rust’s trait is comparable to Haskell’s type class. It defines a behavior, or other
characteristics, for a set of related types. That is, they are sort of the types of types,
just like types are the types of values. A type becomes an instance of a trait by
implementing the trait. Rust’s traits and related concepts are explained in a few
chapters later in the book, including the Traits chapter.

7.11. Implementation Items
An implementation, or impl, is an item that associates certain kinds of items, such
as functions, with a specific type, called the implementing type. There are two
types of implementations:

• Inherent implementations, and

• Trait implementations.

These are discussed in the Implementations chapter.

7.12. Associated Items
Associated items are the items declared in traits or defined in implementations.
There are three kinds of items that can be associated with types (or, traits):

• Associated constants,

• Associated types (or, type aliases), and

• Associated functions and methods.

Inherent implementations can have associated constants and associated
functions/methods, but not associated types. The Associated Items chapter later in
the book provides some more details.

7.10. Trait Items
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7.13. Extern Crate Declarations
An extern crate declaration specifies a dependency on an external crate. The
external crate is then bound into the declaring scope. For example,

extern crate open_computer_vision;       ①

① The root module of the open_computer_vision crate can be referred to as
open_computer_vision in this source file.

The as clause can be used to bind the imported crate to a different name.

extern crate open_computer_vision as opencv;

Although the extern crate declaration is still being used (and, it is not
deprecated), it has very limited uses at this point. As can be seen from the above
examples, their uses are now mostly replaced by the use declarations. We will not
discuss the extern crate declarations any further in this book.

7.14. Extern Blocks
External blocks provide declarations of items that are not defined in the current
crate. They are primarily used for importing libraries written in languages other
than Rust. Two kinds of item declarations are allowed in extern blocks:

• Functions, and

• Static items.

One is permitted to call functions or access statics that are declared in extern
blocks only in an unsafe context. Extern blocks are not further discussed.

7.13. Extern Crate Declarations
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Builtin Attributes

The allow, warn, deny, and forbid
Attributes
In Rust, everything is integrated. For example, it’s a lot easier to do unit
testing in Rust than in many other (old-style) languages, in which they
require extra setup and what not.

Linting is another example that is "natively" integrated into Rust’s common
tooling. Traditionally, linting (and, code formatting) has been a more
important part of programming with dynamically typed languages like
JavaScript due to their weaker compiler support (relatively speaking). But,
this trend has been changing recently.

The Rust compiler will issue warnings if your code does not conform to
certain predefined rules. For example, if you declare a variable and not use
it, it will warn you, e.g., not because it itself is necessarily wrong but
because it can potentially hide more serious errors.

The general problem with lint check is not that you do not agree with their
general default rules but that, most of the time, your code is work in
progress. As far as unused variables are concerned, for example, we can use
certain naming conventions to stop the compiler from issuing unnecessary
warnings, as stated earlier.

In general, however, you can selectively disable or enable particular lint
rules using the attributes, warn, deny, or forbid as well as allow, any of
which can be used either as an inner or outer attribute. These attributes can
override the default, or previously set, values, if any, or the values set in the
outer scope, etc., except for the ones set by forbid.

7.14. Extern Blocks
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For any lint rule rule,

• allow(rule) overrides the check for rule so that violations will be
ignored.

• warn(rule) warns about violations of rule but continues compilation.

• deny(rule) signals an error after encountering a violation of rule.

• forbid(rule) is the same as deny(rule), but further changes are not
allowed for this particular rule.

For example, rustc allows unsafe code by default. We can make it warn by
using the warn attribute.

#![warn(unsafe_code)]

union UnsafeUnion {
  i: i32,
  f: f32,
}
fn union_demo() {
  let u = UnsafeUnion { i: 100 };
  let f = unsafe { u.f };                ①
  println!("{f}");
}

① This unsafe code will now issue a warning. If you are new to Rust, note
that cargo check is your best friend during development, which
essentially runs the compiler without producing a build output (which
takes time). You can even try cargo fix, which is new as of Rust 1.69.

As another example, disabling warnings from unused code can be rather
useful during development.
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#![allow(dead_code)]                     ①

enum Diet {                              ②
  Vegan,
  Carnivore,
}
impl Diet {
  fn use_olive_oil() -> bool {           ③
    true
  }
}

① This is especially useful in the early stage of development.

② The unused enum item Diet does not issue a warning under this setting.

③ Likewise, the unused associated function (unused, at the moment) does
not issue the dead_code warning.

You can also use the allow, warn, deny, or forbid settings for the lint
settings as a command line flag to rustc.

rustc -W rule     Warn about rule
rustc -A rule     Allow rule
rustc -D rule     Deny rule
rustc -F rule     Forbid rule (deny rule and forbid override)



One can also use clippy for further lint checks, e.g., via
cargo clippy or cargo clippy --fix, also new in 1.69, or
otherwise for other helpful feedback regarding your code,
or your coding styles, in general.

7.14. Extern Blocks

76



Chapter 8. Rust Type System
Rust has a static and strong type system, which is largely influenced by ML-style
languages like Haskell. The type system is, in fact, the foundation of the Rust
programming language, and it is explained throughout this book. This chapter is
included here as a quick introduction for the people who are new to Rust.

Overview
Here are a few salient features of the Rust type system:

• Rust supports traits, which can be viewed as the types of types.

• Rust’s traits also play the role of interfaces or abstract classes in other
languages.

• Some programming languages have the concepts of value types and reference
types. Rust types are divided into copy types and move types, among others.

• Rust supports separate value and reference variables.

• Rust has no concept of null references (or, nil or None, etc.). All references
should point to valid values in Rust.

• Rust supports both mutable and immutable variables.

• On the other hand, Rust does not support immutable types.

• All expressions in Rust are categorized into value expressions and place
expressions, and they are evaluated either in the value or place contexts.

• Rust does not support Java/C# style OOP. In particular, Rust does not support
type inheritance.

As indicated, we will elaborate on these points in the pertinent contexts
throughout the book. But, let’s briefly go over a few essential elements first.
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Types and traits

Most programming languages, if not all, support the dual concepts of values (or,
"objects") and types. Rust has three layers, values, types, and traits. This is one of
the most important aspects of the Rust type system, which has broad implications
when programming in Rust. This is further described in the rest of this chapter, to
the benefit of the people who have no prior experience with the languages like
Haskell which have similar type systems.

8.1. Traits as Type Classes
A type divides all values into two sets, one including the values which belong to
the given type, and the other including those which do not. Likewise, a trait
divides all types into two sets, one including the types which belong to the given
trait, and the other including those which do not.

In other words, a type is a set of values. Likewise, a trait in Rust corresponds to a
type class, which is a set of types. This is a very useful way to look at traits. Clearly,
this is not the only viewpoint. A more common way of looking at traits as
interfaces as in other programming languages is also a very useful way to view
traits in Rust. In fact, these two different ways to understand traits are
complementary, rather than alternative, views. Sometimes, one view is more
useful than the other. One thing we need to emphasize, in the current context, is
that interfaces in languages like Java, C#, and Go are types. On the other hand,
traits are not types, as we just stated. This distinction has a practical importance.

One can use traits like types in Rust in two different contexts. An impl trait can be
used like a (static) interface type, whereas a dyn trait can be used like a (dynamic)
interface type. Both of these constructs will be briefly described later in a chapter
titled Dynamic Dispatch (although impl traits are purely static constructs).

8.1. Traits as Type Classes
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8.2. Copy vs Move
All types in Rust are either Copy or Move types. All types that implement the Copy
trait are "Copy types". All other types that do not implement the Copy trait are
"Move types". This is a dichotomy.

This idea is very unique to Rust. In fact, it is more so than any other concepts in
Rust, including ownership and borrowing. If you are new to Rust, and if you don’t
have a firm grasp of this fundamental idea, then you will likely find learning and
programming in Rust rather painful. Although it is a cliche, you will feel like the
compiler is always yelling at you. You will feel like you always have to "fight the
compiler". For example, some of the most common errors that the new Rust
programmers tend to run into are "borrow after move", "borrow of moved value",
or things of that sort.

Move semantics was originally introduced in C++, and it is now adopted by a few
other languages such as C#. Let’s briefly take a look at what it is.

The original, and still the most important, use case of move semantics in C++ is
when you are returning a value object from functions (including constructors).
Traditionally, value meant copying in imperative programming. In this particular
use case, however, this is, or can be potentially, rather inefficient, especially if the
return value happens to be "big".

What happens is, you have one value in a function scope, and when you return
this value, you make a copy so that the caller can use this value, and then when
the function is removed from the call stack, the original value is destroyed.
Clearly, this is an inefficient way of doing things. We (almost always) end up
making an "unnecessary" copy. "Moving" the originally value from the function
scope to the outside caller’s world is rather natural in this context since the callee
function no longer needs it. What "moving" really means is actually an
implementation detail, however. How C++ does it in particular situations, e.g., in
terms of storage of these values in memory, is not very relevant to us.

8.2. Copy vs Move
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In fact, as you can quickly realize, even if you have never used C++ or C# before,
move semantics is an optimization. Other than the reasons for performance, or
memory efficiency, move is an (almost) completely unnecessary construct in
programming. Then came Rust.  As indicated, the dichotomy of move vs copy in
Rust is a fundamental part of the language. Every time you make an assignment,
every time you use a pattern-matching expression, every time you call a function
with arguments or you return a value from a function, etc., you will have to be
mindful of what kind of types you are dealing with. As a matter of fact, when you
design and write a program, when you create a new type, when you implement a
function or method, you will need to think about this. Is it gonna be Copy or
Move? We are just talking about value semantics here. But, on top of this, you will
need to think about reference semantics as well.

(BTW, this concept does exist in C++, and the types that cannot, or should not, be
copied are called the "move only" types, which correspond to the Move types in
Rust. We will see some examples in a later chapter.)

8.2.1. The Copy trait

pub trait Copy: Clone { }

All types in Rust, builtin or custom, are Move types by default unless they
implement the marker trait std::marker::Copy, defined in the Prelude. The
values of a Copy type (e.g., a type that implements Copy) changes its move
semantics to that of copy. Copy can only be implemented for types whose fields
are all Copy. A type cannot implement both Copy and Drop traits at the same time.

#[derive(Debug, Clone, Copy)]
struct Point2D { x: i32, y: i32 }

8.2. Copy vs Move
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8.3. Clone vs Non-Clone
All Copy types are cloneable. That is, by requirements, a Copy type has to be a
Clone type. On the other hand, Move types are divided into Clone types and non-
Clone types.

8.3.1. The Clone trait

The prelude trait std::clone::Clone defines the clone method, which is used
for producing a copy of a value. Clone is a supertrait of Copy.

pub trait Clone: Sized {
  fn clone(&self) -> Self;
}

Clone is derivable for struct and enum, as long as their fields are all cloneable.
For example,

#[derive(Debug, Clone)]
struct Qubit {
  phi: f32,
  psi: f32,
}

fn clone_demo() {
  let q1 = Qubit { phi: 0., psi: 3.14, };
  let q2 = q1.clone();
  println!("q1 = {q1:?}; q2 = {q2:?}");
}

8.3. Clone vs Non-Clone
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8.4. Default vs No-Default
There are types that have default values, and there are types that do not have
default values. More specifically, types that implement the Default trait have
default values. On the flip side, for types that do not implement Default, we
cannot rely on them having default values. Again, this is a dichotomy.

8.4.1. The Default trait

The std::default::Default trait defines one required function.

pub trait Default: Sized {
  fn default() -> Self;
}

8.5. Sized vs DST
All types in Rust belong to either Sized or Unsized. All types that implement the
Sized trait are "Sized types". All other types that do not implement the Sized trait
are "Unsized types" (or, dynamically sized types, or DSTs for short). Most of the
types in Rust are Sized types.

In fact, Sized is a supertrait of Clone, which is in turn a supertrait of Copy, and
hence all Copy types, as well as Cloneable types, are Sized types.

Only the values of a Sized type can be allocated on stack memory. To put it
differently, values of Sized types can be stored either on stack or heap, whereas
values of Unsized types can only use heap memory. Rust’s basic types are all
Sized, as are the vast majority of other builtin and user-defined types, with the
exception of some (collection-oriented) types like String and Vec. They are
dynamically sized, and their contents are always heap-allocated.

8.4. Default vs No-Default
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8.5.1. The Sized trait

The std::marker::Sized is one of the most fundamental traits in Rust. It is a
marker trait, and it is always implemented automatically by the compiler when
certain conditions are met. In fact, this trait cannot be explicitly implemented by
user-defined types, either manually or through derive.

As stated, Sized refers to types whose sizes are known at compile time. That is,
values of a Sized type have constant sizes, and they may be allocated on stack.
Note that dynamic trait objects, dyn TRAIT, cannot be created for Sized traits.
Rust’s dynamic dispatch is discussed later in the book.

8.6. Deref - DerefMut Types
All types in Rust are either value types or pointer types. All types that specifically
implement the Deref or DerefMut traits are pointer types. All other types that do
not implement either of these traits are value types. For a value type T, there is
generally a corresponding pointer type &T. Values of a pointer type can be
"dereferenced", e.g., using the unary dereference operator, *. Deref is a supertrait
of DerefMut. Values of a DerefMut type can be used with mutable references. In
addition to overloading the dereference * operator, the std::ops::Deref and
std::ops::DerefMut traits are also used in method resolution and deref
coercions (which we do not discuss in this book).

8.6.1. The Deref trait

pub trait Deref {
  type Target: ?Sized;                   ①
  fn deref(&self) -> &Self::Target;
}

8.6. Deref - DerefMut Types

83



① Target is an associated type of Deref. We briefly discuss differences between
generic traits and traits with associated types later in the book.

8.6.2. The DerefMut trait

pub trait DerefMut: Deref {
  fn deref_mut(&mut self) -> &mut Self::Target;
}

8.6.3. Pointer types

In Rust, immutable and mutable references, e.g., & and &mut, are pointer types. In
unsafe Rust, (C-style) raw pointers can also be used. All standard library smart
pointers are (specifically) pointer types. As indicated, any type that implements
the Deref trait is a pointer type. And, on the flip side, a type that is not intended to
be used like a pointer should not implement Deref.

8.7. Drop Types
All Move types are either Drop types or non-Drop types. Copy types cannot be
Drop types. More specifically, all Move types that implement the Drop trait are
"Drop types". All other Move types that do not implement this trait are "non-Drop
types". Types of the values that would require cleanup after their use should be
Drop types.

8.7.1. The Drop trait

The std::ops::Drop trait provides a destructor method, drop. The destructors
are called when the values of a Drop type go out of scope, or they are destroyed
otherwise, e.g., through an explicit std::mem::drop function call.

8.7. Drop Types
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pub trait Drop {
  fn drop(&mut self);
}

The drop method is used to clean up the (non-memory) resources after their use,
similar to the way instance destructors are typically used in C++. Note that this
method is called by Rust, and you are not allowed to call this method directly.
Attempting to do so will raise a compile error.

Builtin Attributes

The derive Attribute
The Rust compiler, or other implementations, may be able to provide basic
implementations for some special traits. These traits are known as
derivable traits. If the basic default implementation is sufficient for your
specific type, you can use that implementation by declaring it so using the
derive attribute. Note that you are not required to use the provided
implementation of a derivable trait. It is a choice. You can still choose to
explicitly implement the trait for a given type.

For example,

#[derive{Debug, Clone, Copy}]
struct Rocket(f64);

8.7. Drop Types
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Chapter 9. Primitive Types
Rust supports most of the common primitive types found in (virtually) all other
programming languages:

Boolean The bool type (true or false).

Numeric Integer and floating point types.

Textual Character and string types.

In addition, Rust includes builtin sequence, or composite, types like arrays, slices,
and tuples as well as somewhat special unit and never types.

9.1. The Boolean Type
The boolean type bool is the usual primitive data type in Rust that can take on
one of two values, true and false. Values of the bool type occupy 1 byte. All
primitive types are defined in the language prelude.

pub const TRUTH: bool = true;
pub const FAKED: bool = false;

Like all primitives, the bool type implements the following core traits:

• Sized,

• Clone,

• Copy,

• Send, and

• Sync.

9.1. The Boolean Type
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9.2. Numeric Types

9.2.1. Integer types

The unsigned integer types consist of:

u8 1 byte, 0 ~ 2^8-1 (Also used as a "byte" type in Rust)

u16 2 bytes, 0 ~ 2^16-1

u32 4 bytes, 0 ~ 2^32-1

u64 8 bytes, 0 ~ 2^64-1

u128 16 bytes, 0 ~ 2^128-1

The signed integer types consist of:

i8 1 byte, -2^8 ~ 2^7-1

i16 2 bytes, -2^16 ~ 2^15-1

i32 4 bytes, -2^32 ~ 2^32-1

i64 8 bytes, -2^64 ~ 2^63-1

i128 16 bytes, -2^128 ~ 2^127-1

9.2.2. Machine-dependent integer types

In addition, Rust supports two additional integral types, usize and isize, which
have the same number of bits as the platform’s pointer type (often known as the
"word"). usize and isize are unsigned and signed types, respectively, and they
are typically either 32 bit or 64 bit. usize can represent every memory address in
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the process, and it is the type of an array index in Rust, for example. However, the
(theoretical) maximum size of a value or array is the maximum value of isize
(e.g., to ensure proper pointer arithmetic, etc.).

9.2.3. Floating-point types

The IEEE 754-2008 "binary32" and "binary64" floating-point types are represented
by f32 and f64 in Rust, respectively.

f32 4 bytes, single precision

f64 8 bytes, double precision

Note that, unlike many (strongly typed) programming languages that still allow
automatic "wider conversions", Rust does not permit implicit conversions even
between similar numerical types. For example,

fn float_demo() {
  let a: f32 = 1.0;                      ①
  let b: f64 = 2.0;                      ②
  // let sum = a + b;                    ③
  let sum = (a as f64) + b;              ④
  println!("a + b = {}", sum);
}

① As we indicate in the Lexical Analysis chapter, the types of floating point
numbers generally inferred to be f64, unless explicitly annotated, etc.

② Hence, this type annotation f64 would have been redundant, in general.

③ The "narrower" type, f32, would have been automatically converted to f64 in
some other programming languages. In Rust, however, this results in an error.

④ Explicit type casting is needed here.
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The as operator

The as operator can be used to convert between (compatible) primitive type
values. In general, Rust supports various forms of type casting and conversions.
Values of different (but, related) types can also be "coerced" into each other in
certain situations, e.g., between a value and its reference, etc.

Furthermore, Rust provides a rather flexible type conversion framework, which
can be used between just about any types, builtin or user-defined, e.g., using the
From and Into, and other related, traits. We do not discuss type conversions any
further in this book.

9.3. Characters and Strings
The types char and str hold textual data. A value of type char is a Unicode scalar
value, represented as a 32-bit unsigned word in the ranges from 0x0000 to
0xD7FF or from 0xE000 to 0x10FFFF. A value of type str is represented in the
same way as [u8] (a slice of bytes). However, the data in str must be a valid UTF-
8 string. Since str is a dynamically sized type, it can only be used/referenced
through a pointer type, such as &str. As we indicated earlier, the type of string
literals is &str. For example,

fn str_demo() {
  let (x, y) = ("Hello", "Crab");        ①
  println!("{x}, {y}!");                 ②
}

① The type of both x and y is &str. We describe the related type String later.

② This will output Hello, Crab!. In this example, we use essentially the format!
macro syntax to concat two strings. In case of string literals, the concat!
macro can also be used. E,g., concat!("Hello", ", ", "Crab", "!").

9.3. Characters and Strings
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9.4. The Unit Type
The unit type () includes one valid value (), which represents "no valid value" ,
or absence of any valid value. The use of the symbol () for the unit value is based
on the fact that tuples, along with structs, etc., generally represent "multiplicative
types". The empty tuple is hence the unit value (like 0 for addition and 1 for
multiplication). The unit is, however, not a compound type, although it uses the
same syntax as tuples in Rust. It is a primitive type. For example,

fn point_of_no_return() -> () {          ①
  println!("A crab never returns!");
}

① This function does not return any meaningful value, and hence its return value
is (), whose type is ().

9.5. The Never Type
The never type ! is a special type with no valid values, commonly used in
functional programming. It represents the result of the computation that never
returns, e.g., due to an infinite loop. Or, a function that simply terminates a
program is a function that never returns, as far as the program is concerned. We
will see a few uses of ! in this book, but it’s primarily there for formality.

fn point_of_no_u_turn() -> ! {           ①
  panic!("A crab never U-turns!");
}

① This function simply terminates the program through the panic! macro, and
hence it never returns.

9.4. The Unit Type
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Builtin Attributes

The feature Attribute
When you use a nightly build of Rust, which includes many unstable
features, you can specifically opt in to use any of those unstable features
using the feature attribute. For example,

#![feature(is_some_and)]                 ①

fn is_some_and_demo() {
  let (x1, x2, x3) = (
    Ok::<i32, ()>(10),
    Ok::<i32, ()>(-10),
    Err::<i32, _>("Huh?"),
  );
  assert_eq!(x1.is_ok_and(|x| x > 0), true);
  assert_eq!(x2.is_ok_and(|x| x > 0), false);
  assert_eq!(x3.is_ok_and(|x| x > 0), false);
}

① The feature attribute with the "is_some_and" feature, which enables
is_some_and, and other related methods such as the one shown here,
is_ok_and, on types like Option<T> and Result<T, E>. This feature
can only be enabled when you use a nightly build of Rust.

This is called the feature flags. Note that there are numerous "features",
which come and go, in the nightly builds, and these features, and even their
names, are, by definition, unstable.

9.5. The Never Type
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Chapter 10. Tuples and Sequence
Types
Rust supports the common sequence types such as arrays and slices. We also
briefly describe tuples in this chapter, which are Rust’s other builtin compound
types.

10.1. The Array Types
An array is a sequence of N elements of type T, with a constant N (of type usize).
The (fixed-size) array type is written as [T; N]. The dynamic-size array type,
Vec<T>, is described in the next chapter. Vectors are heap-allocated, whereas the
array values are (by default) stack-allocated. In Rust, when an array is created and
initialized, the elements of the array are also all initialized. Furthermore, in Safe
Rust, access to arrays is always bounds-checked.

Otherwise, Rust’s arrays are rather similar to those found in other programming
languages. For example,

fn array_demo() {
  let arr1 = [1, 2, 3, 5];               ①
  println!("arr1 = {arr1:?}");
  println!("arr1[1] = {}", arr1[1]);     ②
  // println!("arr1[5] = {}", arr1[5]);  ③

  let mut arr2 = [2u8, 4, 8, 10];        ④
  println!("arr2 = {arr2:?}");
  arr2[2] = 88;                          ⑤
  println!("arr2[2] = {}", arr2[2]);
}

10.1. The Array Types
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① The type of this array is [i32; 4].

② You can access an element of the array using the index, or subscript, operator.
Note that we do not go through all syntax of Rust in this book. Being familiar
with some commonly used, and presumably more basic, syntax of C-style
languages should really be considered a prerequisite to reading this book.

③ Attempting to access an invalid index will cause a compile or runtime error,
depending on whether the #[deny(unconditional_panic)] annotation is
set or not (which is on by default).

④ As of the current version of Rust (1.69), there is no easy way to specify only the
type of the elements but not the size. That is, [u8; 4] can be used as a valid
type annotation, as well as [_, 4]. But, the discard symbol _ cannot be used
in place of the size. This syntax is sort of a workaround. We force the type of
the elements to be u8 without having to explicitly specify the array size.

⑤ When an array variable is declared as mutable, we can update the values of
the elements of the array, e.g., again using the familiar element access syntax.

Rust’s array types come with a number of convenience methods, including get
and get_mut, etc. These two functions, for example, do not cause compile time
errors (or, runtime errors). Instead, they return an Option value. For instance,

fn array_get() {
  let arr = ["Hell", "World", "Rust"];
  for i in [0, 2, 4] {
    if let Some(x) = arr.get(i) {        ①
      println!("arr[{i}] == {x}");
    } else {
      println!("No value at index {i}");
    }
  }
}
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① The if let expression is explained later in the book, if you haven’t seen, or
used, it before. This statement, inside the for loop, will end up printing arr[0]
== Hell, arr[2] == Rust and No value at index 4 in three separate lines.

10.2. Array Expressions
Array expressions, sometimes called array literals, create new arrays. There are
two different syntax. First, we can sequentially list all elements in the array,
separated by commas, e.g., [e1, e2, e3].

Alternatively, an array can be created using the repeat element and length
operands separated by a semicolon (;), e.g., [e; length], where is e is the
element to be repeated. The length operand should be a constant expression of the
usize type. When the length >= 1, the repeat operand should either be a Copy
type, or it should be a constant value or a path to a constant item.

For example,

fn array_expressions() {
  let a1 = ["Feliz", "Ferris"];          ①
  let a2 = ["Crab"; 4];                  ②
  println!("{a1:?}");
  println!("{a2:?}");                    ③
}

① The first form of creating an array. This array expression, on the right hand
side, is sometimes called the array literal.

② The alternative form of creating a new array. This array expressions will create
a four-element array with the same (repeat) element, "Crab".

③ This will print ["Crab", "Crab", "Crab", "Crab"].

10.2. Array Expressions
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10.3. The Slice Types
A slice represents a "view" into a sequence of values, and they are dynamically
sized, unlike arrays. The slice type with an element type T is written as [T], but
similar to the &str type (which is really a slice type), they are generally used as a
pointer type:

• &[T]: A "shared slice", or just "slice". A slice does not own the data it points to.
It borrows it.

• &mut[T]: A "mutable slice". A mutable reference to the underlying data.

• Box<[T]>: A "boxed slice".

Similar to arrays, safety of access to slices are ensured by Rust. That is, elements of
a slice are always initialized, and their access is always bounds-checked in safe
methods and operators. A slice can be created based off an array or a Vec. For
instance,

fn slice_from_array() {
  let arr = [5, 10, 20, 42];
  let s1 = &arr as &[i32];               ①
  println!("s1 = {s1:?}");
  let s2 = &arr[1..=2];                  ②
  println!("s2 = {s2:?}");
}

① A slice can be created from an array reference by casting it to a slice type. The
type of &arr is &[i32; 4], and the type of s1 is &[i32], and it is a "view" to
the entire array.

② A slice can also be created using the range syntax. The slice s2 in this example
is based on the array elements, arr[1] and arr[2]. One can take a full slice as
well, e.g., using the full range syntax, &arr[..].

10.3. The Slice Types
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Mutable slices can also be created from arrays or vectors.

fn slice_from_array_2() {
  let mut arr = [5, 10, 20, 42];         ①
  let m1 = &mut arr as &mut [i32];       ②
  println!("m1 = {m1:?}");
  m1[1] = 11;                            ③
  println!("m1 = {m1:?}");
  println!("arr = {arr:?}");             ④
}

① A mutable array. (Or, more precisely, a mutable variable pointing to an array.)

② A mutable slice, m1, of type &mut [i32] based on the mutable array.

③ We can update the content of the mutable slice using the index notation.

④ The content of the underlying array is also modified. This println! statement
will output arr = [5, 11, 20, 42].

Like arrays, the slice types also come with a number of builtin convenience
methods, such as get and get_mut, etc. The interested readers can look them up
on the relevant API docs. In general, Rust has an extensive set of methods defined
for all builtin types (and, for those in the Standard Prelude, etc.), and going
through these APIs is well beyond the scope of this book.

Values of all "builtin" sequence types like arrays, slices, and vectors can be
iterated. That is, these types all implement the IntoIterator trait.

fn slice_iteration() {
  let list = vec!["Do", "Re", "Mi", "Fa"];
  for v in &list {                             ①
    println!("{v}");
  }
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  let slice = &list[..];                       ②
  for (i, s) in slice.iter().enumerate() {     ③
    println!("{s}{}", "~".repeat(i + 1));
  }
}

① The for expression, and the iterator traits, are described later. Note that we
iterate over the reference of the vector list.

② We take a slice of the vector.

③ The enumerate method returns a series of pairs of the index and the
corresponding value from the iterator.

10.4. The Tuple Types
Tuples are Rust’s builtin, light-weight, structural types, comprising one or more
fields. They are often called the multiplicative types, or product types, because of
the way they are composed of multiple types. These field types can all be different,
and hence tuple types are generally heterogeneous, unlike arrays or vectors. (The
term product comes from the "(outer) product set" in set theory.)

Unlike struct types, the fields of a tuple type cannot be assigned custom names.
Instead, they are just named with indices, e.g., 0, 1, 2, etc. Tuple fields can be
accessed by either a tuple index expression or pattern matching. A tuple type has
a number of fields equal to the length of the list of types. This number of fields
determines the arity of the tuple. A tuple with n fields is called an n-ary tuple.

The syntax for a tuple type is a parenthesized, comma-separated list of types. For
example, (bool, i32, f32) is a 3-ary tuple type with its field types, bool, i32,
and f32. For 1-ary tuple types, the trailing comma is required, e.g., (u8,). Values
of tuple types are constructed using tuple expressions, which are sometimes
called the tuple literals (although they are not technically literals).

10.4. The Tuple Types
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10.5. Tuple Expressions
A tuple expression creates a new tuple value, with a fixed number of elements, or
the tuple initializer operands, separated by commas. The number of initializer
operands are called the arity of the tuple (as in unary, binary, ternary, etc.),
corresponding to the arity of the tuple type. The 0-ary tuple syntax, that is, a pair
of empty parentheses (), is the unit.

For the 1-ary tuple expression, a comma after the (only) initializer operand is
required, e.g., to distinguish it from a parenthetical expression. Otherwise, the
trailing commas are optional. This syntax reflects that of the tuple types.

For example,

fn tuple_expressions() {
  let t0 = ();                           ①
  let t1 = (true,);                      ②
  let t2 = ('O', 2u8,);                  ③
  let (name, title) = ("Ferris", "King Crab".to_string());
  let t3 = (name, "the", title);         ④
  println!("{t0:?}; {t1:?}; {t2:?}; {t3:?}");
}

① A unit tuple expression, which is not really a tuple. The type of t0 is the unit
type, (). The let binding is explained later in the book.

② A 1-ary tuple. Its type is (bool,).

③ A 2-ary tuple, whose type is (char, u8). The trailing comma is optional.

④ The type of 3-ary tuple, t3, is (&str, &str, String) since the types of name,
"the", and title are &str, &str, and String, respectively.

10.5. Tuple Expressions
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10.6. Range Expressions (.. and ..=)
The .. and ..= operators will construct a value of one of the std::ops::Range
variants, according to the following rules:

Range Expression: start..end

type: std::ops::Range
range: start ≤ x < end

RangeFrom Expression: start..

type: std::ops::RangeFrom
range: start ≤ x

RangeTo Expression: ..end

type: std::ops::RangeTo
range: x < end

RangeFull Expression: ..

type: std::ops::RangeFull
range: -

RangeInclusive Expression: start..=end

type: std::ops::RangeInclusive
range: start ≤ x ≤ end

RangeToInclusive Expression: ..=end

type: std::ops::RangeToInclusive
range: x ≤ end

let r1 = 1..=5;
r1.for_each(|v| print!("{v}, "));

10.6. Range Expressions (.. and ..=)
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Chapter 11. Other Basic Types
Rust relies on a number of core types that are defined in the standard library.
Although they are defined in the standard library, they are as important, and as
often used, as the primitive types. Some other types like Box<T> are discussed in
the later part of the book.

11.1. The String Struct
The Standard Prelude includes the String struct and ToString trait from the
std::string module, and hence syntactically they are used just like builtin
structs and traits. The String type represents the dynamic-sized, heap-allocated
strings. All Rust strings are UTF-8-encoded, including the primitive &str type.
Unlike &str, however, which is a borrowed reference, String has ownership
over the content of the string. Rust comes with many builtin String methods such
as len, push, trim, and split, etc. We do not include them in this book, however.

11.1.1. Constructors

The most common way to create a String is to call String::from (from the
std::convert::From trait) with a string literal. For example,

fn string_from() {
  let mut king = String::from("King ");
  king.push_str("Crab");
  king.push('!');
  println!("{king}");                    ①
}

① Note that String implements Display while &str does not.

11.1. The String Struct
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11.2. The Option<T> Enum
The std::option::Option<T> type represents an optional value, or, the
presence or absence of a value. It includes two variants Some<T> and None, and
both are exported from the Standard Prelude.

11.2.1. Trait implementations

The Option<T> enum implements the following standard library traits, among
many others: Clone, Debug, Default, Hash, From, FromIterator, IntoIterator,
Ord, PartialEq, PartialOrd, Product, Sum, Copy, and Eq. (Note that, for
example, Options are Copy types. It is beyond the scope of this book, but as we
briefly discuss in an earlier chapter on Rust’s type system, the traits that a type
implements dictate how the type can be used, and in fact, what that type is.)

11.2.2. Variants

The Option<T> enum includes two variants:

pub enum Option<T> {                     ①
  None,
  Some(T),
}

① Enum types are explained a bit later in the book, but one can think of an enum
as a type consisting of a set of constructors. If you are coming from languages
like Java or C#, or any imperative programming languages, the term
constructor has subtly different connotations in Rust (and, in other ML-style
languages). In case of Options<T>, None is a no argument constructor. It
creates, or returns, a single value None. On the other hand, the variant
Some(T) is a constructor that takes one argument of a (generic) type T.

11.2. The Option<T> Enum
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For example,

fn option_demo() {
  let b1: Option<bool> = None;           ①
  let b2: Option<bool> = Some(true);     ②
  println!("b1 = {b1:?}; b2 = {b2:?}");
  assert_ne!(b1, b2);                    ③
}

① None is a constructor, which "creates" sort of a singleton value, of the
Option<_> type.

② Some(true) create a value of Option<bool> type.

③ b1 and b2 have the same type but different values.

11.2.3. Implementations

Values of Option<T> are commonly used in match expressions or in other related
pattern-based expressions. Besides, the Option<T> type implements a number of
methods, many of which are commonly, and routinely, used in Rust programming.
Although it is well outside the realm of what this book focuses on, some of the
more commonly used methods are

• is_some(&self) -> bool,

• is_none(&self) -> bool,

• expect(self, msg: &str) -> T,

• unwrap(self) -> T,

• unwrap_or(self, default: T) -> T,

• unwrap_or_default(self) -> T: Default, and

• unwrap_or_else<F>(self, f: F) -> T where F: FnOnce() -> T.

11.2. The Option<T> Enum
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11.3. The Result<T, E> Enum
The std::result::Result<Type, Error> type includes two variants,
OK<Type> and Err<Error>, which represent either success or failure,
respectively. Although it is similar to the Either<Left, Right> type in Haskell,
for instance, Result<T,E> is primarily, and almost exclusively, used as a return
type from a function that can succeed or fail. In case of failure, the error message
is often included in the Err<E> value. Like Option<T>, both of its variants are
exported from the Standard Prelude.

11.3.1. Trait implementations

The Result<T,E> enum implements the following standard library traits, among
others: Clone, Debug, Default, Hash, From, FromIterator, IntoIterator, Ord,
PartialEq, PartialOrd, Product, Sum, Copy, and Eq.

11.3.2. Variants

pub enum Result<T, E> {
  Ok(T),
  Err(E),
}

For example,

fn result_demo() {
  let r1: Result<u8, &str> = Ok(42);
  let r2: Result<u8, &str> = Err("Help!");
  assert_ne!(r1, r2);                    ①
}

11.3. The Result<T, E> Enum
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① Ok(42) and Err("Help!") look so different, but they have the same type, e.g.,
Result<u8, &str> in this example. Rust’s enums are often called the union
types for this reason, e.g., as in the set unions. (Not to be confused with C
unions. We do not discuss Rust’s union types in this book.)

11.3.3. Implementations

Similar to Option<T>, values of Result<T, E> are commonly used in the match
expressions, or in other pattern-matching contexts. And, likewise, the Result<T,
E> type also implements a number of methods, many of which are integral part of
Rust programming. Some of the more important methods are

• is_ok(&self) -> bool,

• is_err(&self) -> bool,

• expect(self, msg: &str) -> T where E: Debug,

• unwrap(self) -> T where E: Debug,

• unwrap_or(self, default: T) -> T,

• unwrap_or_else<F>(self, f: F) -> T where F: FnOnce() -> T,

• unwrap_or_default(self) -> T: Default,

• ok(self) -> Option<T>,

• err(self) -> Option<E>,

• and<U>(self, res: Result<U,E>) -> Result<U,E>,

• or<F>(self, res: Result<T,F>) -> Result<T,F>, and

• map<U,F>(self, op: F) -> Result<U,E> where F: FnOnce(T) -> U.

These and, or, and map methods have a number of variations. The readers are
encouraged to look up these methods on Rust’s official website. In Rust,
programming well, and effectively, often means using methods like these well.

11.3. The Result<T, E> Enum
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11.4. The Vec<T> Struct
Vectors, defined in the std::vec module, are another important standard library
types that support heap-allocation of their values. They are dynamic-sized, and
their content cannot be stored on stack memory. Similar to String, a Vec does not
directly contain the data that it owns. Instead, it stores a pointer to the data
(which is stored on the heap). In addition, a Vec struct stores the length of the data
as well as the capacity of the current storage location. Note that these are all
private fields and they are not accessible.

pub struct Vec<T> {
  /* private fields */
}

11.4.1. Constructors

Vec implements a few functions that are used as constructors.

const fn new() -> Vec<T>;                      ①

① The new function constructs a new, empty Vec<T>. Elements can be pushed
into a vector, e.g., an instance of Vec, using various methods of Vec.

fn with_capacity(capacity: usize) -> Vec<T>;   ①

① This function creates a new, empty instance of Vec<T> with a minimum
specified capacity. Note that the length of the constructed vector, either via new
or with_capacity, is zero, regardless of its initial capacity. As described
earlier, the vec! macro is also commonly used to construct a vector and
initialize its elements in one go.

11.4. The Vec<T> Struct
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Chapter 12. Core Traits
The following traits are defined in the standard library, but they play essential
roles in Rust, just like other standard library types, if not more. Types that
implement these core traits, builtin or user-defined, get special treatment by the
Rust compiler, as we briefly alluded earlier. Here’s a quick legend.

A Auto trait. These terms are explained later.

B Blanket implementation.

D Derivable via the #[derive] attribute.

M Marker trait.

O Operator overloading. More operator traits are listed later.

Prelude Whether exported in the Standard Prelude or not.

Supertraits Trait dependency.


This is just a quick table, for your future reference. You do not
have to memorize this like learning the multiplication table.

The following traits should be considered the core of the core traits.

A B M O D Prelude Supertraits

Sized O O

Clone O O Sized

Copy O O O Clone

Drop O
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Debug O std::fmt

Display std::fmt

The following traits are also rather commonly used across many different areas in
Rust programming.

A B M O D Prelude Supertraits

Any O std::any

Hash O std::hash

Default O O Sized

Deref * std::ops

DerefMut * std::ops Deref

Send O O O

Sync O O O

Unpin O O O

UnwindSafe O std::panic

RefUnwindSafe O std::panic

Error std::error Debug + Display

Termination std::process

The following traits define conversion behavior.

A B M O D Prelude Supertraits

ToOwned O O

AsRef<T> O

AsMut<T> O
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From O O Sized

Into O O Sized, (From)

TryFrom O O Sized

TryInto O O Sized, (TryFrom)

FromStr std::str Sized

ToString std::string (Display)

Borrow<T> O std::borrow

BorrowMut<T> O std::borrow Borrow<T>

Function traits. One cannot directly implement these traits (e.g., in safe Rust, at
this point). They are, for example, automatically implemented for closures.

A B M O D Prelude Supertraits

FnOnce<T> _ () O

FnMut<T> _ () O FnOnce<T>

Fn<T> _ () O FnMut<T>

The following traits, including common comparison operators, are used for
operator overloading, among other things.

A B M O D Prelude Supertraits

Index<T> [] std::ops

IndexMut<T> [] std::ops Index<T>

PartialEq = O O

PartialOrd < O O PartialEq<Rhs:
?Sized>
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Eq = O O PartialEq<Self>

Ord < O O Eq +
PartialOrd<Self>

The following traits are used to define iterators.

A B M O D Prelude Supertraits

Iterator O

IntoIterator O

FromIterator<T> O Sized

ExactSize
Iterator

O Iterator

DoubleEnded
Iterator

O Iterator

Extend<T> O

Async-related traits:

A B M O D Prelude Supertraits

Future std::future

IntoFuture std::future

IO-related traits:

A B M O D Prelude Supertraits

Read std::io

Write std::io
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12.1. Auto Traits
A few Rust builtin traits are designated as auto traits, and they are specially
treated by the compiler. If no explicit implementation or negative implementation
is provided for any of the auto traits for a given type, then the compiler
implements it automatically, if feasible, according to some predefined rules. The
following are auto traits:

• std::marker::Send,

• std::marker::Sync,

• std::marker::Unpin,

• std::panic::UnwindSafe, and

• std::panic::RefUnwindSafe.

12.2. Marker Traits
The following are marker traits, and they do not define any associated items such
as methods. As we explain in an earlier part of the book, the primary use of these
traits is to classify types into different classes. Besides Sized and Copy, the rest
three traits also play important roles in defining the characteristics of types, but
we do not cover them in this book.

Sized Types with a constant size known at compile time.

Copy Types whose values can be duplicated simply by copying bits.

Send Types that can be transferred across thread boundaries.

Sync Types for which it is safe to share references between threads.

Unpin Types that can be safely moved after being pinned.

12.1. Auto Traits
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12.3. Derivable Traits
The Rust compiler, or other implementations, may be able to provide basic
implementations for some special traits. These traits are known as derivable
traits. If the basic default implementation is sufficient for your specific type, you
can use that implementation by declaring it so using the derive attribute. Note
that you are not required to use the provided implementation of a derivable trait.
The following traits are derivable traits:

• Comparison traits: Eq, PartialEq, Ord, and PartialOrd.

• Clone: To create T from &T via a copy.

• Copy: To give a type copy semantics instead of move semantics.

• Hash: To compute a hash from &T.

• Default: To create an empty instance of a data type.

• Debug: To format a value using the {:?} formatter.

12.4. Blanket Implementations
Rust automatically and generically implements a certain set of traits over all
types, e.g., without trait bounds. These are known as the blanket implementations.
For example, this will constitute blanket implementations for the trait Trait:

trait Trait { fn do_nothing(); }         ①
impl<T> Trait for T { fn do_nothing() {} }

① We use Rust’s basic constructs like traits and impls throughout this book
without precisely defining them first. The exact syntax for trait and impl is
discussed later.

12.3. Derivable Traits
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Here are some of the standard library traits that provide blanket
implementations:

• std::any::Any,

• std::borrow::Borrow<T>,

• std::borrow::BorrowMut<T>,

• std::borrow::ToOwned,

• std::convert::From<T>,

• std::convert::Into<U>,

• std::convert::TryFrom<U>, and

• std::convert::TryInto<U>.

12.5. Type Conversion Traits
Readers should be familiar with a general pattern found in many programming
language, in which certain core language features can be customized through
various "hooks" built into the language. Use of the dunder methods in Python is
one such example. Another most common example is the use of a particular
method to convert an (arbitrary) object to string (e.g., toString method).

Many of these "hooks" are also built into Rust. We briefly discuss the operator
overloading later in the book, for example. This mechanism is also utilized in type
conversions. Traits like From, Into, TryFrom, and TryInto play crucial roles in
this context. The readers are encouraged to refer to other references for more
information. We show one example of using the From trait in the last chapter, in
the context of error handling. Incidentally, if you implement From or TryFrom on
a type, Rust automatically provides sensible implementations for Into or
TryInto, respectively. They are marked in the table earlier with parentheses, in
the supertraits column. The same comment applies to ToString vs Display.

12.5. Type Conversion Traits
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Chapter 13. Formatting
The std::fmt module includes the language-level support for the format!
extension and other related types, traits, and macros. As we briefly discuss earlier
in the common macros chapter, the format strings can include a number of
formatting arguments ({}), which can be either positional or name-based. These
arguments can additionally include extra parameters for their value
representations (e.g., decimal vs binary) and precision, and for other
specifications such as width, fill, and alignment, etc.

13.1. Formatting Traits

13.1.1. The Display trait

The std::fmt::Display trait defines one method fmt, which is to be used for an
empty format, {}.

pub trait Display {
  fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

For example,

pub struct FortyTwo {}
impl Display for FortyTwo {
  fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
    42
  }
}

13.1. Formatting Traits

113



let age42 = FortyTwo {};
println!("I am {}", age42);

Implementing this trait for a type will automatically implement the ToString
trait for the type, which defines the (ubiquitous) to_string method. It is
generally a common practice to implement Display and not ToString.

13.1.2. The Debug trait

The std::fmt::Debug trait is rather similar to Display, in terms of its uses and
what not, and it also defines one method fmt with exactly the same signature as
Display::fmt. But, unlike Display, Debug is derivable, and in practice, this fmt
method is rarely explicitly implemented, if ever.

pub trait Debug {
  fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

The Debug::fmt method is used for debug formats, {:?} and {:#?}. For instance,

#[derive(Debug)]                         ①
struct City {
  name: &'static str,
  pop: u64,
}
fn debug_trait_demo() {
  let ny = City {
    name: "New York",
    pop: 8_888_000,
  };

13.1. Formatting Traits
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  println!("{ny:?}");
  println!("{ny:#?}");
}

① Pretty much every type implements Debug as a starter, that is, unless they
implement Display, in which case Debug becomes "less important".

This will output something like this:

City { name: "New York", pop: 8888000 }
City {
    name: "New York",
    pop: 8888000,
}

13.1.3. The Write Trait

The std::fmt::Write trait defines the write_str required method, and it
provides two other convenience methods.

pub trait Write {
  fn write_str(&mut self, s: &str) -> Result<(), Error>;
  fn write_char(&mut self, c: char) -> Result<(), Error>
  { ... }
  fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>
  { ... }
}

This trait is specifically used for writing, or formatting, an argument into Unicode-
accepting buffers or streams. In general, the std::io::Write trait can be used
for broader use cases, such as when you need explicit flushing, etc.

13.1. Formatting Traits
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13.2. Formatters
The std::fmt module includes traits, other than Debug and Display, that are
commonly used for formatting (primarily) numeric outputs. They all define a
single required method that is the same across all these traits:

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;

Here’s a quick list.

Trait Flags Synopsis

Debug ?, #?  — 

Display  —   — 

Binary b, #b Formats its output as a number in binary.

Octal o, #o Formats its output as a number in octal.

LowerHex x, #x Formats its output as a number in hexadecimal,
with a through f in lowercase.

UpperHex X, #X Formats its output as a number in hexadecimal,
with A through F in uppercase.

LowerExp e Format its output in scientific notation with a
lowercase e.

UpperExp E Format its output in scientific notation with an
uppercase E.

Pointer p Format its output as a memory location, e.g., in
hexadecimal.

13.2. Formatters
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Chapter 14. The Const Items
A const item in Rust is a (usually named) constant value which is not associated
with a specific memory location in the program. Constants are essentially inlined
wherever they are used, meaning that they are copied directly into the relevant
context when used. References to the same constant are not necessarily
guaranteed to refer to the same memory address.

14.1. Named Constants
Constants must be explicitly typed. The type must have a 'static lifetime. Any
references in the initializer must have 'static lifetimes.

Constants may refer to the address of other constants, in which case the address
will have elided lifetimes where applicable. Otherwise, in general, they will
default to the 'static lifetime. Regardless, the address of constant items may not
be stable, and they should not be relied on in the program.

Here are a few examples of constant values:

const MyTruth: bool = true;
const MyPi: f32 = 3.14;
const MyGreeting: &str = "Hello!";

14.2. Unnamed Constants
Constants can also be declared with a discard variable (_). They are called the
unnamed constants. Unnamed constants are evaluated at compile time, just like
their named counterparts, and that is often the sole purpose of their uses. That is,
unnamed constants are mainly used to check the code validity at build time.

14.1. Named Constants
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For example,

const _: i32 = 1 + 2;                    ①

struct S {
  f1: bool,
  f2: i128,
}

const _: S = S {                         ②
  f1: true,
  f2: 1111111111,
};

const _: () = {                          ③
  let a = 123;
  let b = 456;
  let _c = a + b;
};

① Not very useful, but legal.

② Checks if we can construct an instance of S at compile time.

③ In fact, we can execute essentially any code, using a block expression, at
compile time. Whether it is a good practice or not is a different question,
however. 

14.2. Unnamed Constants
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Chapter 15. The Static Items
A static declaration introduces a static name to a program, which have the
'static lifetime, just like the let binding introduces local names. The 'static
lifetime outlives all other lifetimes in a Rust program. A static item declaration
requires an explicit type specification, similar to const items, and it is followed by
a static initializer, which also needs to be a constant expression evaluated at
compile time. Static initializers may refer to other static or constant items, and
constant functions. The reverse, however, does not hold true. That is, constant
initializers cannot refer to static values.

Unlike const items, static items are associated with their own memory locations
in the program. All references to the same static item refer to the same memory
location. Static items can be mutable, but reading from, and writing to, mutable
static items can only be done in unsafe code. In general, use of constants should
be preferred over static items, if possible, e.g., unless interior mutability is
required or large amounts of data need to be stored, etc.

Here are a few examples of using const and static values. Traits, associated items,
and implementations are explained later in the book.

trait Diet {
  const FOOD: &'static str;
  fn eat(&self);
}
impl Diet for i32 {
  const FOOD: &'static str = "Grapes";
  fn eat(&self) {
    static MEAL: &'static str = i32::FOOD;     ①
    println!("I only eat {MEAL}");
  }
}
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static F: &'static str = "Olive oil";
fn statics_demo() {
  println!("{F}");
  static D1: i32 = 42;
  D1.eat();
}

① A static item can refer to const items, const values or const function calls.

Builtin Attributes

The inline Attribute
The inline attributes can be applied to functions or closures, and they
suggest to the compiler that the attributed items should be inlined, if
possible. Inlining means that a copy of the function/closure definition
should be directly placed in each calling code rather than making a
separate call expression.

fn fun_1() -> i32 {
  ({ #[inline] |x, y| x + y })(1, 2)     ①
}
#[inline(always)]                        ②
fn fun_2() -> f64 { std::f64::consts::PI }
#[inline(never)]                         ③
fn fun_3(x: bool, y: bool, z: bool) -> bool { (x || y) && z }

① #[inline] suggests performing an inline expansion.

② #[inline(always)] suggests that inlining should always be performed

③ #[inline(never)] suggests that inlining should never be performed.
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Chapter 16. Variables
A variable in Rust is, or corresponds to, a location in memory on a stack frame.
They can be local variables, or function parameters, or sometimes anonymous
temporary memory locations.

16.1. Local Variables
A local variable holds a value on stack memory. Hence their lifetime is tied to that
of the particular stack frame which the variable belongs to. Local variables come
into existence when their memory is allocated on a stack frame, and their
memory is de-allocated when the frame is removed from the call stack.

There are two kinds of local variables. The variables that are used to directly keep
their values, and those that are used to refer to other values. The former is often
called the value variables and the other is generally called the pointer or
reference variables. Reference variables hold values (on stack) that are the
addresses of storage locations (on stack or heap) that hold the referenced values.
Since a reference variable can refer to another reference variable, this "pointing"
relationship can continue indefinitely. Once the value dereferenced is not an
address, the chaining ends. Note that values of certain types cannot be stored on
stack, e.g., because they are dynamically sized, that is, because their sizes are
unknown at compile time. (If you are new to this whole business of stack vs heap,
etc., then this is a basic knowledge in order to be able to become proficient in
programming in Rust. For example, the stack can only hold values whose sizes are
known at compile time. Otherwise, you cannot "stack" variables on tope of each
other, so to speak.)

The size of a memory address is fixed, and it is always known (e.g., on a particular
platform). They are typically either 32 bits or 64 bits. Therefore, we have no
problem storing reference variables on the stack. On the other hand, as stated,
only the values of Sized types can be stored on the stack.

16.1. Local Variables
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Variables can be either mutable or immutable in Rust (but, not both), as we discuss
a bit later in this chapter. Hence, local variables can be classified into four
categories, value mutable, value immutable, reference mutable, and reference
immutable. As indicated, unsized types like String or Vec cannot use value
variables, mutable or immutable, because the variables live on the stack whereas
the values of these types are always stored on the heap.

16.2. Function Parameters and Return
Values
Function parameters, in effect, define local variables within the context of the
function body. Hence most of the things we discuss with respect to local variables
in this chapter, and throughout the book, apply also to function parameters.

Although it can be slightly different in certain situations, function return values
involve the same or similar rules to those of local variables. Sometimes, function
return values may be temporarily stored in an anonymous memory location.

16.3. Scoping
Scopes play an important role in all programming languages. This is especially so
in Rust. Scopes are used by the compiler to keep track of ownership, borrowing,
and lifetimes. Different constructs in Rust have different scoping rules, but as far
as the local variable is concerned, its scope is defined from its definition, e.g.,
when its memory is allocated on the stack frame, to its destruction, e.g., when the
frame associated with the variable is removed from the stack.

Rust is a lexically scoped language like many other C-style languages. This means
that, among other things, variables' scopes are determined purely by the program
source code at compile time.

16.2. Function Parameters and Return Values
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16.4. RAII
RAII is one of those words that sound like one thing but turn out to be another.
RAII stands for Resource Acquisition Is Initialization. This is one of the innovations
that C++ brought on top of C. The concept is rather simple. A value is created using
a constructor, in which any necessary resources are acquired, including memory,
and when this value goes out of scope, its destructor is called, in which any
acquired resources are freed, including memory.

In principle, this should rid the world of all resource leaks and memory-related
problems. In reality, however, that is not the case. The main culprit is the pointers.
Resources are often shared, and RAII alone does not bring the world peace.

16.5. Rust’s Ownership Model
Every value in a Rust program, which can be referenced with a local variable, has
one, and only one, owner. This ownership concept is essentially based on the C++-
style RAII model. But, it has rather different nuances, and it has very different
implications.

First, RAII is generally tied to a single owner variable in Rust. Rust enforces the
RAII rule based on the lifetime of the owner variable (which may be the same as,
or smaller than, that of the value it holds). When the owner goes out of scope, its
destructor is called if one is defined, and the memory is de-allocated, and all other
resources owned by that value is freed. Second, as stated, all (local) variables live
on stack, being associated with particular stack frames with finite lifetimes. None
of the variables are "permanent". None of the values are "permanent", except for
the exceptions of const and static values. This is one of most difficult things to
learn for people who have background in memory-managed programming
languages. For example, in languages like Java, JavaScript, Python, etc., all values
are heap-allocated, except for some minor exceptions like primitive type values. In
Rust, it’s right on your face. Nothing lives forever. Well, almost nothing. There is an

16.4. RAII
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escape hatch, as we will further discuss later in the book, e.g., in the context of
smart pointers and what not. But, regardless, this is one of the things that a new
Rust programmer will have to confront, and learn, sooner or later.

Third, it’s a bit less significant, but still there is obviously a problem if only one
variable (designated as the owner) can use any given value. This is where
borrowing comes in. Rust is ultimately a reference-based programming language.
It is a lot easier to manipulate reference variables than value variables.

16.6. Borrowing
As just stated, references are more commonly used in Rust than values
themselves. Taking a reference, from a value or through another reference, is
called borrowing in Rust. For example, instead of passing values by value (T) to a
function, values can be passed by reference (&T), without the overhead, or
complications, of copies or moves of the values. (Obviously, this is not specific to
Rust.) The Rust compiler uses what is called the borrow checker to ensure that, at
compile time, references always point to valid values. That is, as long as there are
references pointing to a value, the value will not be destroyed. On the flip side, no
references pointing to a given value can outlive that value.

16.6.1. Shared vs mutable borrows

To ensure this, Rust requires the programs to follow certain rules.

• A value (v) can have any number of immutable references (&v) at any given
time, often called the immutable or shared borrows, but

• It can have no more than one mutable reference (&mut v), called the mutable
or exclusive borrow.

As long as there is an active mutable borrow, there cannot be any other shared
borrows, and the original value cannot be used.

16.6. Borrowing
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Rust’s ownership and borrowing model is one of the most common topics that a
beginning Rust programmer first encounters, and virtually all beginner’s books
cover this topic thoroughly. If this concept is not clear to you, we recommend the
readers to consult other references, including "the book".

16.7. Lifetimes
The same comment applies to lifetimes as well. It’s such a basic, and yet somewhat
difficult to understand, concept to new comers to Rust. We recommend the
readers to consult other references if you are completely new to Rust.

A lifetime is a rather unique construct in Rust. The borrow checker uses lifetimes
to ensure that all borrows are valid. It is based on, and a generalization of, the
lexical scopes which most programmers should be familiar with, and which we
briefly mentioned a bit earlier in the chapter.

In general, a value’s lifetime begins when it is created, that is, when its memory is
allocated, and it ends when it is destroyed. When we use references, or borrows,
however, it is not always clear where a reference’s lifetime begin or where it ends.
For example, a borrow variable may be passed into a function and returned from
a function, etc. In such cases, which is almost always the case when references are
involved, the borrow checker requires explicit lifetime annotations (except when
lifetimes can be elided), e.g., to determine how long each reference should be
valid. The lifetime parameters start with apostrophes ('), and they are normally
used as generic parameters, or as part of reference type declarations. For instance,

fn lifetime_demo_1<'a>() -> &'a str {    ①
  let x = "hello";
  let y: &'a str = &x;
  y
}

16.7. Lifetimes
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① <'a> is a generic parameter, and the return type &'a str in the function
signature indicates that the return value is of the &str type (e.g., a reference)
and it lives as long as the function itself. The function implementation itself is
a bit convoluted since the string literal has the 'static lifetime.

As this example illustrates, using lifetimes often requires generics, as we further
discuss in the next chapter, and throughout the book. Items like functions,
methods, structs, traits, and impls can be declared with lifetime parameters.

16.7.1. Lifetime elision

Some lifetime patterns are rather common that the borrow checker will allow you
to omit them. This is called elision. We will not go into the detailed rules of lifetime
elision in this book, but it should be noted that these elision rules exist because
the compiler can infer a sensible default choice.

16.8. Shadowing
In many different programming languages, variables of the same name can be
declared, and re-declared, in different nested scopes. The later-declared variable,
e.g., in an inner scope, is said to shadow the earlier-declared variable with the
same name, e.g., in the outer scope. For example,

fn shadowing_demo() {
  let x = 21;
  if true {
    let x = 42;                          ①
    println!("{x}");                     ②
  }
  println!("{x}");                       ③
}

16.8. Shadowing
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① This new x shadows the outer x.

② This prints 42.

③ This prints 21 since x refers to the x in the outer/function scope.

Rust goes one step further. One can shadow variables with the same names even
in the same scope. This is, in fact, a rather common practice in functional
programming, in which you are generally not allowed to mutate variables or
values. Using a similar example,

fn rust_shadowing_demo() {
  let x = 21;
  println!("{x}");                       ①
  let x = 42;                            ②
  println!("{x}");                       ③
}

① This prints 21. Note that we no longer need to use the value 21 after this point.

② The second let binding shadows the first x. In the imperative style, we would
declare the original x as mutable, e.g., let mut x = 21 and then we would
mutate x to a new value 42. Shadowing helps avoid unnecessary mutations.

③ This prints 42 since x now refers to the second x.

One thing to note is that, unlike in the scope-based shadowing, when a variable is
shadowed by another variable in the same scope, there is no way to refer back to
that original variable/value, unless the value has other references.

Another thing to note is that shadowing does not change the scope or lifetime of
the shadowed variable. That is, for instance in this example, the first x (and, the
value 21) will be de-allocated when it reaches the end of the function block, and
not when it is shadowed. Clearly, this can have some practical implications when
borrowing is involved. But, we will not go into any further details in this book.
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16.9. Place Expressions vs Value
Expressions
Expressions in Rust, which we discuss a bit later in the book, belong to one of the
following two categories:

• Place expressions, or

• Value expressions.

These two categories roughly correspond to lvalues and rvalues, respectively, in
C++. Other programming languages that support pointers, e.g., such as Go, also
support similar concepts.

A place expression in Rust is an expression that represents a memory location. A
value expression is an expression that represents an actual value. It is often
important to distinguish one from the other when evaluating expressions. They
are also closely related to the concepts of value vs reference, as explained in the
beginning of this chapter.

We will not elaborate on this topic further in this book, but, for completeness,
paths referring to the following items or expressions are place expressions:

• Local variables,

• Static variables,

• Dereferences, *expr,

• Array indexing expressions, expr[idx], and

• Field references, expr.f.

All other expressions are value expressions in Rust. Grouped, or parenthesized,
expressions belong to the same category as their operands.
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16.10. Implicit Borrows
In certain situations, some expressions will be automatically treated as borrows,
and hence they become effectively place expressions. They are called implicit
borrows. One common example of implicit borrows is comparison expressions, in
which moving their operands (or, even just copying) would not generally make
much sense, e.g., just to compare their values. For reference, reference semantics
may be used through implicit borrows in the following expressions:

• Operand of dereference (*),

• Left operand of array indexing ([]),

• Left operand of field access (.),

• Left operand of compound assignments,

• Left operand in function or method call expressions, and

• Operands in binary comparison expressions.

For instance,

fn implicit_borrow_demo() {
  let arr = [1, 2, 3];
  let _a = arr[0];                       ①
  let _a = arr.index(0);                 ②
  let _a = (&arr).index(0);              ③
}

① The [] operator is applied to a value arr. But, there is no copy/move involved.

② arr[0] is the same as calling the Index::index(&self, 0) method on arr.

③ In both cases, implicit borrow is taken. They are equivalent to this expression,
which is in turn equivalent to (&arr)[0].
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Chapter 17. Generics
In strongly typed languages, situations often arise where certain sets of types or
functions have almost the same declarations and/or definitions except for some
other types or parameters involved.

For example, Rust includes an (infinite) series of array types, e.g., [i32; 4],
[i32; 5], … [String; 10], [String; 100], etc., etc., which are distinct but all
related, in some sense. Generally speaking, arrays are an example of
parametrized types, e.g., [T; N] with two parameters, T and N, denoting a type
and an integer, respectively.

Rust supports generics, just like virtually all modern statically and strongly typed
languages. Rust’s generics is influenced by Haskell’s parametrized type system,
and it is rather similar to the modern C++'s templates (with concepts) and C#'s
generics (with type constraints), among others.

If you are familiar with any of these languages, Rust’s generics is pretty much the
same, except for some syntactic differences. In particular, Rust uses what is called
the "trait bounds" to define, or constrain, a set of related types when declaring
generic types, generic implementations, or generic functions. In addition, the
concept of "lifetime bounds" is rather unique to Rust.

17.1. Generic Parameters
Generics can be used with functions, type aliases, and types such as struct, enums,
and unions, as well as traits and impls. Since Rust 1.65, associated types can now
be generic as well. The generic parameters are enclosed in angular brackets
(<...>), separated by commas, and the general syntax puts them between the
generic item name and its definition. For impls, however, they come directly after
the keyword impl.
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In Rust, there are three kinds of generic parameters, and they need to be included
in this order:

• Lifetime parameters,

• Type parameters, and

• Const parameters.

Most generic systems found in other programming languages primarily make use
of the type parameters. The lifetime parameters are rather unique to Rust, and
their primary use is to specify the lifetime bounds, as we describe shortly. We next
take a look at the (relatively new) const parameters in Rust’s generics.

17.2. Const Parameters
Rust’s const generic parameter syntax allows items to be parametrized over
constant values, e.g., similar to the way array types are parametrized by array
sizes. Syntactically, the const keyword before an identifier, followed by a bool or
integral type, specifies a const parameter. One can use all integer types, including
char, and the bool type for const parameter types. That is, u8, u16, u32, u64,
u128, usize, i8, i16, i32, i64, i128, isize, char, and bool are allowed. For
instance, here’s a simple generic struct type that is parameterized both over a type
parameter T and a constant value parameter N:

#[derive(Debug)]
struct AnArray<'a, T: Copy,              ①
  const N: usize>([&'a T; N]);           ②

① This is a tuple struct, which is discussed later in the book. For illustration, this
generic struct AnArray is just a simple wrapper over an array type.

② Note the syntax const N: usize. Despite syntactic similarity, the colon : here
does not signify a trait bound.
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Here’s a simple example use of the AnArray type:

trait TheArray {                         ①
  type Item: Copy;
  fn get(&self, i: usize) -> Option<Self::Item>;
}
impl<'a, T: Copy, const N: usize> TheArray for AnArray<'a, T, N> {
  type Item = T;                         ②
  fn get(&self, i: usize) -> Option<Self::Item> {
    if i < N {
      Some(*self.0[i])
    } else {
      None
    }
  }
}
fn const_generics_demo() {
  let a = AnArray::<'static, char, 3>([&'a', &'b', &'c']);
  for i in [2, 10] {                     ③
    if let Some(e) = a.get(i) {          ④
      println!("Element at {i} = {e}");
    } else {
      println!("No element at index {i}");
    }
  }
}

① A trait with an associated type.

② As we will discuss later, although they are closely related, generic traits and
traits with associated types are used slightly differently.

③ This for loop will end up printing Element at 2 = c and No element at index 10.

④ The if let PATTERN expression is explained later in the book.
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17.3. Trait Bounds
In general, generic definitions may be applicable only to a certain limited set of
types. The trait bounds (and, lifetime bounds) are used to restrict which types
(and, lifetimes) can be used as their generic parameters.

In fact, the primary use of traits in Rust is to use them as trait bounds. The fact
that a trait represents a set of types, as mentioned earlier, plays an important role
in this context. On the flip side, (custom) traits are less frequently used in Rust,
e.g., outside this particular use case, compared to (user-defined) interfaces in
other programming languages. In those languages, interfaces are types, which can
be used in both static and dynamic contexts, and it is generally considered a best
practice to use a (broader) interface type rather than a (specific) concrete type.
That is not generally the case in Rust, however.

17.3.1. The where clause

Bounds can be provided, e.g., using a where clause, on any type and lifetime
parameters. The where clause can also be used to specify bounds on types that are
not type parameters. In addition, the for keyword can be used to introduce
higher-ranked lifetimes. Here are examples of a generic type and a generic
function which use trait bounds:

#[derive(Debug, Clone)]
struct Cell<'a, T> where T: Clone + 'a { ①
  nucleus: T,
  mitochondria: &'a T,
}

① The type T must implement Clone. And, all references in T must outlive the
generic lifetime 'a, which is tied to Cell.
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fn replicate<'a, T>(cell: Cell<'a, T>) -> Cell<'a, T>
  where T: Clone + 'a {                  ①
  Cell {
    nucleus: cell.nucleus.clone(),
    mitochondria: cell.mitochondria,
  }
}

① Ditto. Note that since the function replicate uses the type Cell, its trait
bound must be the same as, or more restrictive than, that of Cell.

Here’s another example which uses a trait bound on an associated type:

trait LiveForever<'a>
  where Self::LifeForm: 'a + Copy + Display + From<&'a
Self::LifeForm> {
  type LifeForm;                         ①
  fn make_life(creature: &'a Self::LifeForm) -> Self::LifeForm;
}

① The trait bound for the associated type LifeForm is specified with its parent
trait, LiveForever, in this example.

The trait bound syntax

As can be seen from these examples, a trait/lifetime bound is specified with the
where keyword, the target generic parameter, and a colon (:), followed by one or
more traits and/or lifetimes. In case there is more than one, these traits and
lifetimes are separated by plus symbols (+).

When there is more than one generic type parameter that needs to be specified in
a single where clause, they are separated by commas (,).

17.3. Trait Bounds

134



17.3.2. The shorthand notations

In some common situations, a shorter form syntax can be used in liu of the
explicit where clause. For example,

enum Food<T: Clone + Display> {          ①
  Vegetable(T),
}

① This declaration is the same as

enum Food<T>
  where T: Clone + Display,              ①
{ Vegetable(T), }

① The trailing comma is optional.

Likewise,

trait Human {}
trait Baby: Human {                      ①
  fn smile(&self);
}

① The syntax trait Baby: Human ..., denoting that Human is a supertrait of
Baby, is equivalent to

trait Baby where Self: Human {
  fn smile(&self);
}
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In case of associated types,

trait Train<'a> {
  type Car: 'a + Drop;                   ①
  fn add_car(&mut self, car: &'a Self::Car);
}

① This trait bound syntax over an associated type is the same as

trait Train<'a>
  where Self::Car: 'a + Drop,
{
  type Car;
  fn add_car(&mut self, car: &'a Self::Car);
}

17.3.3. The ?Sized bound

As indicated earlier, the Sized trait is special in that it is automatically included
in all generic trait bounds even when no trait bound is explicitly specified. The
?Sized notation can be used to relax the implicit Sized trait bound for the
generic type parameters and associated types.

enum Either<'a, T: ?Sized> {
  Heaven,
  Hell(&'a T),                           ①
}

① The variant Hell can contain a reference of any type, including unsized
dynamic types.

17.3. Trait Bounds

136



17.4. Lifetime Bounds
A lifetime bound, 'a, can be applied to types or to other lifetimes.

• When a lifetime bound is applied to a type, e.g., T: 'a, it requires that

◦ All references in T must outlive the lifetime 'a, and

• When a lifetime bound is applied to another lifetime, e.g., 'lifetime : 'a, it
requires that

◦ The lifetime 'lifetime must last at least as long as the lifetime bound 'a.
This is usually read as 'lifetime outlives 'a. This means that a reference
of &'lifetime T must be valid as long as the reference of &'a T to the
same value is valid, for any type T (that satisfies other trait bounds).

For example,

#[derive(Debug)]
struct RefVal<'a, T>(&'a T)              ①
  where T: 'a + PartialOrd;              ②

① As indicated, the reason why we use a lifetime generic parameter in the first
place is to use it in lifetime bounds.

② The type T must implement the PartialOrd<T> trait, and the reference
contained in this RefVal<T> must outlive the lifetime 'a.

Here’s another example, using this tuple struct, RefVal,

fn bigger<'a, 'b, 'c, T>(
  x: &'a RefVal<'a, T>,
  y: &'b RefVal<'b, T>,
) -> &'c RefVal<'c, T>                   ①
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where
  'a: 'c,                                ②
  'b: 'c,
  T: 'c + PartialOrd,
{
  if x.0 >= y.0 { x } else { y }
}

① A somewhat convoluted example to illustrate use of the lifetime bounds.

② This lifetime bound requires that the lifetime of x must span the entire lifetime
of the returned reference value.

fn lifetime_bound_demo() {
  let (x, y) = (1, 2);                   ①
  let (rx, ry) = (RefVal(&x), RefVal(&y));

  let max = bigger(&rx, &ry);            ②
  println!("{max:?}");
}

① The scope of the variables, x and y, and hence the lifetimes of &x and &y, start
from the next line, and they extend to the end of this function body block.

② The type of max is &RefVal(i32). Note that &rx and &ry, and hence &x and &y,
outlive max.

17.5. Higher-Ranked Trait Bounds
In certain situations, a lifetime bound may need to be applied to a single trait, e.g.,
within a trait bound, rather than to the entire trait bound. In such a case, the
lifetime bound is called the higher-ranked lifetime bound, and it uses a special
syntax using the for keyword.
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For example,

fn apply_fn<F1, F2>(f1: F1, f2: F2)
where
  F1: for<'a> Fn(&'a mut i32),           ①
  F2: for<'b> Fn(&'b i32),               ②
{
  let mut x = 3;
  f1(&mut x);
  f2(&x);
}

① The lifetime parameter 'a only applies to the following trait Fn(&'a mut
i32). Syntactically, this trait bound is equivalent to for<'a> F1: Fn(&'a
mut i32).

② Likewise, this trait bound F2: for<'b> Fn(&'b i32) is the same as for<'b>
F2: Fn(&'b i32).

fn increment<'a>(x: &'a mut i32) {
  *x += 1;
}
fn print<'a>(x: &'a i32) {
  println!("value = {}", *x);
}

fn hrtb_demo() {                         ①
  apply_fn(increment, print);
}

① A demo of using this apply_fn function. Note that this example is for
illustration purposes only, and in fact the lifetime parameters in this particular
example are all optional.
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Chapter 18. Functions

18.1. Functions
Functions may be declared either as an item or as an associated item, e.g., in a
trait or in an impl block. A function consists of

• The keyword fn,

• A name, which is required,

• A set of zero or more parameters in parentheses,

• An optional return type after ->, and

• A function body block.

The body block may be omitted for a function associated with a trait, and, in
such a case, the function declaration terminates with a semicolon. For example,

fn add_each_other(x: i32, y: i32) -> i32 {
  x + y
}

trait Multiplier {
  fn mul_42(&self, x: i64) -> i64;
}

18.1.1. Function parameters

As we describe a bit earlier in the book, function input parameters are also (local)
variables. As with let bindings, function parameters are irrefutable patterns. Any
pattern that is valid in a let binding is also valid as a function parameter.
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In case of associated function, the first parameter can be one of the following six
self parameter forms:

• self,

• mut self.

• &self,

• &mut self,

• &'lifetime self, and

• &'lifetime mut self.

Note that mut self is essentially the same as self. In case of extern block
functions, the last parameter can be a variadic parameter (...), which can
optionally be preceded by a name, e.g., the_rest: ....

18.1.2. Function body block

The function body is conceptually a block expression. It uses the function
arguments as locally declared variables, and the value of the block essentially
becomes the output which the function returns to its caller on completion.

18.1.3. Function types

Function types are denoted by the fn keyword, followed by a parameter list, and
optionally -> and the return type, if any. For example, the add_each_other
function above has a type,

• fn(i32, i32) -> i32,

whereas the type of the Multiplier::mul_42 method is

• fn(&Multiplier::Self, i64) -> i64.
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18.1.4. Function as a value

A function, when it is referred to, e.g., by its name, yields a first-class value of the
corresponding (implicit) function type. When this value is called, it evaluates to a
direct call to the function. For example,

fn add_21(x: i32) -> i32 {
  x + 21
}

fn function_demo() {
  let f = add_21;                        ①
  let result = f(21);                    ②
  println!("result = {result}");
}

① The variable f is bound to a function of the type fn(i32) -> i32. Note that
functions are Copy types. (See the next subsection.)

② This value, which f refers to, can be directly called.

18.1.5. Trait implementations

All functions implement all auto traits as well as the following three function
traits:

• std::ops::FnOnce,

• std::ops::FnMut, and

• std::ops::Fn.

In addition, they all implement Clone, Copy, Debug, Pointer, Hash, PartialEq,
Eq, PartialOrd, and Ord, among others.
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18.2. The const Functions
Functions declared with the const keyword are const functions, and they are
evaluated at compile time. (And, they cannot be async or extern.) The
implementation of a const function should only include constant expressions,
and const functions can be called from within other const contexts.

const A: i32 = 32;                       ①
const B: i64 = 64;
const C: i64 = cfun();                   ②

const fn cfun() -> i64 {
  A as i64 + B + 48                      ③
}

① Const items are explained earlier in the book.

② A const function can be called in the const context.

③ A const function can only include constant values, and it is evaluated at
compile time.

18.3. The async Functions
Functions qualified with the async keyword are async functions. For example,

async fn async_function() { }

An async function does not execute its body when it is called. Instead, it captures
its arguments into a std::future::Future, and it returns that Future. When,
and only when, that future is polled, it will execute the function’s body.
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For example,

async fn afun() -> i32 {                 ①
  42
}

async fn async_function_demo() {         ②
  let x = afun();                        ③
  let y = x.await;                       ④
  assert_eq!(42, y);
}

① Calling an async function returns a Future despite its apparent form. We use
a trivial function for illustration here, but in general, async functions are used
for IO- or CPU- intensive tasks.

② We can only use await expressions in async functions or async blocks.

③ Calling afun() returns a type of impl Future<Output = i32>.

④ Then, we can await on that Future, which returns the computed value when
the task completes. In this example, the value and type of y are 42 and i32,
respectively.

We will briefly go over the async block expressions later. As indicated, however,
we do not go into async-await programming in any depth in this book.

One thing to note is that although Rust does do provide this basic construct, it does
not provide any async runtime support. Currently, you will have to rely on the
third-party crates like tokio or async-std for async programming (which are, btw,
fantastic libraries). This might, and should, change in the near future, however.
The currently used rationale behind not providing the async runtime as an
(optional) part of the standard library is rather weak, in our opinion.
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Chapter 19. Closures
Rust supports anonymous functions, also known as lambda functions or lambda
expressions. They are called the closures in Rust. Rust’s closures are closures, that
is, they can capture variables from the outside scope. A closure expression in Rust
defines a closure type and evaluates to a value of that type, which can be called in
place, assigned to a variable, or passed in to a function as an argument, among
other things.

19.1. Closure Expressions
The syntax for a closure expression is

• A comma-separated list of closure parameters, enclosed in a pair of vertical
bars (|...|),

◦ Each of which is a pattern, and

◦ Each of which can be followed by an optional type annotation,

• An optional arrow token (->) and a return type, and then

• An expression, called the closure body operand.

The closure expression can be optionally preceded by the move keyword, whose
semantics is explained later. When the return type is explicitly specified, the
closure body must be a block.

For example,

fn closure_demo_1() {
  let c1 = |x, y| x + y;                 ①
  let v1 = c1(1, 2);                     ②
  assert_eq!(v1, (|a, b| a + b)(1, 2));  ③
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  use std::f32::consts::PI;
  let c2 = |x: f32| -> f32 { x * PI };   ④
  let v2 = c2(2.0);
  println!("value = {v2}");
}

① The type of x and y of the closure c1 is inferred to be i32 based on its use in
the next line.

② A closure can be called like a function.

③ Calling the closure, |a, b| a + b, in place.

④ Alternatively, we can explicitly specify the types of the closure parameters and
their return values, if any. Note that, in this case, (i) we need to use a block
expression ({}) since the return type is specified, and (ii) the type annotations
are not necessary since we use the f32 version of PI in the closure declaration.

A closure expression maps a list of given arguments to the value prescribed by the
closure body expression. Like the function parameters, closure parameters are
also irrefutable patterns. Unlike the function definitions, however, type
annotations are generally optional for closures since the types can be more easily
inferred from the context.

In many modern programming languages, functions, either named or unnamed,
are generally closures. In Rust, however, the regular functions do not capture
their environment. Only closures do. Therefore, there are some subtle differences
in usages and best practices when it comes to Rust’s closures.

For example, one of the main advantages of using lambda functions over named
functions in many other languages is that lambda functions do not need be
separately declared before their use. In those languages, declaring a lambda and
assigning it to a variable for later use is often considered a bad practice since the
named functions can be more suitable for that purpose.
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In contrast, the choice of the (named) function vs (anonymous) closure in Rust is
primarily determined by the following two factors:

• Whether it’s going to be called more than once, and

• Whether it needs to capture the environment.

When a closure expression is defined, the Rust compiler infers how it captures
each variable from its environment that is mentioned in the closure’s body. It
generally prefers capturing by shared reference. That is, by default, it tries to
immutably borrow the variables from the outer scope.

Depending on the usage of the closed-over variables in the closure body, Rust may
otherwise determine that mutable references should be taken instead, or that
value semantics should be used, e.g., moving vs copying depending on their types.
When the move prefix is explicitly used, those closures use value semantics, i.e.,
move or copy. These are explained in some more detail in the following few
sections.

19.2. Capture Modes
If a closure expression, without the move prefix, refers to a )) from the
environment, Rust follows the following rules to capture the variable, in the given
order, starting from the top. If it can successfully capture the variable that allows
the closure to compile with any of the rules (without regards to any other code
outside the closure), then that rule is used for that specific variable:

• First, by immutable borrow,

• Then, by unique immutable borrow (see the next section),

• Next, by mutable borrow, and finally

• By value, e.g., copy or move.
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If the move keyword is explicitly used, however, then all captures use value
semantics:

• By move for the variables of Move types, and

• By copy for those of Copy types.

We will go over the capturing mode a bit more in the next couple of sections.

19.2.1. Unique immutable borrows

In Rust, the general rule regarding ownership and borrowing is that a value can
be borrowed by one mutable reference or by one or more immutable references.
When capturing an outside variable in a closure, however, there might be
situations where the closure needs to capture the variable immutably but it
cannot share it while the variable is captured. This is called the unique immutable
borrow, and it is only used in this context.

A unique immutable borrow occurs in a capture when modifying a referent of a
mutable reference. For example,

fn unique_immutable_borrows() {
  let mut mr = false;
  let im2mr = &mut mr;                   ①

  let mut c = || *im2mr = true;          ②
  // let can_i_borrow = &im2mr;          ③
  c();

  let _refref = &im2mr;                  ④
  assert_eq!(*im2mr, true);              ⑤
}
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① The type of im2mr is &mut bool. But, note that the variable itself is immutably
declared.

② We can modify the content that im2mr points to, and hence it is essentially a
mutable borrow although syntactically it is not.

③ Therefore, we should not allow anybody else to take a (shared) reference of
im2mr, that is, until the closure is done. That’s what Rust does using the unique
immutable borrow semantics. This line will cause a compile time error.

④ Now, we have no problem immutably borrowing im2mr.

⑤ Effectively, we ended up modifying the content of the immutable variable.

19.3. Move Closures
If you are familiar with lambda functions in other programming languages, then
Rust’s closures may seem overly complicated. In all other languages, we do not
have to worry about "capture mode", for instance. This is because of Rust’s
ownership and borrowing model. Rust’s closures generally work differently than
lambda functions in other languages.

Rust’s move closure is, however, what more closely corresponds to the lambda
function. In general, a lambda function "captures" the closed-over variables, as in
"really taking over the ownership". For this, captured variables are moved over
e.g., from the stack, to a "safer" location, e.g., on the heap, so that they do not get
deleted when their parent, e.g., a function, goes out of scope. Rust closures
generally do not do that. As illustrated in the capture mode logic earlier, these
variables are merely borrowed, if they can be.

Rust’s move closure, however, really "captures" the external variables. As stated,
depending on the type of the variable, it may be move or it may be copy. But,
interestingly, in this particular context, that matters little. The external variable
will likely go out of scope at some point. But, the closure already took over the
variable, either through move or copy, and how it ended up capturing that
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variable is not significant. The closure now owns the (possibly-copied) variable,
and it can use it during its entire lifetime, regardless of the lifetime of the original
scope the variable was originally captured in. Here’s a simple example using
move closures:

fn fib() -> impl FnMut() -> i32 {        ①
  let (mut a, mut b) = (0, 1);           ②
  move || {                              ③
    (a, b) = (b, a + b);
    b
  }
}

① This syntax is discussed later.

② a and b are local variables, e.g., local to the fib function.

③ This closure has to be a move. Why? (Note that the fib function returns this
closure with the captured variables in it.)

fn move_closure_demo() {
  let mut f = fib();                     ①
  for _ in 1..10 {
    println!("{}", f());                 ②
  }
}

① The type of f is impl FnMut() -> i32. The impl trait type is discussed later.
Note that we called fib() and it returned. All its local variables would have
gone out of scope at this point. But, it matters not to the closure f since it
"captured" the variables that it needed.

② What would be the output? 
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19.4. Call Traits
Closure types all implicitly implement the std::ops::FnOnce<Args> trait, which
means that all closures can be called at least once, e.g., by consuming ownership
of the closure. In addition, some closures may also implement the
std::ops::FnMut<Args> trait, which can be called by mutable reference, or the
std::ops::Fn<Args> trait, which can be called by shared reference.

19.4.1. The std::ops::FnOnce<Args> trait

The FnOnce trait is implemented automatically by closures that capture variables
by value, and it represents a method type that takes a by-value receiver, self.
Instances of a FnOnce type can be called at least once.

19.4.2. The std::ops::FnMut<Args> trait

The FnMut trait is implemented automatically by closures that capture variables
by mutable reference, and it represents a method type that takes a mutable
receiver, &mut self. FnMut can be used as a trait bound for function-like types
that need to be called more than once. FnOnce<Args> is a supertrait of
FnMut<Args>,

19.4.3. The std::ops::Fn<Args> trait

The Fn trait is implemented automatically by closures that might capture
variables by immutable reference. It represents a method type that takes an
immutable receiver, &self. Fn can be used as a trait bound for function-like types
that need to be called more than once without mutating state. Both FnMut and
FnOnce are supertraits of Fn.
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Chapter 20. Type Aliases
A type alias can be declared for an existing type using the keyword type. For
example,

fn simple_type_aliases() {
  type Vital = (f32, i16);               ①
  let v: Vital = (37.5, 65);             ②
  println!(
    "Body temp:\t{},
Heart rate:\t{}",
    v.0, v.1                             ③
  );
}

① This declaration introduces Vital as a synonym for a tuple type (f32, i16).
Note the syntax, which is somewhat reminiscent of variable declarations.

② We can use this type alias in place of a type or type name.

③ The variable v refers to a tuple of the type (f32, i16).

Type aliases can be declared with generic type parameters and/or as synonyms
for types with generic type arguments. For example,

fn generic_type_aliases() {
  type IOResult<T> = Result<T, &'static str>;  ①
  type I32Result = IOResult<i32>;              ②
  let r1: I32Result = Ok(42);                  ③
  let r2: I32Result = Err("File error");
  println!("r1 = {r1:?}; r2 = {r2:?}");
}
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① A type alias IOResult<T> is declared for an enum type Result<T, &'static
str>. Note that Result's second parameter is hard-coded with &'static str.

② I32Result is an alias to IOResult<T> with T = i32.

③ The type aliases I32Result and IOResult<T> can be used in place of types.

Types aliases are also commonly used for function types. For example,

type BoolFn = fn(bool) -> bool;          ①
fn do_boolean(f: BoolFn, a: bool) -> bool {
  f(a)
}
fn function_type_aliases() {
  let f1 = |_| true;                     ②
  let f2 = |_| false;
  let f3 = |a: bool| -> bool { a };      ③
  let f4 = |a: bool| -> bool { !a };
  for f in [f1, f2, f3, f4] {            ④
    for b in [true, false] {
      let x = do_boolean(f, b);
      print!("{x}\t");
    }
    println!();
  }
}

① A type alias for a function type, fn(bool) -> bool.

② Non-capturing closures can be coerced into function types.

③ This closure, for instance, is effectively the same as the function, fn f3(a:
bool) -> bool { a }.

④ Note that both functions and closures are Copy types.
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Chapter 21. The Struct Types
In Rust, the user can define a custom type using struct, union, or enum.

Struct A struct is a data structure consisting of a sequence of named or
unnamed fields.

Union A (C-style) union is a type that can be interpreted as one of a few
different types at run time.

Enum An enum is a union of one or more variants, each representing a
disjoint set of values.

Values of Rust unions are only accessible in unsafe code, and hence we do not
include unions in this book. We will go over basic syntax and semantics of the
Rust struct in this chapter. Enums are discussed in the next chapter.

21.1. Structs
A struct in Rust is a multiplicative type similar to tuples. It represents a product
of other types, called the fields of the struct type. Structs can be further divided
into three groups, (regular) structs, tuple structs, and unit-like structs. Tuple
structs and unit structs are described later in the chapter. A new struct type, that
is, a regular struct with fields, is declared with the following general syntax:

struct IDENTIFIER {
  FIELDNAME1 : TYPE1,                    ①
  ...
  FIELDNAMEn : TYPEn,
}
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① Fields are separated by commas. The comma after the last field is optional.

Structs can be declared generically as well. In such a case, generic parameters
enclosed in <>, with an optional where clause for any trait bounds, are placed
after the struct name IDENTIFIER. For example,

struct CarnivoreMeal<Meat: ?Sized> {     ①
  drink: u8,                             ②
  main_dish: Meat,
}

① Using the shorthand notation for the trait bound.

② A field, comprising a name and its type, separated by a colon (:). The order of
the fields in struct declaration is not significant unless the repr attribute is
used to fix the memory layout.

A struct can be public or non-public, just like all other items in a module.
Likewise, each field of a struct can be public or non-public, e.g., based on the
presence or absence of the pub visibility modifier. Public fields of a public struct
can be accessed from outside the module. For example,

mod struct_demo {
  pub struct StructWithFields {          ①
    pub field_one: u8,                   ②
    field_two: i16,                      ③
  }
}

① A public struct, accessible from outside the struct_demo module. This type
can be viewed as a product of two types, u8 and i16.

② A public field, accessible from outside the module.
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③ A private field. Note that a public struct with at least one private field cannot
be constructed outside the module using the struct literal syntax, as we discuss
in the next section.

Unlike some similar structures in other programming languages, the order of the
fields in a Rust struct in terms of the memory layout may not be the same as the
order of the fields, e.g., as defined in the declaration. This is, for instance, to allow
for compiler optimization. The memory layout can be fixed using the repr
attribute, but we do not discuss it in this book.

Struct Expressions
New instances of a struct, as well as instances of a struct variant of an enum, can
be constructed using a struct literal syntax. (Technically, struct expressions are not
really literals. In Rust, literals are single lexical tokens, like numbers or string
literals. Nonetheless, it is not uncommon to call the struct construction expression
a struct literal.)

A regular struct, or field struct, expression consists of the name or path to a struct,
followed by a list of field name and value pairs, enclosed in the curly braces ({}).
Note that, in general, all fields declared in the struct item need to be included in
the struct literals. The fields can be specified in any order. For example,

mod demo {
  #[derive(Debug, Clone, Copy)]
  pub struct Drink {
    size: u8, // In ounces or in liters? ①
    kind: &'static str,
  }
  impl Drink {                           ②
    pub fn new(size: u8,
      kind: &'static str) -> Drink {     ③
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      Drink { size, kind }               ④
    }
  }
}
fn new_drink_demo() {
  let d = demo::Drink::new(16, "diet water");
  println!("{d:?}");                     ⑤
}

① Note that the Drink's fields are private in this example.

② An inherent implementation of Drink.

③ It’s conventional to use associated new or new_xxx functions, or from or
from_xxx functions, to create instances of structs.

④ This struct expression is equivalent to Drink {size: size, kind: kind}.
When a value expression of a field is a variable with the same name as the
field, e.g., fieldname: fieldname, that field can use the shorthand notation,
e.g., fieldname.

⑤ This will print Drink { size: 16, kind: "diet water" }.

#[derive(Debug)]
struct ComboMeal<Meat, const N: usize> { ①
  drink: demo::Drink,                    ②
  burgers: [Meat; N],                    ③
}
fn order_super_meal() {
  let meal = ComboMeal {                 ④
    burgers: ["turkey", "goat", "tuna"], ⑤
    drink: demo::Drink::new(64, "beer"), ⑥
  };
  println!("{meal:?}");                  ⑦
}
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① The const parameter is explained in an earlier chapter.

② Although Drink has all private fields, the type itself is public.

③ An example of using the const generic parameter.

④ A struct literal expression, e.g., to create an instance of ComboMeal. The type of
meal is ComboMeal<&str, 3>.

⑤ Note that, as indicated, the order of the fields in the struct literal syntax is not
important, regardless of whether the struct is declared with the repr attribute
or not.

⑥ If the Drink's fields were public, this new associated function call would have
been equivalent to the struct expression, drink: demo::Drink { size: 64,
kind: "beer" }. Note that we use the qualified path demo::Drink, and not
just the name, in this case.

⑦ The output will be ComboMeal { drink: Drink { size: 64, kind: "beer" }, burgers:
["turkey", "goat", "tuna"] }.

21.2. Struct Update Syntax
A new instance of a struct type can be created based on an existing instance of
the same type. This is sometimes called the functional update syntax (although
technically we are constructing a new instance, and not updating an existing one).

This is another example of the constructs that originally started in functional
programming languages and are becoming increasingly more popular in
imperative languages.

Generally speaking, Rust’s struct is comparable to the data type in Haskell, for
instance, and especially to its record type syntax. More "mainstream" languages
like C#, Java, and JavaScript/TypeScript have been likewise supporting various
forms of record-like data types, as well as this immutable update, or "spread",
syntax.
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Rust uses more or less the same struct expression syntax, but with the .. token
(two dots) followed by another struct (known as the base) in the trailing field
position, in the curly braces ({}). For example,

#[derive(Debug)]
struct Rec<'a> {
  f1: i32,                               ①
  f2: String,                            ②
  f3: &'a str,                           ③
}

① Note that the primitive integer type i32 is a Copy type.

② String is a Move type.

③ &str is intrinsically a reference type.

fn struct_update_demo() {
  let rec1 = Rec {                       ①
    f1: 100,
    f2: String::from("Warm"),
    f3: "Weather",
  };
  println!("{rec1:?}");                  ②
  let rec2 = Rec {                       ③
    f1: 105,
    f2: String::from("Hot"),
    ..rec1                               ④
  };
  println!("{rec2:?}");                  ⑤
  let rec3 = Rec {                       ⑥
    f3: "Climate",
    ..rec1
  };
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  println!("{rec3:?}");                  ⑦
  // println!("{rec1:?}");               ⑧
}

① A struct literal expression to create a new instance of the Rec type, as defined
above.

② This will print out Rec { f1: 100, f2: "Warm", f3: "Weather" }.

③ We are using the struct update expression syntax, using rec1 as the base. The
values of f1 and f2 are explicitly set, whereas the rest (only f3 in this
example) are set based on the corresponding values in rec1.

④ The syntax for specifying the base, with the .. prefix. Note that the trailing
comma is not allowed in this form.

⑤ An expected output: Rec { f1: 105, f2: "Hot", f3: "Weather" }

⑥ Another example of the functional update syntax. In this case, only f3 is
explicitly set or overwritten. The values of f1 and f2 are based on rec1.

⑦ An expected output: Rec { f1: 100, f2: "Warm", f3: "Climate" }

⑧ This will cause a compile error, borrow of partially moved value.

As can be seen from this simple example, Rust adds some twist to this now-widely
used record construction syntax, e.g., due to the fact that Rust more commonly
uses move-based value semantics.

As indicated, i32, the type of f1, is a Copy. On the other hand, String is a Move.
In the example of the rec3 struct literal, the value of f1 is copied from rec1,
whereas the value of f3, a String, is moved from rec1.f3 to rec3.f3.
Therefore, if we try to use rec1 after this struct expression, we will run into an
error. One thing to note is that, in order to be able to use this immutable update
syntax outside the module, the fields of the given struct type must be all public.
This is the same requirement as with the struct literal syntax.
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21.3. Field Access Expressions
A field of a struct can be accessed using the dot operator (.) with the struct,
followed by the field name. A field expression is a place expression that points to
the location of the given field (e.g., like a variable). The field expression is
mutable/immutable depending on whether the struct variable itself is mutable or
not. For example,

#[derive(Debug)]
struct Foo {                             ①
  fighter: &'static str,
  number: fn() -> i32,                   ②
}

① An example struct with two fields.

② Note that the number field is callable.

fn foofoo() -> Foo {                     ①
  Foo {
    fighter: "Foo Fighters",
    number: || 21,
  }
}

① The foofoo function returns an instance of the Foo type.

fn field_access_demo() {
  let ff1 = foofoo().fighter;            ①
  println!("{ff1}");

  let ff2 = (Foo {
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    fighter: "Bar Fighters",
    number: || 42,
  })
  .fighter;                              ②
  println!("{ff2}");

  let mut foo = Foo {                    ③
    fighter: "Kung Foo",
    number: || 84,
  };
  foo.fighter = "Fung Foo Panda";        ④
  println!("{foo:?}");
  let num = (foo.number)();              ⑤
  println!("{num}");
}

① Since foofoo() returns a struct, e.g., an instance of Foo, we can use the field
access syntax.

② Another example of a field access expression. Note the use of the parentheses
around the struct literal.

③ The variable foo is declared to be mutable.

④ Hence, its field access expression is also mutable.

⑤ Since the field number is callable, the field expression foo.number is callable.
Note again the use of the parentheses. Without the parentheses, it would have
been parsed as a method call expression.

21.4. Tuple Structs
A tuple struct can be viewed either as a tuple with named fields or as a struct with
anonymous fields. In fact, tuple structs lie somewhere between tuples and structs
in Rust, both syntactically and semantically.
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A tuple struct type is declared with a struct name followed by a tuple type. For
example,

struct NamedTuple(u16, i32, f64);
struct AnonymousStruct<'a>(bool, &'a str);

Note that, unlike tuples, the names of structs (including tuple structs) are part of
the type definitions. That is, for example, NamedTuple above and the following
tuple struct are two different types, although they consist of the same fields.

struct TuplelikeStruct(u16, i32, f64);

Tuple structs can be generically declared as well, e.g., as shown above with
AnonymousStruct<'a>. Generic type and constant parameters can also be used.
An instance of a struct tuple can be constructed using the tuple struct literal
syntax. For example,

#[derive(Debug)]
struct Triple(u8, u8, i128);

#[derive(Debug)]
struct Pair<T1: Clone, T2: ?Sized>(T1, T2);

fn tuple_struct_demo() {
  let ts1 = Triple(0, 10, 100_000_000);  ①
  println!("{ts1:?}");

  let ts2 = Pair("Hi", 007);             ②
  println!("{ts2:?}");
}
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① The syntax of the tuple struct expression is the struct name followed by its
members, or anonymous fields, in a pair of parentheses. Note that their order
is important since they are all unnamed.

② The inferred type of ts2 is Pair<&str, i32>. One can also explicitly specify
the type in the let binding, or by using the turbofish syntax with the tuple
struct literal, e.g., Pair::<&str, u8>("Hi", 007).

Alternatively, tuple structs can use the regular field struct expression syntax,
using the indices, 0, 1, …, instead of field names. We can also use the immutable
update syntax. For instance, using the Triple example from above,

fn tuple_struct_demo_2() {
  let triple = Triple {
    0: 1,                                ①
    1: 10,
    2: 1_000_000_000_000_000_000_000,    ②
  };
  println!("{triple:?}");

  let triple_again = Triple {            ③
    1: 255,
    .. triple
  };
  println!("{triple_again:?}");
}

① The order of the fields are not significant in this syntax.

② Incidentally, not many programming languages support 128-bit integer types.
What is the biggest number you can read? 

③ Constructing a new instance of Triple based on an existing value triple.
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21.5. The New Type Pattern
Most programming languages support a method to create a new type or type alias
based on an existing type. Rust supports creating a type alias or synonym using
the type keyword, with some limitations. For instance, as another example,

#[derive(Debug)]
struct Stock<T: Copy>(&'static str, T);
type Alias = Stock<f32>;                 ①

fn type_alias_demo() {
  let stock: Alias = Stock("Rust", 1.0); ②
  println!("{stock:?}");

  // let stock2 = Alias("Iron", 0.0);    ③
  // println!("{stock2:?}");
}

① Alias is a type alias to a tuple struct type Stock<f32>.

② The type alias Alias can be used just like a "real type". The type of stock in
this declaration is Stock<f32>. The inferred type would have been
Stock<f64>.

③ Rust’s type alias has some limitations, however. For example, a type alias to a
tuple struct type cannot be used as a constructor. This particular tuple struct
literal expression, in this example, is not allowed in Rust.

In addition, some programming languages support creating a brand-new type,
based on an existing type, which is in many ways similar, or almost identical, to
the existing type and which is yet a different and distinct type from the original
type. Go, for example, supports this using the type definition. Haskell likewise
supports it through the newtype construct.
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Rust does not have a builtin support for creating a new type this way, but one can
use the tuple struct type for this purpose. In particular, one can create a tuple
struct with one single field of a target type. This is often known as the "new type
pattern" in the Rust community. For example,

#[derive(Debug, PartialEq)]
struct Identity(u64);                    ①

① Identity is a "new type" based on, but distinct from, the type u64. The idea
here is, although we just need, or we could just use, u64, we define a separate
type, e.g., for added benefits.

impl Identity {                          ①
  fn is_valid(&self) -> bool {
    if self.0 >= 1_000_000 && self.0 < 10_000_000 {
      true
    } else {
      false
    }
  }
}

use std::fmt::{Display, Formatter, Result};
impl Display for Identity {              ②
  fn fmt(&self, f: &mut Formatter<'_>) -> Result {
    write!(f, "{} ({})", self.0, self.is_valid())
  }
}

① We can add associated functions and methods to the type. In this particular
example, since u64 is a builtin type, we could not have added an extra method
on u64. (And, this is one of the benefits of using "new types".)
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② Likewise, we can implement a trait on this new type. In general, due to Rust’s "
orphan rule", it is not always possible to implement (possibly, somebody else’s)
traits on (likewise, possibly somebody else’s) types. The "new type" idiom gives
you more control in this regards.

fn can_i_pass(id: &Identity) {           ①
  if id.is_valid() {
    println!("You can pass");
  } else {
    println!("You shall not pass!");
  }
}

① Note that the new type pattern provides more type safety. In this (rather
trivial) example, this can_i_pass function takes an argument of Identity,
but not just a number of u64 (although they are essentially the same in the
current context).

fn newtype_pattern_demo() {
  let id1 = Identity(1234567);
  let id2 = Identity(1);
  println!("{id1}, {id2}");
  assert_ne!(id1, id2);                  ①

  for id in &[id1, id2] {
    can_i_pass(id);                      ②
  }
  // can_i_pass(123456789);              ③
}

① Since we derived Debug and PartialEq on Identity, we can compare the
values of Identity using the assert_eq macro.
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② The can_i_pass function can be called with a value of the Identity type.

③ This call, for example, will not compile.

Clearly, there is a tradeoff, and if the benefits outweigh the overhead, use of the
new type pattern may be preferred over just using simpler types. One last thing.
New type tuple structs, as well as other field- and tuple- structs in general, can use
the destructuring syntax to obtain their field values, as we describe in a number
of different places in the book. In case of new type structs with one base type,
here’s an example:

fn newtype_pattern_demo_2() {
  for id in &[Identity(7654321), Identity(1000000)] {
    if let Identity(1000000) = id {      ①
      println!("You are wanted! RUN!!!");
    } else {
      let Identity(u1) = id;             ②
      println!("Your internal ID = {u1}");
    }
  }
}

① The if let expression using the tuple struct pattern.

② The let binding also uses (irrefutable) patterns on the left-hand side.

21.6. Unit-Like Structs
A unit-like struct type is a special kind of struct type which includes no fields.
Unlike field structs or tuple structs, a unit-like struct is declared with a name only,
e.g., without any trailing curly braces or parentheses. When a unit-like struct type
is declared, Rust automatically defines a constant of the given type with the same
name. That is, the name of the type is also the name of the implicitly defined
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constant, which is the only value of that unit-like struct type. For example,

#[derive(Debug, PartialEq)]
struct UnitCircle;                       ①

fn unit_struct_demo_1() {
  println!("{UnitCircle:?}");            ②

  let circle1 = UnitCircle;              ③
  let circle2 = UnitCircle {};           ④
  assert_eq!(circle1, circle2);
}

① A unit-like struct type named UnitCircle.

② UnitCircle is also a constant value of the UnitCircle type.

③ The variables circle1 and circle2 have the same value.

④ Syntactically, UnitCircle {} is a struct literal, but it returns the same, and
the only, value, UnitCircle.

Note that Rust’s unit-like structs are comparable to singleton objects. Although
unit-like structs do not have any fields, they can still be associated with functions
or methods. For instance,

impl UnitCircle {
  fn radius() -> f32 {                   ①
    1.0
  }
  fn diameter(&self) -> f32 {            ②
    2. * UnitCircle::radius()
  }
}
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fn unit_struct_demo_2() {
  let r = UnitCircle::radius();          ③
  println!("radius = {r}");
  let d = UnitCircle.diameter();         ④
  println!("diameter = {d}");
}

① An associated function.

② An associated method. Note that there is no real difference between functions
and methods in case of unit-like structs.

③ Calling an associated function on the constant value.

④ Calling an associated method.

Builtin Attributes

The deprecated Attribute
Another rather commonly used attribute is deprecated. Although breaking
backward compatibility should really be considered a sin , in reality, it is a
rather common practice. One can use the deprecated attribute to warn
users (e.g., other programmers) for upcoming radical, and possibly
backward-incompatible, changes. For example,

#[deprecated]
struct JustBornAndSad {
  bones: i32,
  brains: bool,
}
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Chapter 22. The Enum Types
Enums, or enumerated types, in Rust are algebraic sum types, often called the
disjoint unions, discriminated unions, tagged unions, or simply unions. (Not to be
confused with Rust’s C-style union type.) An enum consists of a number of
variants, with each variant representing a (mutually exclusive) set of values. The
overall enum type refers to a set union of all sets of values corresponding to these
enum variants. (And, hence the name, the union or sum type.)

An enum item declares an enum type and all of its variants. Each variant has a
name, and although variants themselves are not types, they use the syntax of the
unit struct, tuple struct, or (regular) struct types.

22.1. Enum Variants
Enums are declared with the keyword enum, followed by the enum name and a list
of its variant members, enclosed in curly braces ({...}). Enums can be generic.
Each variant is declared using a struct-like syntax, which represents a constructor
for that variant (e.g., using the struct literal syntax). Variants are also used in
pattern matching for instances of the given enum. Each variant is associated with
an integral discriminant value, and in case of unit-like variants, discriminant
values can be explicitly given in an enum declaration.

For instance, here’s a general syntax in an informal notation:

enum IDENTIFIER {
  VARIANT1,
  ...
  VARIANTn,
}

22.1. Enum Variants
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All variant names have to be unique within a given enum. Here are some concrete
examples:

#[derive(Debug)]
enum PetA {                              ①
  Puppy,
  Kitty,
}
fn unit_variants() {
  let pet1 = PetA::Puppy;                ②
  let pet2 = PetA::Kitty;
  println!("My pets = {pet1:?} and {pet2:?}");
}

① An enum with two unit-like struct variants, Puppy and Kitty.

② An enum variant is essentially a constructor. Both pet1 and pet2 are variables
of the type PetA.

enum PetB {                              ①
  Puppy(&'static str),
  Kitty(u8),
}
fn tuple_variants() {
  let _p1 = PetB::Puppy("Snoopy");        ②
  let _p2 = PetB::Kitty(9u8);
}

① An enum with two tuple-like struct variants, Puppy(&'static str) and
Kitty(u8). Both happen to have one unnamed field.

② Enum variants are used to construct values of that enum. Both _p1 and _p2
are variables of the type PetB.
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enum PetC {                              ①
  Puppy { name: &'static str },
  Kitty { lives: u8 },
}
fn struct_variants() {
  use PetC::*                            ②
  let _p1 = Puppy { name: "Doo" };       ③
  let _p2 = Kitty { lives: 99 };
}

① An enum with two field struct variants, Puppy{name: &'static str} and
Kitty{lives: u8}, each of which has one named field.

② The use statement can be sometimes useful to reduce clutter.

③ In all three cases, struct variants of an enum use the same corresponding
struct expression syntax to construct instances of that enum.

Classification of variants into these three kinds are somewhat artificial, and these
different kinds of variants can certainly be mixed in a single enum declaration.
Note, however, that variants, Cat (a unit-like struct), Cat() (an empty tuple), and
Cat{} (a struct with no fields), are all syntactically different from each other.
Enum support iterations, and pattern matching over their variants, and so forth.
Enums can be associated with constants, functions, and methods through trait
declarations and/or implementations. Since these are common across different
types in Rust, we don’t specifically discuss these use cases for enum in this chapter.

22.2. Enum Discriminants
Each variant of an enum is associated with a discriminant value, starting from 0
and incrementing by 1 through all variants of the enum in the listed order. Their
types are isize by default (although the compiler may choose to use a
different/smaller type in the actual memory layout).
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Depending on the use cases, these discriminants can be given custom values, and
they can even be given different integer types. This customization can be achieved
using an assignment-like syntax after a variant. For example,

enum Musketeer {
  Athos,                                 ①
  Aramis = 42,                           ②
  Porthos,                               ③
}
fn enum_discriminants() {
  let m1 = Musketeer::Athos;
  let m2 = Musketeer::Aramis;
  let m3 = Musketeer::Porthos;
  assert_eq!(0, m1 as u8);               ④
  assert_eq!(42, m2 as i16);
  assert_eq!(43, m3 as u32);
}

① The discriminant value of the first variant, Athos, is 0, by default.

② We can explicitly set the variant’s discriminant value, using this assignment
syntax. In this example, the discriminant value of Aramis is 42.

③ Then, without an explicitly assigned custom value, the discriminant value of
Porthos is automatically set to an integer value that is 1 bigger than the
previous value, which is 43 in this case. Note all discriminant values have to
end up unique through this manual and automatic assignment.

④ We can get the discriminant values by explicitly casting the enum values to
any compatible integer type. Note that the discriminant values of Rust’s enums
are always integers, unlike in some other languages which support strings and
what not. On the other hand, Rust’s enums are much more general
(comparable to data types in Haskell, for instance), and their variants can
potentially contain other data values, including strings, etc.
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In enums like this, which consist of only unit-like/fieldless variants, assigning, and
accessing, custom discriminant values is straightforward. For enums with
compound variants, e.g., tuple-like or struct-like variants, the enum has to be
explicitly annotated with the repr(INTTYPE) attribute. to be able to use custom
discriminant values or use specific integer types. For example,

enum Desert {
  // Apple = 5,                          ①
  Coffee(bool), // Decaf?
  IceCream { flavor: String },
}

① This will cause an error although this variant itself does not contain any data.

Furthermore, in case of general union-type enums, their variants cannot be
simply cast or coerced to integer values in safe Rust.

#[derive(Debug)]
#[repr(u16)]                             ①
enum Humanlike {
  Person = 100,     // Average IQ
  Chatbot { maker: String } = 20,        ②
  // Terminator(f64) = 65550,            ③
}
fn enum_discriminants_2() {
  let h1 = Humanlike::Person;
  let h2 = Humanlike::Chatbot {
    maker: String::from("ClosedAI"),
  };
  // println!("h1 type: {}", h1 as u16); ④
  println!("h2 = {h2:?}");
}

22.2. Enum Discriminants
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① This attribute, with a specific integer type, is needed to be able to use custom
discriminant values.

② The custom discriminant values can be given to a compound variant as well.

③ Incidentally, since we declare this enum to use u16, 65550 is not a valid
discriminant value.

④ The general enum’s discriminant values cannot be accessed in the safe Rust,
e.g., by simply casting it to an integer type.

As this example illustrates, enums consisting of only fieldless variants have
special uses in Rust, similar to those found in other C-style languages.

Builtin Attributes

The repr Attribute
The repr attribute is primarily used to control the low-level memory layout
of composite types such as structs, enums, and unions. First of all, if you are
coming from high-level languages, it’s important to note that the memory
layout is always linear. For example, a particular struct may appear to be
organized in a tree, e.g., since a field of a struct may contain other fields,
etc. But, ultimately, they are flattened (e.g., through a depth-first traversal)
and they occupy a linear contiguous space on stack. (Some fields may point
to memory in other locations, however.)

Most computers use 32 bit or 64 bit architecture, and the overall size of a
value and its memory layout, e.g., especially across word boundaries, can
affect the performance. This is where repr can be used. Otherwise, most
Rust programmers working on high-level applications need not, and should
not, generally worry about these details.
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22.3. Zero-Variant Enums
There are a special kind of enums that have no variants. They are called the zero-
variant enums, and they cannot be instantiated since they do not have variants.
Zero-variant enums are often used as placeholder types, and they sometimes have
overlapping use cases with the never ! type.

enum Zero {}                             ①
fn zero_variant_enums_1() -> Zero {      ②
  loop {
    println!("It's not illegal!");
  }
}
fn zero_variant_enums() {
  let _z: Zero = panic!("Don't panic!"); ③
}

① A zero-variant enum, with a very imaginative name, Zero. 

② The loop expression never returns.

③ Likewise, the panic! macro does not return a valid value.

Clearly, there can be practically an infinite number of zero-variant enums (with
different names), and they are all different types from each other.

enum Cero {}                             ①
fn zero_variant_enums_2() {
  let x: Zero = panic!("Panic!");
  // let y: Cero = x;                    ②
}

① Another zero-variant enum type, with a different name.
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② This will cause a compile error due to mismatched types, besides the fact that
this line is not reachable since panic! diverges (e.g., it returns with !).

Unlike !, zero-variant enums are "real" types. Zero-variant enums are, in a sense,
comparable to the static classes in C#, for instance. In particular, although we
don’t see many such uses in the wild, Rust’s zero-variant enums can be used to
simply "organize" functions into groups, like the way static classes and empty
structs are used in C#, Java, and Go, etc. For example,

enum Ghost {}                            ①
impl Ghost {                             ②
  fn boo() { println!("I boo!") }
  fn doo() { println!("I doo!") }
}
fn another_zero_variant_enum_demo() {
  Ghost::boo();
  Ghost::doo();
}

① Another different zero-variant enum type.

② A zero-variant enum can be used to collect related (associated) functions into a
namespace, if you will.

Builtin Attributes

The non_exhaustive Attribute
A struct initially defined with a certain set of fields, or an enum with a
certain set of variants, may end up with more fields/variants in the future.
This can cause backward compatibility issues if these types are publicly
exported.
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To help alleviate this potential issue, one can mark their types with the
non_exhaustive attribute. In particular, structs, enums, and enum
variants can be annotated as non_exhaustive.

Within the same crate where these types are defined, the non_exhaustive
attribute has no effect. But, their uses will be limited in the outside crates.
For example, a non_exhaustive struct may not be created using a struct
expression. Likewise, enumerating over all variants of a non_exhaustive
enum does not count as exhaustive. This is in order to preserve the
backward compatibility in the future.

For instance,

#[non_exhaustive]
pub struct Rainbow {
  pub red: u32,
  pub blue: u32,
  // That's it for now, but
  // I may remember some more rainbow colors later...
}

pub enum Bug {
  #[non_exhaustive]
  Ant { head: bool, legs: u8, },
  #[non_exhaustive]
  Bee(bool),
  #[non_exhaustive]
  Scorpion,
}

22.3. Zero-Variant Enums
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Chapter 23. Smart Pointers
It’s worth repeating that all values in Rust are stack allocated by default. In fact,
there is no way to explicitly store values on the heap using the safe Rust language
constructs only (e.g., like the new and delete operators in C++). (In contrast, in
many higher-level (and, garbage-collected) languages like Python, JavaScript, and
Java, values are all heap-allocated, except primitive type values like numbers.)

This is because the heap memory is often the cause of memory leak, and all other
bad things. In fact, heap memory is the root of all evil!!! As long as we don’t use the
heap, we should be fine.  Well, obviously, that’s like throwing the baby out with
the bath water. It’s really not feasible to create any (non-trivial) software without
using heap memory. Rust provides an escape hatch, if you will. Rust provides a
number of types in the standard library, whose main purpose is to allow us to use
the heap memory in a safe(r) way.

For example, as mentioned, the String and Vec types use heap memory. They are
dynamic-sized, and they cannot be allocated on stack, and hence we need to rely
on Rust to provide types like them.

Another commonly used type is Box<T>. Values can be explicitly stored on the
heap using Box<T>. This is generally known as "boxing" in programming. Boxed
values can be dereferenced using the star * operator in Rust, and the values
themselves act like references or pointers. Types like Box<T> are often called
smart pointers for this reason. They are "smart" because they manage their own
memory, and the developers do not generally have to worry about allocating and
de-allocating memory on the heap. (BTW, Box<T>, which corresponds to
unique_ptr in C++, is one of the quintessential move-only types. That is, copy
would not make sense for the values of Box<T> and other similar types.) We go
over a few (smart) pointer types of Rust next. Note that the purpose of this chapter
is to list a few important heap-based types so that the readers who are new to Rust
know what to look for, and not to be comprehensive.
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23.1. The Box<T> Struct
The generic std::boxed::Box<T> type is a container type, which is commonly
used as a way to store values of an arbitrary type T on the heap. When a Box goes
out of scope, its drop method is called, and the memory on the heap is freed.

pub struct Box<T: ?Size>;

The Box<T> struct has a few special features:

• The * operator for Box<T> produces a place which can be moved from,

• Methods can take Box<Self> as a receiver, and

• A trait may be implemented for Box<T> in the same crate as T, which is not
possible, in general, for normal generic types, a la orphan rule.

23.1.1. Constructor

fn new(x: T) -> Box<T>;

The new constructor function allocates memory on the heap and then places the
given value x into that location.

23.1.2. Examples

#[derive(Debug, Clone)]
struct Jack {
  clown: Option<Box<Jack>>,              ①
  age: u8,
}

23.1. The Box<T> Struct
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impl Jack {
  fn new() -> Jack {
    Jack {
      clown: None,
      age: 1,
    }
  }
  fn push_one(&mut self) {
    self.clown = Some(Box::new(Jack {
      clown: self.clown.clone(),
      age: self.age,
    }));
    self.age = self.age + 1;
  }
}

① Types like Jack are called recursive types. Because their sizes cannot be known
at compile time, they have to use pointer types like references, e.g., &Jack, or
smart pointers, e.g., Box<Jack>.

The type Jack actually represents a singly linked list (e.g., with the clown field as
the "next" pointer). One can easily implement the push and pop methods on Jack,
e.g., something like push(&mut self, jack: Jack) and pop(&mut self) ->
Option<Jack>. Another way is to use an enum, for instance,

#[derive(Debug, Clone)]
enum Node<T: Clone + Default> {
  Cons(T, Box(Node<T>)),                 ①
  Nil,
}

① Again, this is a recursive type, and we need a pointer type here. The readers
are encouraged to try and implement the push and pop methods, for practice.
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23.2. The Rc<T> Struct
The std::rc::Rc<T> type is a "reference counting" smart pointer. It can only be
used in a single-threaded environment. There is also a corresponding reference
counting type in std::sync, called Arc<T>.

pub struct Rc<T: ?Sized> {
  /* private fields */
}

Rc<T> is generally used when multiple ownership is needed. Technically, Rc is
self-owned, but conceptually, every reference added to Rc is considered an owner.
A value of Rc keeps track of the number of references (or, "owners"), and when all
references are removed, the Rc itself is destroyed. More specifically, the reference
count of an Rc increases by 1 whenever the Rc is cloned, and decreases by 1
whenever one cloned Rc goes out of the scope. When the Rc's reference count
becomes zero, which means that there are no more owners remained, both the Rc
value and its contained value are dropped.

23.2.1. Constructor and Clone::clone

fn new(value: T) -> Rc<T>;

fn clone(&self) -> Rc<T>;

As explained, cloning an Rc does not perform a deep copy. Cloning creates just
another pointer to the wrapped value, and it increments the strong reference
count. Rc<T> also implements the Deref trait (but, not DerefMut), and hence it
can be dereferenced.

23.2. The Rc<T> Struct
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23.2.2. Examples

use std::rc::Rc;

#[derive(Debug)] struct Poly(u8);

fn count(arg: &Rc<Poly>) -> usize {
  Rc::strong_count(&arg)
}
pub fn rc_demo() {
  let rc1 = Rc::new(Poly(1));            ①
  let rc2 = rc1.clone();                 ②
  let rc3 = rc2.clone();
  println!("{c}", c = count(&rc3));      ③
}

① Rc::new creates a new Rc instance with the reference count 1.

② Every cloning increases the reference count by 1.

③ This will output 3.

23.3. The Cell<T> Struct
A Cell<T> value represents a mutable memory location. This type, as well as
RefCell<T>, are not technically smart pointers. They do not implement the
Deref trait, and hence they cannot be dereferenced. Nonetheless, they have much
in common with smart pointer types like Box<T>.

pub struct Cell<T: ?Sized> {
  /* private fields */
}

23.3. The Cell<T> Struct
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23.3.1. Constructor

fn new(value: T) -> Cell<T>;             ①

① The new function creates a new Cell containing the given value of type T.

23.3.2. Examples

pub fn cell_demo() {
  let celled = std::cell::Cell::new(10); ①
  println!("{celled:?}");
  celled.set(1000);                      ②
  println!("{celled:?}");
}

① A Cell is created using the Cell::new constructor with a value 10. Note that
we declare celled as let, and not let mut.

② But, we can still update the wrapped value of celled. This is called the
"interior mutability".

23.4. The RefCell<T> Struct
The RefCell<T> type also represents a mutable memory location. It is similar to
Cell<T>, but values of RefCell<T> act more like references, with dynamically
checked borrow rules at run time.

pub struct RefCell<T: ?Sized> {
  /* private fields */
}

23.4. The RefCell<T> Struct
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23.4.1. Constructor

fn new(value: T) -> RefCell<T>;          ①

① The new constructor function creates a new RefCell containing the given
value of type T.

23.4.2. Examples

use std::cell::RefCell;
fn refcell_demo() {
  let mut c = RefCell::new(1);           ①
  *c.get_mut() += 1;                     ②
  assert_eq!(c, RefCell::new(2));
  let x = c.replace(10);                 ③
  assert_eq!(x, 2);
  assert_eq!(c, RefCell::new(10));
}

① A constructor call, with an interior value 1, whose type is i32.

② The get_mut method returns a mutable reference of type &mut T, or &mut
i32 in this example, which can be used to update the value this reference
points to. After this statement, the contained value of c will be 2. Again, it
demonstrates interior mutability.

③ The replace method replaces the interior value with the provided value, and
it returns the old value. Hence, x will be 2, and the RefCell c now will end up
containing a new value 10.


Note that the types listed in this chapter are all Move types, and
they all implement the Clone trait.

23.4. The RefCell<T> Struct
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Chapter 24. Traits
As we emphasize throughout this book, traits in Rust play two important roles,
among other things. First, a trait divides all types into two mutually exclusive sets.
A type either belongs or does not belong to the given trait class. Traits themselves
are not types.

Second, a trait defines the common behavior for all types belonging to that trait
class. An instance type of a trait needs to implement all functions and methods
required by that trait (e.g., without default implementations), as well as any other
required associated items such as constants and types.

24.1. Trait Declarations
A new trait can be declared as follows:

• The trait keyword,

• The name of the trait,

• Optional generic parameters, and

◦ Trait bounds, including lifetime bounds, if any, and

• A block ({}), enclosing

◦ Any inner attributes, and

◦ Zero or more associated items.

The set of associated items, if any, defines the abstract interface of the trait that
types need to implement to be part of that trait class. Associated items can be
constants, type aliases, or functions/methods, with or without definitions (or,
default implementations). They are further discussed in the next chapter. Impls,
both inherent and trait implementations, are discussed in the following chapter.

24.1. Trait Declarations
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For example,

trait MyTraitOne {
  const C1: i32 = 0b1000_000_000;        ①
  const C2: &'static str;                ②
  type T1;                               ③
  type T2<S>;                            ④
  fn f1() -> u8 { 255 }                  ⑤
  fn f2(a: i64, b: i64) -> Option<i64>;  ⑥
}

① A constant with a default value, associated with the type, MyTraitOne.

② An associated constant without a default value.

③ An associated type. Note that the associated type cannot have a default
implementation, as of this writing.

④ An associated type can be generic even when the trait may not be generic.

⑤ An associated function with a default implementation.

⑥ An associated function without implementations.

A trait specified with generic parameters is a generic trait. The parameters appear
after the trait name, using the same syntax used in generic types. For instance,

trait Drone<T: Copy> {
  type Wing<K: Copy>;
  fn new() -> Self;                      ①
  fn fly(&self, speed: f32) -> T;
  fn test(&self) -> Result<Self::Wing<T>, ()>;
}

① Self refers to the implementing type.

24.1. Trait Declarations
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24.2. Supertraits
Rust doesn’t support type inheritance. But, traits can be used to provide
relationships among the types that implement those traits.

A trait can be declared with one or more supertraits. In order for a type to be able
to implement a trait it needs to first implement all supertraits of the given trait, if
any. Alternatively, the trait - supertrait relationship creates kind of subtype -
supertype relationships among the implementing types. Syntactically, supertraits
are declared by trait bounds on the Self type of a trait. Traits included in those
trait bounds can also include supertraits of their own, and hence the supertrait
specification is transitive.

For instance, here’s a simple trait with one associated method, which includes a
default implementation:

trait Decapod {
  fn legs(&self) -> u8 { 10 }
}

Now, we can create another trait as a subtrait of Decapod as follows:

trait Crustacean: Decapod {              ①
  fn walk_how(&self) -> &'static str;    ②
}

① This supertrait specification is a shorthand for trait Crustacean where
Self: Decapod { ... }, as just described, and as explained earlier in the
book, e.g., in the generics chapter.

② This crate defines a single associated method for illustration.

24.2. Supertraits
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fn walk_with_legs<T: Crustacean>(d: T) {
  let how = d.walk_how();                ①
  let legs = d.legs();                   ②
  println!("I walk {how} with {legs} legs!");
}

① Since the generic parameter T is constrained to be Crustacean, we can call
this method on a variable d of type T.

② Since Decapod is a supertrait of Crustacean, we can also call this method
defined in Decapod on d. This is somewhat reminiscent of how type
inheritance works in many OOP languages.

Here’s a simple example of implementing a trait which has a supertrait.

struct Crab;
impl Decapod for Crab { }                ①
impl Crustacean for Crab {               ②
  fn walk_how(&self) -> &'static str { "sideways" }
}

① In order to be able to implement a trait, e.g., Crustacean, the type is required
to implement all its supertraits as well, e.g., Decapod in this example. Note
that, in Rust, "implementing" involves an explicit impl declaration, e.g., even
when the trait may be empty.

② Implementing the Crustacean trait for Crab.

fn supertraits_demo() {
  let crab = Crab;
  walk_with_legs(crab);
}

24.2. Supertraits
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Chapter 25. Associated Items
Certain kinds of items can be declared, and/or defined, in traits or
implementations, and they are called the associated items. Currently, the
following items can be associated with types:

• Constants,

• Types, and

• Functions and methods.

Each associated item kind comes in two varieties:

• Declarations that declare signatures, and

• Definitions that also contain the implementation of the declarations.

25.1. Associated Constants
Constants can be associated with a type, e.g., by declaring them in a trait which
the type implements. The syntax is the same as the constant item declaration.

const IDENTIFIER : TYPE ;
const IDENTIFIER : TYPE = VALUE;

For example,

trait SSec {
  const NUMBER: i128;                    ①
  const IS_DUE: bool = false;            ②
}

25.1. Associated Constants
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① An associated const declaration, without an implementation.

② An associated const declaration with a default value.

struct SSecCard;                         ①
impl SSec for SSecCard {
  const NUMBER: i128 = 123_45_6789;      ②
  const IS_DUE: bool = true;             ③
}

① A unit-like struct, which is explained later.

② Associated constants without default values need to be implemented in an
implementation by each implementing type.

③ Associated constants with default values can be overridden.

impl SSecCard {
  const VALID_UNTIL: u16 = 2025;         ①
}

① Associated constants can also be defined in an implementation. The constant
VALID_UNTIL is now associated with the type SSecCard in this example. Note
that constants declared in an impl need to have their values defined as well.

fn associated_constants() {
  println!("My social security number is {}",
    SSecCard::NUMBER);                   ①
  println!("Is due? {}",
    SSecCard::IS_DUE);                   ②
  println!("Valid until: {}",
    SSecCard::VALID_UNTIL);              ③
}

25.1. Associated Constants
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① We can refer to the associated constant using a path syntax.

② Ditto. Associated constants declared in a trait can also be referred to with their
full paths. For example, SSecCard::IS_DUE is the same as <SSecCard as
SSec>::IS_DUE. The full path syntax can be useful when constants with the
same name exist in multiple traits that the type implements.

③ An associated constant declared and defined in an impl can also be referred to
by its path. Note that the constant name alone, e.g., VALID_UNTIL, cannot be
used to reference the associated constant.

25.2. Associated Types
Types, as a form of type aliases, can be associated with a type by declaring them in
a trait which the type implements. Associated types cannot be declared in
inherent implementations. They cannot be given default implementations with
the declarations in a trait.

An associated type is declared within a trait, using the type alias declaration
syntax. Unlike in the nominal type alias declarations, however, associated types
can include an optional list of trait bounds, e.g., including the where clause.

For example,

trait Maxi {
  type Elem;                             ①
  fn maxi(&self) -> Option<Self::Elem>;  ②
}

① An associated type declaration, without an implementation, in this example.

② This method uses the associated type as a return value. The path syntax
Self::Elem refers to the associated type Elem of the implementing type,
which is referred to as Self.
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impl Maxi for &[i32] {                   ①
  type Elem = i32;                       ②

  fn maxi(&self) -> Option<Self::Elem> { ③
    self.iter().max().copied()
  }
}

① We can implement the Maxi trait for the &[i32] slice type, as an example.
Note that we could have implemented it more broadly on a generic type like
&[T], e.g., with an appropriate trait bound on T.

② The type needs to provide an implementation for the associated type Elem
since the trait does not include a default implementation.

③ The method needs to be implemented as well. Note that Self::Elem, used as a
type parameter, is a shorthand for <&[i32] as Maxi>::Elem, which is i32.

impl Maxi for &str {                     ①
  type Elem = char;                      ②

  fn maxi(&self) -> Option<Self::Elem> { ③
    self.chars().max()
  }
}

① Another trait implementation example, using &str this time.

② The associated type Elem is defined to be char in this case. Implementing an
associated type uses the type alias syntax. That is, Elem is a type alias to char
in the context of this implementation. Note that &str is not a generic type, at
least syntactically, although conceptually it is sort of a collection type.

③ Self::Elem, or <&str as Maxi>::Elem, now refers to char.
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Here’s an example use of the Maxi::maxi methods.

fn associated_types() {
  let s1: &[i32] = &[21, 31, -11];
  let m1 = s1.maxi().unwrap();           ①
  println!("m1 = {m1}");
  let s2 = "HeLlO, cRaP!";
  let m2 = s2.maxi().unwrap();           ②
  println!("m2 = {m2}");
}

① The type of m1 is i32, which is the associated type Elem of the type s1, &[i32].

② The type of m2 is char in this case.

Generic Traits vs Traits with Associated
Types
What’s the difference between traits with associated types and traits with generic
parameters? The short answer is, there is no real difference. They are clearly
different from each other from the syntactic point of view, but nonetheless both
are constructs used to create generic, or parameterized, traits, that is, traits
parametrized over other types.

Traits defined with an associated type are also inherently generic, and one can
pretty much use one or the other when a type-parametrized trait is needed. There
are differences, however. It is not something you can learn from a bullet point list,
and the readers will need to pick this up through experience, but here are a
couple of important points.

First, at the syntactic level, generic trait syntax can be used for generic type or
constant value parameters, whereas the associated types are just types.
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But, more importantly, a type that implements a generic trait that has a generic
type parameter needs to be generic itself and, in general, it needs to use the same
generic type parameters used in the trait, e.g., in addition to any additional
generic type parameters. On the other hand, there is so such requirement for
(syntactically non-generic) traits declared with associated types. The type only
needs to "implement" this associated type(s), e.g., by providing a concrete type.
This concrete type does not need to be a type that is related to the implementing
type in any way (although they typically are in practice).

There are many other differences (conceptual or otherwise), but as stated, it is
something each programmer will have to learn through experience. In many
situations, the choice of one vs the other boils down to a personal preference.

If anything, many Rust programmers seem to find using traits with associated
types more "natural" than using generic traits. For instance, refer to the example
from the previous section, the Maxi trait. The concrete type for Elem is to be best
determined by each implementing type rather than through a generic declaration
on the trait. As we briefly discuss at the end, iterator-related traits defined in the
standard library generally use associated types rather than the generic type
parameter syntax, and it will be instructive to think about why that is the case.

25.3. Associated Functions
Functions associated with a type are generally referred to as "methods" of the
type, e.g., as the term is commonly used in object oriented programming. A special
class of functions associated with an instance of a type, called the associated
methods, are described in the next section. All others are simply called the
associated functions of the type.

The associated function declaration uses the similar syntax as the function item
declaration, but associated functions are not allowed to be async or const. An
associated function can be declared/defined in a trait and/or in an implementation
for the type. When it is declared in a trait, its body can be, and often is, omitted.
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For instance,

struct Gold {                            ①
  karat: u8,
}

① An example type with one field.

A trait declaration with two associated functions:

trait Digger {
  fn new() -> Self;                      ①
  fn lucky() -> bool {                   ②
    true
  }
}

① A function declaration without an implementation. It uses the conventional
name new, which is commonly used for functions that return a value of the
type Self. As mentioned, Self refers to the implementing type, e.g., in an
inherent or trait implementation.

② A function declaration with a default implementation.

impl Gold {
  fn new(karat: u8) -> Gold {            ①
    Gold { karat }
  }
}

① An associated function with the type Gold. It uses the same conventional name
new. The inherent implementation is discussed in the next chapter.
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impl Digger for Gold {
  fn new() -> Self {                     ①
    Gold::new(24)
  }
  // fn lucky() -> bool { false }        ②
}

① The Digger::new function is now associated with the Gold type.

② The same with Digger:lucky. We can optionally override its default
implementation.

fn associated_functions() {
  let gold1 = Gold::new(14);             ①
  let gold2 = <Gold as Digger>::new();   ②
  println!("Gold1 = {}k", gold1.karat);
  println!("Gold2 = {}k", gold2.karat);
  println!(
    "Are you feeling lucky? {}!",
    if Gold::lucky() {                   ③
      "Yes, very much"
    } else {
      "No, not at all"
    }
  );
}

① Calling an associated function of Gold.

② Because the same names are used, we will need to use the fully qualified name
for Digger::new here.

③ The Gold::lucky() call is the same as <Gold as Digger>::lucky().
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25.4. Associated Methods
Associated functions which satisfy the following conditions can be invoked using
the method call operator (.), for example, x.foo(bar), instead of, or in addition
to, the usual function call notation x::foo(self, bar). They are called
associated methods.

• The first function parameter, called its receiver, is self or mut self, or

• Its type, if explicitly specified, is one of the following:

◦ S, &'lt S, &'lt mut S, Box<S>, `Rc<S>, Arc<S>, or Pin<P>,

▪ where S is either Self or the name of the implementing type, and

▪ 'lt represents a lifetime.

When the type is not explicitly specified, the following shorthand can be used:

• fn f(self, …) ← fn f(self: Self, …).

• fn f(mut self, …) ← fn f(mut self: Self, …).

• fn f(&'lt self, …) or fn f(&self, …) ← fn f(self: &'lt Self, …).

• fn f(&'lt mut self, …) or fn f(&mut self, …) ← fn f(self: &'lt
mut Self, …).

Note that lifetimes are usually elided with this shorthand notation.

Here’s a quick example:

struct Burrito<T: Copy + Default>(T);    ①

① A simple tuple struct for demo.
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trait Wrap {
  type Core: Copy + Default;             ①
  fn unwrap(&self) -> Self::Core {       ②
    Self::Core::default()
  }
  fn rewrap(&mut self) -> Self;          ③
}

① Associated types can be specified with trait bounds.

② An associated method with a default implementation.

③ Another associated method without a default implementation.

impl<T: Copy + Default> Burrito<T> {     ①
  fn new(core: T) -> Self
  { Burrito::<T>(core) }                 ②
}

① The Burrito type implements a new constructor function.

② Note that core is a value of a Copy type.

impl<T: Copy + Default> Wrap for Burrito<T> {  ①
  type Core = T;                         ②
  fn unwrap(&self) -> Self::Core         ③
  { self.0 }                             ④
  fn rewrap(&mut self) -> Burrito<T> {   ⑤
    let rewrapped = Burrito::<T>::new(self.0);
    self.0 = T::default();               ⑥
    rewrapped
  }
}
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① The generic type Burrito implements Wrap.

② Burrito includes an implementation for Wrap::Core, which is set to its
generic parameter T. Note that this is a type alias syntax, and it cannot include
trait bounds.

③ We overwrite the default implementation of Wrap::unwrap. The type
Self::Core can be more explicitly written as <Burrito<T> as
Wrap>::Core in this context.

④ Note that self.0 will be copied when the unwrap method call returns.

⑤ Implementation of the associated method rewrap is required since it does not
have a default implementation.

⑥ Just to illustrate a use of an associated method with &mut self parameter, we
reset the old wrap’s core to its default value.

fn associated_methods() {
  let mut b1 = Burrito::new(42);
  let u1 = b1.unwrap();                  ①
  assert_eq!(42, u1);
  let b2 = b1.rewrap();                  ②
  assert_eq!(42, b2.unwrap());
  assert_eq!(0, b1.unwrap());
}

① The associated method unwrap of Burrito can be used with the method call
operator. This expression is equivalent to Burrito::unwrap(&b1).

② The same with the rewrap associated method. This call expression is
equivalent to Burrito::rewrap(&mut b1).
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Chapter 26. Implementations
An impl, short for implementation, is an item that declares associations of certain
items with a given type and/or that provides implementations of those associated
items. There are two kinds of implementations:

• An inherent implementation, for a type, and

• A trait implementation, for a pair of trait and type.

Impls are defined using the keyword impl, followed by a trait name and the
keyword for in case of trait implementations, the name of the implementing type,
and a block, which contains the definitions of the associated items such as
constants and functions (e.g., functions or methods).

Functions are statically associated with a type, whereas methods are implemented
for an instance of the type. Methods can be further classified into three kinds
based on their receivers, e.g., self, &self, and &mut self.

26.1. Inherent Implementations
Items can be associated with, and implemented for, a type, e.g., independently of
other traits. This is called the inherent implementation of the type. Inherent
implementations can be provided only in the same crate that the type is declared
in. That is, as a trivial corollary, one can only provide implementations for the
custom types that they create.

An inherent implementation is defined with the impl keyword followed by a path
to an implementing type, and a set of associated items enclosed in curly braces.
The associated items can be constants or functions (including methods), but not
type aliases. In case of generic impls, the generic parameters are placed after the
impl keyword, and the where clause, if any, is included after the type.

26.1. Inherent Implementations

202



Note that, syntactically, a type can have multiple inherent implementations, e.g.,
across different modules in the same crate.

26.2. Trait Implementations
A trait implementation is similar to an inherent implementation, but it can only
include the definitions of the associated items declared and/or defined in the
corresponding trait declaration, which is called the implemented trait.

A trait implementation must define all non-default associated items declared by
the implemented trait, may redefine default associated items defined by the
implemented trait, and cannot associate, or define, any other items with the
implementing type.

Syntactically, a trait implementation is rather similar to an inherent
implementation except that the implemented trait name followed by for is
included between the impl keyword and the implementing type.



To some people who are new to Rust, the syntax can be a bit
confusing, or it may appear somewhat inconsistent between the
inherent and trait implementations. (E.g., in one case, impl is
followed by a trait whereas in the other, impl is followed by a
type.) One way to reconcile this apparent "inconsistency" is to
consider the inherent implementation syntax as a special case of
the trait implementation. That is, impl TYPE can be viewed
(conceptually) as impl (ANONYMOUS-TRAIT for) TYPE.

Another difference between the inherent implementation and trait
implementation is that, since a trait can include associated types, a trait
implementation can implement, or override, any associated type (or, type alias)
declarations in the implemented trait.

26.2. Trait Implementations
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Chapter 27. Dynamic Dispatch
As stated, Rust’s traits are not types. In particular, types have memory
implications, whereas traits do not.

27.1. Trait Objects
Traits can be used in certain places where types are expected. They are called the
trait objects, and syntactically, they are denoted by a trait name preceded by the
keyword dyn. Any number of optional auto traits can be specified after this base
trait name, e.g., using the trait bound syntax. No more than one lifetime bound
can be specified as well, if needed, using the same + operator. For example, the
following are all syntactically valid trait objects, given a trait MyTrait:

• dyn MyTrait

• dyn MyTrait + Send + Sync

• dyn MyTrait + 'static

• dyn MyTrait + Unpin + 'static

A trait object is an (unspecified) type, or a value of such a type, that implements
the specified base trait and its supertraits, as well as the auto traits, if any is
specified.

The purpose of trait objects is to allow late binding of methods (e.g., at runtime).
Normally, Rust only allows early binding of methods (e.g., at compile time). But,
calling a method on a trait object results in dynamic dispatch at runtime, e.g.,
using the trait object’s vtable. Because its type is unknown at compile time, trait
objects are always dynamically sized types. Like all DSTs, trait objects cannot be
allocated on the stack, and they need to be used behind some type of references or
pointers, e.g., &dyn MyTrait or Box<dyn MyTrait>.
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204



Here’s a quick example using boxed trait objects.

struct Man;
struct Boy;

trait Hombre {
  fn age(&self) -> u8;
}
impl Hombre for Man {                    ①
  fn age(&self) -> u8 {
    70
  }
}
impl Hombre for Boy {
  fn age(&self) -> u8 {
    7
  }
}
fn get_age(m: Box<dyn Hombre>) -> u8 {   ②
  m.age()
}

① Both Man and Boy are Hombre in this example.

② The get_age function takes a dyn Hombre type. The smart pointer Box is
needed since syn Hombre is an unsized type.

fn dyn_trait_demo() {
  let age = get_age(Box::new(Man));      ①
  println!("Man's age = {age}");
  let age = get_age(Box::new(Boy));      ②
  println!("Boy's age = {age}");
}

27.1. Trait Objects
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① This example demonstrates the runtime polymorphism in Rust. The get_age
function picks the correct implementation of the age method based on the
runtime type of the argument. In this case, the age will be 70.

② In this case, age will be 7.

27.2. Impl Traits
There is another situation where traits can be used in place of types. This special
syntax is called the impl traits, and they are solely a static construct (although we
include it in the same chapter as dyn TRAIT, for convenience). The impl TRAIT
types can be used in two locations:

• As an argument type, and

• As a return type.

For example,

fn my_function(arg: impl MyFirstTrait) -> impl MySecondTrait {
  todo!();
}

The impl trait syntax used in the argument position is semantically equivalent to
a generic function with a corresponding trait bound. For example, the following
two function definitions are semantically equivalent:

fn my_fn<T: MyTrait>(arg: T) { }

fn my_fn(arg: impl MyTrait) { }

27.2. Impl Traits
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The impl traits in return position stand in for an (unspecified) concrete type. Each
possible return value from the function implementation must resolve to the same
concrete type. Note that, regardless of the actual type used in the implementation,
the caller of the function can only use the methods declared by the specified impl
trait (because that’s the public interface/contract).

Here’s a quick example of using impl traits.

pub trait TOne: Copy + Debug {}

impl TOne for i32 {}
impl TOne for bool {}

pub fn func_one(b: bool) -> impl TOne {  ①
  if b { 42 } else { 0 }
}

① The function signature (e.g., an interface) indicates that it returns impl TOne.
In this case, that means either i32 or bool (to the implementer). The actual
implementation uses i32.

fn impl_trait_return_demo() {
  let r = func_one(true);                ①
  println!("{:?}", r);                   ②
}

① The client cannot make any assumption about the return type of func_one.
They only know that the function returns impl TOne. This trait happens to
include no associated items. The only public contract we know about, as a
client, is that Copy and Debug are its supertraits.

② Hence, we can at least use the :? formatter.
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pub trait TTwo {
  fn huh(&self) -> u8 {
    111
  }
}
impl TTwo for i32 {}
impl TTwo for bool {}

pub fn func_two(v: impl TTwo) -> u8 {    ①
  let x = v.huh();                       ②
  x
}

① When an impl trait is used in an argument position, it has different semantics.
In this particular example, it simply means that we, as a client, can use either
i32 or bool to call the func_two function.

② In this case, the implementer, however, cannot make any assumptions about
its concrete type. They can only use the public interface available through the
TTwo trait, which happens to be the huh associated method, but nothing else.

fn impl_trait_parameter_demo() {
  let val = func_two(true);              ①
  println!("{:?}", val);
  let val = func_two(1_000_000);         ②
  println!("{:?}", val);
}

① The client knows that the func_two function takes an argument of type impl
TTwo and that the TTwo trait is implemented by i32 and bool. Hence, they can
call this function with bool…

② … Or, with i32.
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Chapter 28. Pattern Matching
Patterns are used to match values against type variants and structures. They can
also bind variables to values inside the matching structures. In Rust, pattern
matching is used in:

• let declarations,

• if let expressions,

• let else expressions,

• while let expressions,

• match expressions,

• for expressions, and

• Function and closure parameters.

Note that, in particular, the let bindings and function and closure parameters use
pattern matching, unlike in most other (imperative) programming languages.
Here’s a simple pattern matching example:

fn match_demo() {
  let legs = 2;
  match legs {                           ①
    2 => println!("A biped"),            ②
    3 | 4 => println!("Most likely, a quadruped"),
    _ => println!("Not sure what it is"),
  }
}

① A match expression.

② 2 in this example is a pattern, or more specifically, a literal pattern.
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Rust supports various kinds of patterns, including

• Literal patterns,

• Range patterns,

• Wildcard patterns,

• Identifier patterns,

• Reference patterns,

• Path patterns,

• Grouped patterns,

• Rest patterns,

• Tuple patterns,

• Struct patterns,

• Slice patterns, and

• OR patterns.

Patterns can be combined and nested.

28.1. Irrefutability
A pattern that will always match a given value (from a set of all possible values) is
called irrefutable. Irrefutable patterns should be the last arm in the match
expression, for instance. Patterns that are not irrefutable are refutable, and they
may, or may not, match particular values. For example,

if let (x, 5) = (1, 2) { }               ①
if let (x, y) = (3, 4) { }               ②

28.1. Irrefutability
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① The pattern (x, 5) is refutable. In this particular case, this pattern does not
match the given value (1, 2). However, if the value were (10, 5), for
instance, it could have matched (x, 5).

② The pattern (x, y) is irrefutable. This pattern would match any tuple of two
elements. Or, more particularly, it would match a tuple of any two integers. In
this example, x and y are bound to 3 and 4, respectively.

28.2. Destructuring
Patterns can be used to destructure structs, enums, and tuples. Destructuring
breaks up a value into its component parts based on its structure. In a pattern of a
struct, enum, or tuple type,

• A placeholder _, or the wildcard pattern, stands in for a single data field, and

• A variable-length placeholder .., or the rest pattern, stands in for all the
remaining fields of a particular variant.

When destructuring a value with named fields, one can just write fieldname as a
shorthand for fieldname:fieldname. For example, using a struct pattern,

struct Fruits { apple: i32, orange: i32, pear: i32 }
fn destructure() {
  let fruits = Fruits { apple: 1, orange: 2, pear: 3 };
  let Fruits {
    apple: apple_count, orange: _, pear
  } = fruits;                            ①
  println!("Apples: {apple_count}, Pears: {pear}");
}

① apple_count is bound to apple and pear is bound to pear. The pattern pear
is equivalent to pear: pear. The orange field is ignored in this example.

28.2. Destructuring
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28.3. Literal Patterns
Literal patterns use literals or literal-like values. Valid patterns are byte, string,
raw string, byte string, and raw byte string literals, as well as character literals,
integer literals, and integer literals preceded by a unary minus -. Floating point
literals, and their negations, are being deprecated, and they may be disallowed in
a future edition of Rust.

Literal patterns match exactly the same value as what is specified by the literal.
They do not match any other values. Hence, literal patterns are always refutable.
For instance,

fn literal_patterns() {
  for i in -1..=2 {                      ①
    match i {
      1 => println!("I am positive!"),   ②
      -1 => println!("I am negative!"),  ③
      _ => println!("I am nobody!"),     ④
    }
  }
}

① A for loop with a closed range -1..=2, which includes -1, 0, 1, and 2, is used
for illustration.

② A literal pattern 1 matches an integer literal 1, but nothing else.

③ Likewise, a literal pattern -1 only matches the negative integer -1.

④ The irrefutable wildcard pattern (_) matches all others. In this example, it will
match 0 and 2 of the loop variable i in the for loop since 1 and -1 are
matched in the previous patterns in this match expression.

28.3. Literal Patterns
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28.4. Range Patterns
Range patterns use the range expression-like syntax, and they are used with
certain scalar types. For example, integer and character types (e.g., u8, u16, i32,
char. etc.) work with range patterns. The use of floating point types (f32 and f64)
is being deprecated, and they should not be used moving forward.

A range pattern matches values within the range specified by their range, from a
lower bound to an upper bound. An upper bound can be omitted (e.g., l..), in
which case the range is "half-open". Otherwise (e.g., l..=u), it is "closed". When an
upper bound is specified, the bound is included in the range.

For example,

fn range_patterns() {
  let c = 'm';
  let 'i'..='n' = c else {               ①
    panic!("No match!");
  };
  let i = 101;
  if let 100.. = i {                     ②
    println!("Bigger than 100: {i}");
  }
}

① The pattern 'i'..='n', used in this let - else expression, is a closed range
pattern. It matches 'i', 'j', 'k', 'l', 'm', and 'n'. Note that ..= is a single
token, and it should be written as such, e.g., without any spaces.

② The pattern 100.. of this if let expression is a half-open range pattern. It
matches 100, or any other valid integer number greater than 100. Note that, in
this case, .. is part of the pattern, 100.., whereas = is part of the if let
expression syntax.

28.4. Range Patterns
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28.5. Wildcard Patterns
The underscore symbol (_) is used as a wildcard pattern, which matches any
value. That is, the wildcard pattern, when used as a single pattern, is irrefutable.
When it is used inside other patterns, it matches any single data field. The
wildcard pattern is often used as the (last) catch-all pattern in a match expression.
Wildcard patterns are similar to identifier patterns, but wildcard patterns are
used to match values, and ignore them. The _ identifier is sometimes called the
discard variable. Unlike identifier patterns, wildcard patterns do not copy, move,
or borrow the values they match. For example,

fn wildcard_patterns() {
  for pos in [Some((0, 0)), Some((3, 5)), None] {
    if let Some((x, _)) = pos {                ①
      print!("X is {x},\t");
    } else {
      print!("None,\t");
    }
    if let Some(p) = pos {
      let y = (|_: i32, y: i32| y)(p.0, p.1);  ②
      println!("Y is {y}");
    } else {
      println!("None");
    }
  }
}

① The second element of a tuple pattern (x, _) is a wildcard. The tuple pattern
as a whole is irrefutable since the identifier pattern, x, is also irrefutable.

② The closure parameters also use patterns, and in this example, the first
parameter is a wildcard. Note that this example closure implementation
merely returns its second argument.
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28.6. Path Patterns
Path patterns use certain path expression syntax, and they are used to refer to

• Constant values, or

• Structs or enum variants that have no fields.

const X: i32 = 42;
const Y: i32 = 21;

fn path_patterns() {
  let x = 42;
  match x {
    X => println!("Matched X"),          ①
    self::Y => println!("Matched Y"),    ②
    _ => println!("No match!"),
  }
  let z2 = Some::<i32>(42);
  if let None::<i32> = z2 {              ③
    println!("z2 is None::<i32>");
  }
  for z in [Some::<i32>(42), None::<i32>] {
    match z {
      Option::None::<i32> => {           ④
        println!("Matched None::<i32>");
      }
      v => {
        println!("Match any value {v:?}");
      }
    }
  }
}

28.6. Path Patterns
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① X is a path pattern that refers to the constant X.

② self::Y is also a path pattern that refers to the constant Y.

③ None::<i32> or None is a path pattern that refers to the constant variant of
the Option enum.

④ The same with Option::None::<i32>.

28.7. Identifier Patterns
An identifier pattern binds the value they match to a variable, for example, as is
most commonly used in the let binding. The function parameters, and closure
parameters, also use identifier patterns. An identifier pattern with one identifier,
mutable or immutable, is irrefutable. That is, the identifier pattern with one
identifier matches any value and binds the value to that identifier. For example,

fn identifier_patterns() {
  let mut var1: f64 = 1.;                      ①
  let var2: f64 = 100.55;                      ②
  fn multiply(a: &mut f64, b: f64) -> f64 {    ③
    *a = *a * b;
    *a
  }
  let prod = multiply(&mut var1, var2);        ④
  println!("Prod = {prod}, Var1 = {var1}");
}

① A let binding with a mutable variable, var1.

② A let binding with an immutable variable, var2.

③ The function parameters a and b are also identifier patterns.

④ Pattern matching is attempted when the function is called.

28.7. Identifier Patterns
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Value-based identifier patterns have the same semantics as the let variable
declarations. That is, the pattern binds a variable to

• A copy of the matched value if it is a Copy type, or

• A move from the matched value if it is a Move type.

The next section describes the reference semantics for value bindings.

28.8. Ref Identifier Patterns
The default behavior of the value-based identifier patterns, e.g., copy or move, can
be changed. If the keyword ref or ref mut is used in front of an identifier, it
instead binds to a reference or a mutable reference, respectively.

For instance, in the context of let bindings,

fn let_ref_bindings() {
  let ref var1: f32 = 1.0f32;            ①
  let ref mut var2: f32 = 2.0f32;        ②
  *var2 = 3.;                            ③
  println!("var1 = {var1}; var2 = {var2}");
}

① A let ref identifier pattern example. Note that the type annotation is not
required. This let ref binding is essentially the same as let var1: &f32 =
&1.0f32. See below, regarding the automatic ref binding of references to
values.

② Similarly, this let ref mut binding is essentially the same as let var2:
&mut f32 = &mut 2.0f32. Note that, syntactically, the variable var2 itself is
not mutable, whose type is f32, as explicitly annotated in this example.

③ However, var2 is effectively a mutable reference.

28.8. Ref Identifier Patterns
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More generally,

struct Car {
  make: String,
  model: String,
}

fn ref_identifier_patterns() {
  let my_car = Car {
    make: String::from("De"),
    model: String::from("Lorean"),
  };

  match my_car {
    Car {
      make: ref _make,                   ①
      model: _model,                     ②
    } => {
      println!("{}", my_car.make);       ③
      // println!("{}", my_car.model);   ④
    }
  }
}

① ref _make is a ref identifier pattern. And, therefore, the binding variable,
_make, holds a shared reference to the my_car.make.

② {model} is an (ordinary) identifier pattern. Since String is a Move type, when
the pattern matches, the value of my_car.model will be moved to _model.

③ Since my_car.make is still the owner, we can use it with no problem.

④ On the other hand, since my_car.model has been moved, we can no longer
use it.

28.8. Ref Identifier Patterns
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One thing to note is that when non-reference pattern matches a reference value,
Rust uses a different binding mode. That is, the pattern is automatically treated as
a ref or ref mut binding.

Here’s another example, using the same Car struct example,

fn ref_binding_mode() {
  let your_car = Car {
    make: String::from("Trans"),
    model: String::from("Former"),
  };
  let car_or_not: Option<Car> = Some(your_car);

  if let Some(c) = &car_or_not {         ①
    println!("{}{}", c.make, c.model);   ②
    let yc = car_or_not.unwrap();        ③
    println!("{}{}", yc.make, yc.model); ④
  }
}

① Since the reference value &car_or_not is matched by a non-reference pattern
Some(c), the binding variable c, in this context, is automatically treated as a
ref binding. That is, this if let expression is essentially equivalent to if
let Some(ref c) = &car_or_not { ... }.

② Hence, c binds to a reference to your_car.

③ At this point, car_or_not is still the owner, and we just unwrap it for
illustration. After this line, the value of your_car is moved to yc.

④ This println! statement will work without any issues.

28.8. Ref Identifier Patterns
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28.9. Reference Patterns
In general, any patterns can be made into corresponding reference patterns, by
using the & or && prefix. The only exception is the range pattern.

Reference patterns dereference the references that are being matched. And hence,
if any variables are bound through the match, they borrow the matched values.
The mut reference patterns, e.g, using the &mut or &&mut prefix, can only match
mutable references. As an example,

fn reference_patterns() {
  let a = &"Hello, Underworld!";
  let &"Hello, Underworld!" = a else {   ①
    panic!("The end of the world!");
  };

  let mut b = &Some("Hello, Overlord!");
  if let &mut &Some(x) = &mut b {        ②
    println!("x = {x}");
    return;
  };
  panic!("The end of the kingdom!");
}

① &"Hello, Underworld!" is a reference pattern based on the literal pattern
"Hello, Underworld!". This will match a in this example, and hence this
let - else statement will not panic.

② Some(x) is a tuple struct pattern, as we describe a bit later in this chapter.
&mut &Some(x) is a reference pattern that can match a reference of type &mut
&Option<&str>. In this example, it matches successfully, and the variable x is
bound to the string "Hello, Overlord!". Note that if a pattern is irrefutable,
then its corresponding reference pattern is also irrefutable.

28.9. Reference Patterns
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28.10. OR Patterns
An OR pattern comprises two or more subpatterns, separated by the union symbol
(|). An OR pattern matches if any of the subpatterns matches, by going through
them from left to right. They can be nested and combined with other patterns, e.g.,
using grouped patterns.

Syntactically, OR patterns are allowed in any of the places where other patterns
are allowed, with the exceptions of let bindings and function and closure
arguments.

For example,

fn or_patterns() {
  let x: u8 = 3;
  match x {
    1 | 3 | 5 => {                       ①
      println!("Small and odd")
    }
    0 | 2..=9 => {                       ②
      println!("Small and even")
    }
    _ => println!("Big and hairy"),
  }
}

① This OR pattern includes three literal patterns, 1, 3, and 5. In this example, x
will not match 1. but, it will match 3, and hence the overall OR pattern ends up
matching the value x.

② Another example OR pattern with a literal pattern 0 union’ed with a closed
range pattern 2..=9.

28.10. OR Patterns
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28.11. Grouped Patterns
A pattern enclosed in parentheses is also a pattern. That is, if PAT is a pattern,
then ( PAT ) is also a pattern. Grouped patterns are primarily used to explicitly
control the precedence of compound patterns. For instance, the | symbol in the
OR patterns has a rather low precedence. Hence, grouped patterns can be used in
those contexts. Here’s a simple example:

fn grouped_patterns() {
  let a = &"ABC";
  if let &("ABC" | "XYZ") = a {
    println!("ABC or XYZ");
  }
}

28.12. The Rest Patterns
Rest patterns (..) can be used anywhere a pattern element is expected. Unlike the
wildcard pattern, the rest pattern is a variable-length pattern, which can match
zero, one, or more consecutive elements that are not specifically matched by other
patterns. The rest pattern can appear in place of a series of pattern elements, for
example, in the beginning, in the middle, or in the end, but it can be used at most
once in a given pattern. Just like the wildcard pattern, the rest pattern is always
irrefutable. The rest patterns can be used in

• Tuple patterns,

• Struct patterns,

• Tuple struct patterns, and

• Slice patterns.

28.11. Grouped Patterns
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For instance,

fn rest_patterns() {
  let t = (1, 2, 3, 4);
  match t {
    (1, .., 3) => println!("First and last elements are 1 and 3"),
    (1, ..) => println!("The first element is 1"),
    (.., 4) => println!("The last element is 4"),
    (..) => println!("Anything goes"),
  }
}

28.13. Tuple Patterns
Tuple patterns use the tuple-like syntax, comprising zero or more subpattern
elements separated by commas (,), enclosed in parentheses. A tuple pattern
matches a tuple value if each of the subpatterns matches according to their
specific kinds and criteria. The tuple pattern is irrefutable if all of its subpatterns
are irrefutable. It is refutable otherwise. The special tuple pattern, (..) with a
single rest pattern enclosed in parentheses, matches a tuple of any size. The
pattern () matches an empty tuple. For example,

fn tuple_patterns() {
  let t = (1, true, 'a');
  match t {
    (_, false, _) => {                   ①
      println!("The second element is false");
    }
    (1, _, 'b') => {                     ②
      println!("First element is 1. Third element is 'b'");
    }

28.13. Tuple Patterns
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    (2, ..) => {                         ③
      println!("The first element is 2");
    }
    (a, b, c) => {                       ④
      println!("({a}, {b}, {c})");
    }
  }
}

① A three-element tuple pattern. If the second element is false, the overall tuple
pattern will match since we use the wildcard patterns for the first and the
third elements.

② A similar tuple pattern. If the tuple value’s first and third elements are 1 and
'b', respectively, the overall pattern will match.

③ This pattern only checks the first element. If it is 2, then the value matches this
tuple pattern. The rest is ignored by the rest pattern, ...

④ This is an irrefutable pattern since all of its subpatterns, e.g., the identifier
patterns, are irrefutable. In this example, it will match any three-element
tuple, or more precisely, a value of type (i32, bool, char).

28.14. Struct Patterns
Struct patterns are often use to destructure values of structs or struct variants of
enums. They are commonly used in a more general pattern matching context as
well. A struct pattern has a form based on the struct initializer syntax, but it
supports a more broader syntax, as with other kinds of patterns. Struct patterns
match struct values that match all criteria defined by its subpatterns. A struct
pattern is irrefutable if all of its subpattern is irrefutable.

In a struct pattern, the fields can be referenced by name, index (in the case of
tuple structs), or they can be ignored by using the rest pattern (..).

28.14. Struct Patterns
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Here’s a simple of example of using struct patterns.

struct Point {
  x: i32,
  y: i32,
  z: i32,
}
fn struct_patterns() {
  let p = Point { x: 10, y: 10, z: 20 };
  match p {
    Point { y: 0, .. } => {              ①
      println!("I'm on the x-axis")
    }
    Point { x: 0, .. } => {              ②
      println!("I'm on the y-axis")
    }
    Point { x, y, z: _ } if x == y => {  ③
      println!("I'm diagonal: {x}")
    }
    Point { x, y, z } => {               ④
      println!("({x}, {y}, {z})")
    }
  }
}

① This Point struct pattern will match a Point if its field y has a value 0. The
rest, literally, is irrelevant for pattern matching.

② Likewise, this struct pattern will match a value if its struct field x has a value 0.

③ This pattern will match as long as x == y, based on the match guard. The z
value is ignored.

④ This pattern Point {x, y, z} is the same as Point {x: x, y: y, z: z}.
This is an irrefutable pattern since all of its field patterns are irrefutable.

28.14. Struct Patterns
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28.15. Tuple Struct Patterns
Tuple struct patterns are used to test matching tuple structs or tuple struct
variants of enums. A tuple struct matches if all of its subpatterns match,
corresponding to its tuple elements. They are also commonly used to destructure
tuple structs or enum values, such as the Some variant of Option or the Ok and
Err variants of Result. A tuple struct pattern is irrefutable if and only if all of its
supatterns are irrefutable. For example,

struct Coord(f32, f32);

fn tuple_struct_patterns() {
  let c = Coord(0.1, 2.0);
  match c {
    Coord(lat, lon) if lon.abs() < 0.1 => {    ①
      println!("Latitude is {lat}. Longitude is close to 0.");
    }
    Coord(lat, lon) if lat.abs() < 0.1 => {
      println!("Latitude is close to 0. Longitude is {lon}.");
    }
    _ => println!("An arbitrary coordinate."),
  }
  let Coord(lat, lon) = c;                     ②
  println!("Latitude is {lat}. Longitude is {lon}.");
}

① Coord(lat, lon) is an irrefutable pattern since its two element subpatterns
are both irrefutable. We use a match guard in this example, e.g., to match only
a certain set of Coord's. As indicated, in general, floating-point numbers should
not be used in patterns, moving forward.

② Since Coord(lat, lon) is irrefutable, we simply use the let binding, instead
of if let, for instance.

28.15. Tuple Struct Patterns
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28.16. Slice Patterns
Syntactically, a slice pattern is a comma separated list of zero, one, or more
subpatterns enclosed in square brackets ([]). Slice patterns are used to match
various sequence values, e.g., arrays of fixed size or slices of dynamic size based
on arrays or vectors. The matching criterion of a slice pattern is determined by
matching of its subpatterns, much the same way that other compound patterns
work. As a simple example, here’s a recursive implementation of a length
function.

fn slice_patterns() {
  let s = [1, 2, 3];
  let l = length(&s);
  println!("Length = {l}");
}

fn length<T: std::fmt::Debug>(s: &[T]) -> usize {
  match s {
    [] => 0,                                   ①
    [a,] => {                                  ②
      println!("One element: {a:?}");
      1
    }
    [_, tail @ ..] => 1 + length::<_>(tail),   ③
  }
}

① The empty slice pattern. It yields the length of 0.

② This pattern is a one-element slice pattern. It is really part of the third one. We
just include it here for illustration. A trailing comma is optional.

③ This is a classic "head - tail" pattern. This pattern is conceptually equivalent to
[head, ..]. In this particular example, the actual value of head is not

28.16. Slice Patterns
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needed, that is, for the purposes of computing the length. Each element
contributes 1 to the total length. Hence we use the wildcard pattern _ for the
head. The rest pattern .. represents the tail part (of the &[T] type). To be able
to call the length function recursively with this tail part, we need a name for
"the rest". tail @ .. is called the at pattern, and it is explained in the next
and final section of this (looong) chapter.

28.17. At (@) Patterns
A pattern can be preceded by an identifier pattern and the @ symbol. The overall
compound pattern is usually called the at pattern, and it has the general syntax of
VAR @ SUBPATTERN. If a value matches the sub-pattern, SUBPATTERN, then the
matched value is bound to the variable, VAR. (In the length function example of
the previous section, the tail @ .. pattern captures the matched "rest" part and
binds it to the variable, tail.)

Here’s another simple example:

fn at_patterns() {
  for x in [2, 10] {
    if let var1 @ 1..=5 = x {            ①
      println!("Var1 = {var1}");
    } else {
      println!("No match!");
    }
  }
}

① The pattern var1 @ 1..=5 will match 2 but not 10 in this example. When the
pattern matches, the matched value is bound to var1. Hence, when this
function is called, it will print, Var1 = 2 and No match! in two separate lines.

28.17. At (@) Patterns
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Chapter 29. Statements
Rust primarily uses expressions for program execution as well as for computing
desired outputs. In most imperative programming languages, statements are the
main players, and they "include" expressions, with a notable exception of function
calls, which are generally expressions (and, statements). Functions in imperative
languages do "include" statements.

In Rust, the role is (almost) reversed. Most forms of value-producing evaluations,
with or without intentional side effects, are carried out by expressions.
Expressions can be nested within other expression structures, and the rules for
evaluating an expression involve specifying the order of evaluating its
subexpressions as well as the value ultimately produced by the expression itself.
In contrast, statements in Rust play somewhat minor roles, e.g., mostly to contain
and explicitly sequence expression evaluations. (In imperative programming, a
program is essentially a sequence of statements, and hence statements are
"required", if you will, depending on how you define statements and expressions.)
Statements generally end with semicolons (;), unlike expressions. But they can be
omitted in some special cases.

A statement is a component of a block, which is in turn a component of an outer
expression or function. Rust statements can be categorized into two classes,

• Declaration statements, and

• Expression statements.

A declaration statement is one that introduces one or more names into the
enclosing statement block. The declared names may denote new variables or new
items. That is, declaration statements can again be categorized into two classes,

• Item declarations, and

• let declarations.
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29.1. Item Declarations
Items can be declared within a module, as we describe in the beginning of the
book, or they can be declared within a statement block. They have a syntactically
identical form. Declaring an item within a statement block restricts its scope to the
block containing the declaration statement.

Nested declarations do not implicitly capture outer variables, such as local
variables or the enclosing function’s arguments or generic parameters. In
particular, Rust’s functions are not closures. For example,

fn outer(a: i32) {
  let b = 42;
  fn inner() {
    // println!("outer::a = {a}");       ①
    // println!("outer::b = {b}");       ②
  }
}

① The variable a from the outer block cannot be accessed here. This will cause an
error.

② Likewise, this statement will cause an error.

29.2. The let Declarations
A let statement introduces a new set of variables, given by an irrefutable pattern
(other than OR patterns), as we discuss, and use, throughout this book. The
pattern is followed optionally by a type annotation and then optionally by an
initializer expression, e.g., after the assignment operator =. When no type
annotation is given, the compiler will infer the type, or signal an error if
insufficient type information is available for definite inference.

29.1. Item Declarations
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For example,

fn let_demo() {
  let x: u128 = 42;                      ①
  assert_eq!(x, 42);
  let y2 = (42, 24);
  let (y, _): (i8, u8) = y2;             ②
  assert_eq!(y, 42);
  let w2 = [1, 1, 2, 3, 42, 8, 13];
  let [.., w, _, _]: [i32; 7] = w2;      ③
  assert_eq!(w, 42);
  struct S { p1: i8, _p2: i8 }
  let z2 = S { p1: 42, _p2: 84 };
  let S { p1: z, _p2: _ }: S = z2;       ④
  assert_eq!(z, 42);
  enum E { V(i32) }
  let e2 = E::V(42);
  let E::V(u) = e2;                      ⑤
  assert_eq!(u, 42);
}

① A simple let declaration. The variable on the left hand side is the irrefutable
identifier pattern.

② A let declaration using a tuple pattern. This is often known as destructuring.
One can use multiple variables on the left hand side.

③ Another example, using a slice pattern. Note that, in rust, destructuring is just
a special case of broader pattern-based let binding syntax.

④ One can also use a struct pattern for declaring new variables.

⑤ Likewise, this let binding uses a path pattern, e.g., for an enum variant. Note
that, any irrefutable pattern, other than ORs, can be used on the left hand side
of the let declaration statement.

29.2. The let Declarations
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Variables introduced by let declarations are visible from the point of declaration
until the end of the enclosing block, or until they are shadowed by the same
variable declaration.

29.3. Expression Statements
Rust includes a number of different kinds of expressions, and all of them can be
used as statements. When an expression is used syntactically as a statement, it is
called the expression statement. An expression statement evaluates its expression
and then ignores the result. As a general rule, an expression statement’s purpose
is to trigger any side effects of evaluating its expression.

An expression that does not end with a block needs a semicolon at the end to be a
valid statement. An expression that consists of only a block expression or control
flow expression, whose result type is (), can omit the trailing semicolon, if it is
used in a context where a statement is expected. For example,

fn expression_statements(a: i32) {
  42;                                    ①
  if a > 42 { true } else { false };     ②
  { println!("Forty two!!!") }           ③
}

① Although it is a valid expression statement (with the trailing ;), it is pretty
much of no use since the value 42 has no side effect.

② Ditto. Note that the semicolon is required since the type of the if expression in
this example is bool, and not ().

③ In this case, the trailing ; is optional since the type of the block expression,
which is the type of the println! macro call, is (). This expression statement
clearly has a side effect, that is, printing out the string value to the console.

29.3. Expression Statements
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Chapter 30. Simple Expressions
Rust is primarily an expression-based language, similar to many (pure) functional
programming languages. Unlike in functional languages, however, expressions in
Rust can have side effects (sometimes, just called "effects"). In Rust, an expression
therefore plays two roles:

• It always evaluates to a value (including ()), and

• It may have effects during evaluation, which can affect the program execution
(in a similar way that statements do in imperative programming languages).

In fact, as we discuss in the previous chapter, everything in Rust is an expression
(and, a statement), that is, with the exception of declaration statements.

Although it is hard to define precisely what functional programming (FP) is, one of
the most important ingredients of the languages that support FP well is their focus
on expressions. Support for pure functions and immutability, etc., matters only
when you can support full expressiveness via expressions first. In this sense, Rust
is one of the best (imperative) languages for FP. Much of Rust code is written, at
least syntactically, in FP styles. Whether it is really FP or not is debateable, as we
indicated earlier, since Rust’s expressions (can) have effects unlike those of the
pure FP languages. But, regardless, the idiomatic programming style in Rust is
rather different from that of more traditional imperative languages. Some people
call Rust the "gateway drug to functional programming". 

At any rate, if you are new to Rust, and if you are coming from "pure imperative"
languages like (©) or Go, then we cannot overemphasize the importance of the
expression-oriented programming styles in Rust. Note that one of the most
important characteristics of the expressions is that they return a value (regardless
of whether they have side effects or not). On the other hand, the statements do not
have values. Or, their values are always () (or, !).
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Expressions often contain sub-expressions, called the operands of the expression.
The meaning of each kind of expression dictates several things:

• Whether or not to evaluate the operands when evaluating the expression,

• The order in which to evaluate the operands, and

• How to combine the operands' values to obtain the value of the expression.

In this way, the structure of expressions dictates the structure of execution. Blocks
are expressions in Rust, and therefore blocks, statements, expressions, and blocks
again can recursively nest inside each other to an arbitrary depth.

30.1. Literal Expressions
The literals that we describe earlier in the lexical analysis chapter are expressions
by themselves. Their expression values are the values represented by the literals.

• Boolean literals,

• Integer literals,

• Floating-point literals,

• Character literals,

• String literals,

• Raw string literals,

• Byte literals,

• Byte string literals, and

• Raw byte string literals.

30.1. Literal Expressions
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30.2. Path Expressions
A path, when used in an expression context, refers to an item or a local variable.
They are considered simple expressions.

30.3. Grouped Expressions
A grouped expressions, or parenthesized expression, comprising,

• An opening parenthesis (,

• An enclosed operand expression, and

• A closing parenthesis ),

evaluates to the value of the enclosed expression. Generally, parenthesized
expressions are used to affect the evaluation order of the operand sub-
expressions within an expression, or otherwise to make the expressions easier to
read.

For example,

fn grouped_expressions() {
  let a = 1 + 2 * 3;                     ①
  let b = (1 + 2) * 3;                   ②

  assert_eq!(a, 7);
  assert_eq!(b, 9);
}

① Since the multiplication has a higher precedence than the addition, the sub-
expression 2 * 3 is evaluated first.

30.2. Path Expressions
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② The explicitly grouped sub-expression (1 + 2) is evaluated first in this case,
resulting in 9, say, instead of 7.

Here’s another example:

struct Factory<'a> {
  ctor: fn(&'a str) -> String,
}

fn function_pointer() {
  let fac = Factory { ctor: String::from };
  let ferris = (fac.ctor)("Ferris");     ①
  println!("Ferris = {ferris}");
}

① The function call expression has a higher precedence than the struct member
access. Hence, in this example, the expression (fac.ctor) should be explicitly
grouped. Otherwise, it is an invalid expression.

30.4. Operators
Operators are defined for the builtin types by the Rust language. Many of the
operators can also be overloaded using the traits in the std::ops and std::cmp
modules. They are further discussed later.

30.5. The await Expressions
The await operator can be applied to an expression that returns a Future
(defined in the std::future module), and it suspends the current computation
until the given future is ready to produce a value. We do not include async-await
programming in this book.

30.4. Operators
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Chapter 31. Call Expressions

31.1. Function Calls
A call expression calls a function. The syntax of a call expression is

• A (callable) expression, called the function operand, followed by

• A comma-separated list of expressions in a pair of parentheses, called the
argument operands.

If, and when, the call ultimately returns, the expression completes. In general, in
an expression of the form f(...), if f is not an inherent function type then the
expression uses the method defined in one of the following three traits. (As
indicated, these traits are primarily used for closures, and you cannot currently
implement these traits on your types in stable Rust. But, this might change in the
near future.)

• std::ops::Fn,

• std::ops::FnMut, or

• std::ops::FnOnce.

They differ in whether they take an instance of the type

• By shared reference,

• By mutable reference, or

• By value, respectively.

As mentioned earlier, function parameters are essentially local variables, and the
function call binds these parameters to the passed-in arguments, e.g., by
immutably or mutably borrowing, or by copying or moving, the values.

31.1. Function Calls
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31.2. Method Calls
A method call consists of

• An expression (called the receiver), followed by

• A dot (.),

• A (callable) expression path segment, and

• A comma-separated list of argument expressions in parentheses.

When resolving a method call, the receiver may be automatically dereferenced or
borrowed in order to call the method. Since there are syntactically four different
ways to declare a receiver, e.g., self, mut self, &self, and &mut self, the
method call expressions follow the similar pattern. For example,

#[derive(Debug)] struct S(u8);
impl S {
  fn f1(self) {
    println!("{self:?}");
  }
  fn f2(mut self) {
    self.0 += 1;
    println!("{self:?}");
  }
  fn f3(&self) {
    println!("{self:?}");
  }
  fn f4(&mut self) {
    self.0 *= 2;
    println!("{self:?}");
  }
}

31.2. Method Calls
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fn method_calls() {
  let s1 = S(0); s1.f1();                ①
  // println!("{s1:?}");                 ②
  let s2 = S(10); s2.f2();               ③
  // println!("{s2:?}")
  let s3 = S(20); s3.f3();               ④
  println!("{s3:?}");                    ⑤
  let mut s4 = S(30); s4.f4();           ⑥
  println!("{s4:?}");
}

① This method call s1.f1() moves s1 into f1.

② s1 can no longer be used since it has been moved.

③ This call moves s2 into f2. Note that s2 does not need to be mutable.

④ Calling s3.f3() automatically borrows s3.

⑤ No issue using s3 after the borrow is done.

⑥ s4 needs to be mutable to be able to use a method that mutably borrows the
receiver. A mutable borrow happens when we call s4.f4().

31.3. The return Expressions
Rust’s return expressions work more or less the same way, but unlike in many
other programming languages, they are expressions, and not statements.

When the return expression includes an operand after the keyword return, the
value of the return expression is the value of this operand. Otherwise, its value
the unit value (). The value of the function call expression is the value of the
return expression that is evaluated before the control flow returns to its caller,
that is, if such a return expression exists.
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For example,

fn return_expressions() {
  fn returns_nothing() {
    return;                              ①
  }
  let r1 = returns_nothing();            ②
  println!("r1 = {r1:?}");

  fn returns_something() -> u128 {
    return 42;                           ③
  }
  let r2 = returns_something();
  println!("r2 = {r2}");                 ④
}

① The return expression is often used as a statement. This statement could have
been written as expressions, return, return (), or just () (without the
trailing semicolons).

② The type and value of r1 are () and (), respectively.

③ Ditto. return expressions are almost always used in a statement context and
they usually take the form of the statement. But, in cases like this, it is more
common to just use the return value, 42, as the last expression of the function
body block. The return expression/statement is required when the function
needs to return the control to the caller before it reaches the end of the block.

④ The type and value of r2 are u128 and 42, respectively.
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Chapter 32. Expressions with
Blocks
The following expressions include blocks as part of their syntax.

• Block expressions,

• Async block expressions,

• If expressions,

• If let expressions,

• Match expressions, and

• Various loop expressions.

Loop expressions are discussed in the next chapter.

32.1. The Block Expressions
A block expression, or block ({...}), is a control flow expression. The block also
serves as an anonymous namespace scope for the enclosed item and variable
declarations.

The syntax for a block is

• An opening brace, {, which can be preceded by an optional label,

• Any optional inner attributes,

• Zero, one, or more statements,

• An optional final operand, and

• A matching closing brace, }.
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As a control flow expression

A block sequentially executes its enclosed statements, and then it evaluates
its final operand expression, if any.

As an anonymous namespace scope

The usual block scoping rules apply. The items declared within the block
are in scope inside the block, and let-bound variables are in scope from
the statement following the declaration until the end of the block.



It’s worth emphasizing that, unlike in many C-style and other
imperative programming languages, a block in Rust is an
expression (which can include other statements), and not a
statement. This implies, among other things, that anything in
Rust can be converted to an expression, e.g., just by enclosing it
in a block. This gives Rust the super power, if you will, e.g., the
expressiveness of functional programming languages.

When evaluating a block expression, each statement is executed sequentially.
Then the optional final operand is evaluated. The value and type of a block is

• The value and type of the break expression, if one is used to exit the block,

• The value and type of the final operand, if one is present, or

• () and (), respectively, otherwise.

We include various example uses of the block expressions throughout the book.

32.2. The async Block Expressions
An async block is a variant of a block expression, and it evaluates to a Future.
await expressions can be included in an async block. The final expression of the
block, if present, determines the result value of the future.
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32.3. The match Expressions
A match expression uses pattern matching to select a value from one or more
branches, or "arms", which are enclosed in a block. Rust supports a few different
kinds of expressions that use patterns, but the match expression is the
granddaddy of them all. Other forms of pattern expressions may be considered a
syntactic shorthand of match expressions. Here’s a common syntax:

match SCRUTINEE-EXP {
  PAT1 => EXP1,
  ...
  PATn => EXPn,
}

The value of SCRUTINEE-EXP is compared to the series of patterns, denoted PAT1
… PATn in this notation with n >= 1, from top to bottom. Then, the corresponding
value to the matched pattern becomes the value of the overall match expression.
A few things to note:

• The EXP's can be a block expression, in which case, the trailing comma can be
omitted. The trailing comma for the last pattern is optional.

• The set of patterns needs to be "exhaustive", that is, they have to cover all
possible values of SCRUTINEE-EXP.

• All patterns should match at least one possible value of SCRUTINEE-EXP.

• The types of all patterns should be the same, and they must be equal to that of
SCRUTINEE-EXP.

• The types of all expressions on the right hand side, EXP1 … EXPn, must be the
same, and this type is the type of the overall match expression.

• The value of the match expression is that of the first successful match.
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For example,

fn match_expressions() {
  for rank in &['A', 'J', 'K', 'X'] {
    let value: Vec<u32> = match rank {   ①
      'A' => vec![1, 11],                ②
      'K' | 'Q' | 'J' | 'T' => vec![10], ③
      r @ ('2'..='9') => {               ④
        vec![r.to_digit(10).unwrap()]
      }
      _ => panic!("Invalid rank {rank}") ⑤
    };                                   ⑥
    println!("Rank: {rank}, Value: {value:?}");
  }
}

① The type of rank is char. The type of the overall match expression is
Vec<u32>, whose value is bound to a local variable value in this example.

② The pattern, 'A', is a literal pattern. If, and only if, the value of rank is 'A', it
will match, and it will return a value vec![1, 11]. Note that Vec<T> is a
Move type, and hence value will take over this vector value when this match
expression returns.

③ An OR pattern. As described in the Patterns chapter, the sub-patterns in the OR
pattern are tested from left to right. As you might have noticed, this match
expression evaluates the card value(s) of a given card in the game of blackjack.

④ This is an @ pattern, with a range subpattern. If rank happens to be one of the
values from 2 to 9, then the matched value is bound to r, which is then used to
derive the card value.

⑤ A wildcard pattern.

⑥ As indicated, at the end of this match block, the matched value is moved out of
this block, which is bound to the variable value in this example.
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32.3.1. Match guards

In general, a pattern in each arm may be followed by the if keyword and a
boolean expression. They are called the match guards. Each subpattern of an OR
pattern can include a separate match guard. If a (sub-)pattern matches, and if it
has a match guard, then it is evaluated next, and if and only if this evaluates to
true, the overall (sub-)pattern is considered a match.

Note that the scope of any variables introduced in the pattern, e.g., through the
identifier patterns or the at patterns, includes the match guard, if any, and the
following expression.

fn match_guards() {
  let p = (1., 0.);
  match p {
    (x, y) if x == 0. && y == 0. => {    ①
      println!("I'm the origin");
    }
    (x, y) if radius(x, y) == 1. => {    ②
      println!("I'm on a unit circle");
    }
    (x, y) if x == -y => {               ③
      println!(r#"I'm on an "anti-diagonal""#);
    }
    (x, y) => {                          ④
      println!("I'm somewhere, ({x}, {y})");
    }
  }

  fn radius(x: f32, y: f32) -> f32 {
    (x.powf(2.) + y.powf(2.)).sqrt()
  }
}
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① As stated, use of floating point numbers in the patterns is discouraged. This
tuple pattern with a match guard is effectively the same as (0., 0.).

② A different match guard example.

③ Another match guard example. Note that the pattern (x, y) is irrefutable by
itself, and the match guards act like if else branching in this example.

④ The irrefutable pattern (x, y) is being used as the last catch-all pattern,
thereby making the set of patterns exhaustive over all 2-tuples of (f32, f32).

32.4. The if Expressions
Rust currently supports three kinds of conditional block expressions, if - else,
if let - else, and let - else. An if expression is conditionally evaluated
based on a condition operand, which evaluates to a bool value. The if - else
expression comprises

• An if block, that is,

◦ The if keyword, a condition expression, and a block, followed by

• An optional trailing else block, that is,

◦ The else keyword, and a block.

The if block is a block expression. The else block can also be a block expression,
or it can be instead other if or if let expression. Hence, for example, using our
informal notation, the syntax can be represented as follows:

if CONDITION { /*...*/ }
if CONDITION { /*...*/ } else { /*...*/ }
if CONDITION { /*...*/ } else if COND1 { /*...*/ }
if CONDITION { /*...*/ } else if COND1 { /*...*/ } else { /*...*/ }
// etc. ...
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Note that there can be any number of else if CONDITION { /* ... */ }
blocks. All blocks must have the same type, which can be (), or even !. This is the
type of the overall if expression.

The condition operands are sequentially evaluated from the beginning (e.g., the
operand associated with the if block). If any condition operand evaluates to true,
the associated block is evaluated and any subsequent else if or else block is
skipped. If none of the conditions evaluate to true, then the else block, if any, is
evaluated.

Note that when there is a possibility that no blocks can be evaluated, e.g., because
there is no else block, etc., the type of each block, and hence that of the overall if
expression, should be (),

Here’s a simple example:

fn if_else_expressions() {
  let today = 30;
  let sign = if today >= 42 {            ①
    333                                  ②
  } else {
    666
  };                                     ③

  if sign >= 999 {                       ④
    println!("Ominous");                 ⑤
  } else if sign >= 666 {
    println!("Not so lucky");
  } else {
    println!("Weird");
  }                                      ⑥
}
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① The if expression is an expression, and it returns a value.

② The type of this if expression is i32.

③ The value of this expression is bound to a variable sign through a let
variable declaration statement.

④ This if expression is being used as a statement.

⑤ The value of the println! macro call is ().

⑥ The trailing semicolon is optional in this case.

32.5. The if let Expressions
Unlike if, which branches on boolean operands, the if let expression (and, let
- else as well) uses pattern matching. Otherwise, if let - else has a similar
syntax and semantics to if - else.

• An if let block, that is,

◦ The keywords if and let,

◦ A refutable pattern,

◦ An equal sign =,

◦ A scrutinee expression, as in match expressions, and

◦ A block, followed by

• An optional trailing else block, e.g.,

◦ The else keyword, and

◦ A block.

As with the if expression, the block following if let PATTERN = EXPRESSION
is a block expression, and the optional else block can be one of a block
expression, e.g., if - else or if let - else expressions. Hence, just like if -
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else if ... else expressions, if let PAT = EXP - else expressions can be
chained, for example, as if let PAT1 = EXP1 ... else if let PAT2 =
EXP2 ... else ..., etc., with any number of else if let blocks.

If the value of the scrutinee matches the pattern, then the corresponding block
will be evaluated. Like if expressions, all blocks in if let expressions must have
the same type, and the value of an overall if let expression is the value of the
block that is evaluated. For example,

#[derive(Debug, PartialEq)]
enum Greek {
  Alpha(u8),
  Beta(u8),
  Omega,
}

fn if_let_expressions() {
  use Greek::*;
  let a = Alpha(42);

  if let Alpha(21) = a {
    println!("a is Alpha(21)");
  } else if let Beta(x) = a {
    println!("a is Beta({x})");
  } else if let Alpha(y) = a {           ①
    println!("a is Alpha({y})");
  } else {
    println!("a is no Greek");
  }
}

① This pattern Alpha(y) ends up matching the value a in this example. The
variable y is then bound to the value 42.
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Since the block following the else in either if or if let expression can be either
of them, the conditional if and pattern matching if let expressions can be, in
fact, intermixed.

fn ifs_and_if_lets() {
  use Greek::*;
  let value = Beta(84);

  let x = if let Alpha(_) = value {      ①
    "1000"
  } else if Beta(42) == value {          ②
    "100"
  } else if let Omega = value {          ③
    "10"
  } else {
    "0"
  };
  println!("x = {x}");
}

① The rhs side of this let declaration is one if let expression that extends
until the semicolon at the end of the declaration.

② It includes an if - else branch.

③ It also includes another if let - else branch.

The if let expression is a syntactic shorthand for a certain match expression.
For example,

if let PATT = EXPR {
  STATEMENTS
}
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This if let statement is equivalent to the following:

match EXPR {
  PATT => {
    STATEMENTS
  }
  _ => (),
}

Or, more generally, the following two statements are more or less equivalent to
each other:

let x = if let PATT = EXPR {
  /* if-let block */
} else {
  /* else block */
};

let x = match EXPR {
  PATT => {
    /* if-let block */
  }
  _ => {
    /* else block */
  }
};

Here, PATT and EXPR represent a refutable pattern and an expression,
respectively.

32.5. The if let Expressions
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Note that the let binding declaration and the if let expression have some
similarities, but they are also rather different from each other.

• The lhs pattern in the let binding must be irrefutable, whereas the pattern of
the if let expression should be normally refutable.

• The OR pattern is not allowed in the let binding.

Here’s a simple example of the OR patterns used in the if let expression.

fn if_let_or_patterns() {
  use Greek::*;
  let a = Alpha(42);

  if let Alpha(21) | Beta(21) = a {      ①
    println!("a contains 21");
  } else if let Alpha(x) | Beta(x) = a { ②
    println!("a contains {x}");
  }
}

① Using the same Greek enum from earlier.

② This OR pattern is still not irrefutable because of the missing Unknown variant.
Note that OR patterns in the if let context must include the same variable(s)
in each sub-pattern.

32.6. The let - else Expressions
As of version 1.65, the let - else expression is part of the stable Rust. This
covers the "second half" of the if let expression, if you will. That is, the primary
block of the lf let expression is executed when the pattern matches a scrutinee
expression. On the other hand, the primary block of the let - else expression is
executed when the match fails.

32.6. The let - else Expressions
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fn let_else_demo() {
  let food = Some("cookies");
  let Some(x) = food else {              ①
    panic!("No cookies!!!");             ②
  };                                     ③

  println!("Finally, some {x}!");        ④
}

① As with if let, the pattern in let - else should generally be refutable.

② It is a common idiom to just panic, or branch out, when the pattern does not
match in let - else.

③ The let - else expression syntactically requires the trailing semicolon.

④ Note the scope of the variable x used in the let - else pattern. It extends
beyond the let - else statement. Although the pattern Some(x) itself is
refutable, after the else branching, it is safe to use the bound variable x at this
point. let - else is rather similar to the simple let binding in this regards.

A let - else expression is a syntactic shorthand for a certain match expression.
For example, the following two code snippets are more or less equivalent.

let PATT = EXPR else { PANIC }
STATEMENTS

match EXPR {
  PATT => { STATEMENTS }
  _ => { PANIC }
}

32.6. The let - else Expressions
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Chapter 33. Loop Expressions
Rust supports four different kinds of loop expressions:

• A loop expression loops indefinitely.

• A for expression loops over an iterable.

• A while expression loops as long as a boolean expression evaluates to true.

• A while let expression loops as long as a pattern match succeeds.

All four types of loops can be declared with labels, and they all support break and
continue expressions.

33.1. The loop Expression
A loop expression consists of the keyword loop followed by a block expression. It
repeatedly executes the block expression, which amounts to an infinite loop. And,
hence its type may be never !. A loop expression that terminates via a break has
a type compatible with the value of that break expression.

use std::thread::sleep;
use std::time::Duration;

fn loop_loop() -> ! {
  loop {                                 ①
    sleep(Duration::from_millis(1000));
    println!("Slept another second");
  }
}

① The type of this expression is !, and it is used as a statement here.

33.1. The loop Expression
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33.2. The for Expression
A for expression is used to loop over a sequence of an IntoIterator type. The
IntoIterator trait defines a method, into_iter, which returns an Iterator
type. Iterator defines one required method, next, which is used to get the next
element in a sequence.

If the iterator yields a value, that value is matched against the irrefutable pattern
of the for expression, and if successful, the body of the loop is executed. Then,
control returns to the head of the for loop to repeat the iteration. When the
iterator is empty, the for expression completes.

For example,

fn for_loops() {
  let arr1 = ['C', 'a', 'T'];            ①
  for a in arr1 {                        ②
    println!("{a}");
  }

  let arr2 = vec!["Hi", "World"];        ③
  for a in &arr2 {                       ④
    println!("{a}");
  }

  let mut arr3 = [1, 2, 3, 5, 8];
  for a in &mut arr3 {                   ⑤
    *a += 1;
    println!("{a}");
  }
  println!("{arr3:?}");                  ⑥
}
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① The builtin array types implement IntoIterator.

② Iterating over each value of arr1. The type of the loop variable a is char. This
expression is equivalent to for a in arr1.into_iter() { ... }. The
into_iter method returns an iterator, whose next method is then called to
get the next element in the given iterator, e.g., wrapped in an Option. If it is a
Some(T) value, it is automatically unwrapped. Otherwise, that is, if None is
returned, then the iteration terminates. Rust automatically handles all this for
for expressions. Normally, if you need to implement your own IntoIterator
type, and custom iteration logic, then this needs to be all manually taken care
of.

③ The Vec type also implements IntoIterator.

④ Iterating over borrowed references. The type of a is &(&str).

⑤ Iterating over mutable references. The type of a is &mut i32.

⑥ This will print [2, 3, 4, 6, 9].

Rust’s range expressions also implement the IntoIterator trait. They are
sometimes used just like C’s classic for loop.

fn for_range_loops() {
  for i in 5..=8 {                       ①
    println!("{i}");
  }
  for c in 'c'..'t' {                    ②
    println!("{c}");
  }
}

① This for loop goes through four i32 elements, 5, 6, 7, and 8.

② Likewise, this iterates over 17 char elements.
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33.3. The while Expressions
Rust’s while loop is rather similar to those found in other C-style languages. The
main difference is again that it is an expression in Rust.

A while loop begins by evaluating the boolean loop conditional operand. If the
loop conditional operand evaluates to true, the loop body block executes, and
then control returns to the loop conditional operand. If the loop conditional
expression evaluates to false, the while expression completes.

For example,

fn while_loops() {
  let (mut i, mut j) = (0, 0);

  while i + j < 5 {                      ①
    println!("Counting: {}", i + j);
    (i, j) = (i + 1, j + 1);
  }
  println!("Done: i = {i}, j = {j}");    ②
}

① The value of this while expression is the unit value, (), and it is ignored. That
is, while is used as a statement in this example, as is generally the case.

② This will output Done: i = 3, j = 3.

33.4. The while let Expressions
The while let expression is a variation of the while expression. They are
semantically rather similar, but while let uses pattern matching rather than
conditional expressions as in while.
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More specifically, the while let expression consists of

• The keywords while and let, followed by

• A (refutable) pattern,

• An equal sign =,

• A scrutinee expression, and

• A block expression.

If the value of the scrutinee matches the while let pattern, the loop body block
executes, and then control returns to the pattern matching clause. Otherwise, the
while let expression completes.

fn while_let_loops() {
  use std::time::{SystemTime, UNIX_EPOCH};

  fn random() -> Option<i32> {           ①
    if let Ok(s) = SystemTime::now().duration_since(UNIX_EPOCH) {
      if s.as_micros() % 2 == 0 {
        Some(1)
      } else {
        None
      }
    } else {
      None
    }
  }

  while let Some(i) = random() {         ②
    println!("{i}");                     ③
  }
}

33.4. The while let Expressions
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① Pay no attention to that man behind the curtain. Just an arbitrary code.

② The (main) while let example. Roughly half of the time, the Some(i) pattern
will match. Once it fails to match, the loop will terminate. Note that the pattern
needs to be refutable. Otherwise, it will become an infinite loop. The value of
this while let expression is again ().

③ This can potentially print zero or more lines of 1.

Multiple patterns may be specified with the | operator. (E.g, the OR pattern.) This
has the same semantics as with | in match expressions:

#[derive(Debug)]
enum Degree {                            ①
  Unknown,
  Celsius(f32),
  Fahrenheit(f32),
}

fn while_let_or_patterns() {
  use Degree::*;
  let mut degrees = vec![Celsius(100.), Unknown, Fahrenheit(37.)];
  println!("{degrees:?}");
  while let Some(Celsius(t)) | Some(Fahrenheit(t))   ②
    = degrees.pop() {
    println!("t = {t} C/F");             ③
  }
}

① Pattern matching over enums is a rather common idiom in Rust.

② The pattern has to be refutable. In this example, the pattern does not match
Degree::Unknown, and hence it is not irrefutable.

③ This will output t = 37 C/F.
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33.5. Loop Labels
Any of the loop expressions, loop, for, while, or while let, as well as block
expressions (as of Rust 1.65 and later), may optionally be prefixed with a label.
Labels are lexically more or less the same as lifetime parameters. That is, they are
identifiers preceded by an apostrophe ('). Loop labels are followed by a colon (:)
and a loop or block expression. For example,

fn loop_labels() {
  #![allow(unused, while_true, irrefutable_let_patterns)]
  'loop1: loop {}
  'loop2: while true {}
  'loop3: while let age = 42 {}
  'loop4: for i in [1, 2, 3] {}
  'block5: { print!("Empty") }
}

If a loop label is defined, then the nested labeled break and continue
expressions may exit out of this loop or return control to its head. Rust’s break
and continue expressions are described next.

33.6. The break Expressions
A break expression is only allowed inside a loop or block expression. It can be
one of the following four forms:

• break,

• break 'LABEL,

• break EXPR, or

• break 'LABEL EXPR.
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Note the last two forms are only allowed in loop or block expressions.

Normally, when break is encountered, execution of the innermost loop, which is
enclosing the break expression, is terminated.

fn break_expressions_1() {
  let mut looped = 0;

  while looped < 42 {
    loop {
      looped += 10;
      if looped > 21 {
        break;                           ①
      }
    }
    println!("{looped}");                ②
  }
}

① This break expression statement will break out of the inner loop when
looped becomes bigger than 21, e.g., 30 and upward in this example.

② This will end up printing three lines, 30, 40, and 50.

This behavior can be controlled using loop labels. For example,

fn break_expressions_2() {
  let (mut x, mut y) = ('\0', 0u8);

  'fst: for i in 'a'..='z' {
    '_snd: for j in 1..=100 {
      if i != 'i' {
        break;                           ①
      }

33.6. The break Expressions

261



      if j == 21 {
        x = ((i as u8) - 32) as char;
        y = j + 21;
        break 'fst;                      ②
      }
    }
  }
  println!("x = {x}, y = {y}");
}

① This break will only break out of the inner for (labeled with an (unused)
label, '_snd).

② This will break out of all loops which are nested within the for loop with the
label 'fst, including the loop itself.

33.6.1. break and loop values

A break expression may be used to return a value from its enclosing loop or
block expression, or from a labeled loop or block. One can use one of the forms
break EXPR or break 'label EXPR, where EXPR is an expression whose result
is returned from the loop/block. For example,

fn break_expressions_3() {
  let z = 'x: loop {
    loop {
      break 'x 333;
    }
  };
  println!("z = {z}");                   ①
}

① This will output z = 333. The type of z is i32.
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33.7. The continue Expressions
The continue expression has two forms:

• continue, or

• continue 'LABEL.

They can be used only in a loop, and when the first form of continue is
encountered, it immediately returns control to the head of the innermost loop.
When a loop is associated with a label, the continue 'LABEL expression returns
control to the head of that loop, possibly skipping any nested loops. For example,

fn continue_expressions() {
  let mut x = 0;
  'w1: while { x += 1; x } < 10 {        ①
    let mut y = 0;
    while { y += 1; y } < 10 {
      let sum = x + y;
      if sum % 3 == 0 {
        continue 'w1;                    ②
      } else if sum % 2 == 0 {
        continue;                        ③
      }
      println!("sum = {sum}");
    }
  }
}

① With great power comes great responsibility. For illustration only. 

② It continues the outer loop, with the current value of the loop variable x.

③ It continues the inner loop, without changing the values of x and y.
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Chapter 34. Operators
Rust includes most of the operators commonly found in other programming
languages, and possibly more. One exception is probably C’s increment and
decrement operators, which have recently become, for some reason, villains in
programming. The rationale behind this new aversion to these operators is that
they are too difficult, and too confusing, to use for common average developers.
And yet, these modern programming languages, including Go and Rust, include
features that are ten times or a hundred times more complex. 

As stated, everything is an expression in Rust. But, that everything excludes
declarations, and assignment, for all practical purposes. If you are used to using
increment and decrement operators, you may (or, may not) miss them.
Regardless, however, Rust’s expressive power is still literally through the roof if
you compare it with other imperative programming languages. 

We go through some of the common operators very briefly, in this chapter, mainly
for completeness, but their syntax and semantics are pretty much the same as
those found in other C-style languages. We discuss operator overloading and
related operator traits in the following chapter, Operator Overloading.

34.1. Unary Operators
The unary negation operator (-) changes the sign of a given numeric operand.
This operator can be overloaded by implementing the std::ops::Neg trait. For
example,

fn negation_operator() {
  let (x, y, z) = (0, 10, 22.2);
  assert_eq!((-x, -y, -z), (0, -10, -22.2));
}

34.1. Unary Operators
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The unary NOT operator (!), which can be overloaded by implementing the
std::ops::Not trait, is commonly used for,

• A logical NOT operation for a bool operand, which flips the logical value, or

• A bitwise NOT operator for a numeric operand, which reverses all bits in a
given operand.

fn logical_not_operator() {
  let (b1, b2) = (true, false);
  assert_eq!((!b1, !!b1, !b2, !!b2), (false, true, true, false));
}

fn bitwise_not_operator() {
  let u1 = 0b01001u8;
  println!(
    "u1 \-> !u1 = \
    {0:b} ({0}) -> {1:b} ({1})",
    u1, !u1
  );                                     ①

  let i1 = 0b01001i8;
  println!(
    "i1 -> !i1 = \
    {0:b} ({0}) -> {1:b} ({1})",
    i1, !i1
  );                                     ②
}

① The output: u1 -> !u1 = 1001 (9) -> 11110110 (246).

② The output: i1 -> !i1 = 1001 (9) -> 11110110 (-10).

34.1. Unary Operators
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34.2. Arithmetic Binary Operators

Symbol Name Overloading Trait

+ Addition std::ops::Add

- Subtraction std::ops::Sub

* Multiplication std::ops::Mul

/ Division std::ops::Div

% Remainder std::ops::Rem

Binary operator expressions are all written with infix notation, e.g., lhs OP rhs.
Here are some examples:

fn arithmetic_demo() {
  println!("5 + 2 = {a}", a = 5 + 2);
  println!("5 * 2 = {m}", m = 5 * 2);
  println!("5 / 2 = {d}", d = 5 / 2);    ①
  println!("-5 / 2 = {d}", d = -5 / 2);  ②
  println!("5 % 2 = {r}", r = 5 % 2);    ③
  println!("5 % -2 = {r}", r = 5 % -2);  ④
  println!("-5 % 2 = {r}", r = -5 % 2);  ⑤
}

① The output: 5 / 2 = 2.

② The output: -5 / 2 = -2. Note that integer division rounds towards zero.

③ The output: 5 % 2 = 1.

④ The output: 5 % -2 = 1.

⑤ The output: -5 % 2 = -1. Note that the remainder has the same sign as the
dividend. (What would be the value of -5 % -2? )

34.2. Arithmetic Binary Operators
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34.3. Logical Binary Operators

Symbol Name Overloading Trait

& Logical AND std::ops::BitAnd

| Logical OR std::ops::BitOr

^ Logical XOR std::ops::BitXor

When these operators, &, |, and ^, are applied to operands of the bool type, they
are logical AND, OR, and XOR operators, respectively. For example,

fn logical_demo() {
  for l in [true, false] {
    for r in [true, false] {
      print!("{l} & {r} = {b}\t", b = l & r);
    }
    println!();
  }
  for l in [true, false] {
    for r in [true, false] {
      print!("{l} | {r} = {b}\t", b = l | r);
    }
    println!();
  }
  for l in [true, false] {
    for r in [true, false] {
      print!("{l} ^ {r} = {b}\t", b = l ^ r);
    }
    println!();
  }
}

34.3. Logical Binary Operators
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Here’s a sample output:

true & true = true      true & false = false
false & true = false    false & false = false
true | true = true      true | false = true
false | true = true     false | false = false
true ^ true = false     true ^ false = true
false ^ true = true     false ^ false = false

34.4. Lazy Boolean Operators
Boolean expressions with binary operators, && (AND) and || (OR), applied to
operands of the bool type, are lazy expressions. That is, && only evaluates its rhs
operand when the lhs operand evaluates to true, Otherwise, the expression
"short circuits" to false. Likewise, || only evaluates its rhs operand when the lhs
operand evaluates to false, Otherwise, the expression short circuits to true.

For example,

fn lazy_boolean_operators() {
  for l in [true, false] {
    for r in [true, false] {
      let b = {
        print!("(l)"); l
      } && {
        print!("(r)"); r
      };
      print!("\t");
      print!("{l} && {r} = {b}\t");
    }
    println!();
  }

34.4. Lazy Boolean Operators
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  for l in [true, false] {
    for r in [true, false] {
      let b = { print!("(l)"); l} || { print!("(r)"); r };
      print!("\t");
      print!("{l} || {r} = {b}\t");
    }
    println!();
  }
}

Here’s a sample output. The prefix (l), as opposed to (l)(r), indicates that only
the lhs operand has been evaluated. Notice that, in all such cases, the value of the
lhs operand is the same as the value of the overall Boolean expression. This is
what we refer to as the short circuiting.

(l)(r)  true && true = true     (l)(r)  true && false = false
(l)     false && true = false   (l)     false && false = false
(l)     true || true = true     (l)     true || false = true
(l)(r)  false || true = true    (l)(r)  false || false = false

34.5. Bitwise Operators

Symbol Name Overloading Trait

& Bitwise AND std::ops::BitAnd

| Bitwise OR std::ops::BitOr

^ Bitwise XOR std::ops::BitXor

<< Left Shift std::ops::Shl

>> Right Shift std::ops::Shr

34.5. Bitwise Operators

269



For instance,

fn bitwise_shift_operators() {
  let u1 = 0b1000101u8;
  println!(
    "u1 -> (u1 << 1): {0:b} ({0}) -> {1:b} ({1})",
    u1, (u1 << 1)
  );
  println!(
    "u1 -> (u1 >> 2): {0:b} ({0}) -> {1:b} ({1})",
    u1, (u1 >> 2)                        ①
  );
  let i1 = 0b1000101i8;
  println!(
    "i1 -> (i1 << 1): {0:b} ({0}) -> {1:b} ({1})",
    i1, (i1 << 1)
  );
  println!(
    "i1 -> (i1 >> 2): {0:b} ({0}) -> {1:b} ({1})",
    i1, (i1 >> 2)                        ②
  );
  let i1 = -0b1000101i8;                 ③
  println!(
    "i1 -> (i1 << 1): {0:b} ({0}) -> {1:b} ({1})",
    i1, (i1 << 1)
  );
  println!(
    "i1 -> (i1 >> 2): {0:b} ({0}) -> {1:b} ({1})",
    i1, (i1 >> 2)                        ④
  );
}

① The right shift operator applied to an unsigned integer extends 0s in the
leftmost bits. In this example, (u1 >> 2) is 00010001.

34.5. Bitwise Operators

270



② The right shift operator applied to a positive signed integer extends 0s in the
leftmost bits. In this example, (i1 >> 2) is 00010001.

③ In Rust, signed integers are represented using two’s complement. For example,
69 is represented as 01000101 whereas -69 is represented as 10111011.

④ The right shift operator applied to a negative signed integer extends 1s in the
leftmost bits. In this example, (i1 >> 2) is 11101110.

Here’s a complete sample output.

u1 -> (u1 << 1): 1000101 (69) -> 10001010 (138)
u1 -> (u1 >> 2): 1000101 (69) -> 10001 (17)
i1 -> (i1 << 1): 1000101 (69) -> 10001010 (-118)
i1 -> (i1 >> 2): 1000101 (69) -> 10001 (17)
i1 -> (i1 << 1): 10111011 (-69) -> 1110110 (118)
i1 -> (i1 >> 2): 10111011 (-69) -> 11101110 (-18)

34.6. The Assignment Operator (=)
An assignment expression has the form, EXP1 = EXP2, and it copies or moves the
value of EXP2 (a value expression) to EXP1 (a mutable place expression),
depending on their type. The assignment expression always returns chapter-
primitives-unit, (), and they are more often than not used as statements.

For instance,

fn assignment_operator() {
  let mut a = 10;
  let b = 1;
  a = b + 3;                             ①
  println!("{a}");

34.6. The Assignment Operator (=)
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  let mut _x = 5; let _y;
  let z = _y = (_x = 30);                ②
  println!("{z:?}");
}

① The rhs of this assignment is evaluated first, which results in 4. Then, this
number 4 is copied to the lhs variable a (since i32 is a Copy type). As can be
seen from the trailing ;, it is an expression statement.

② Although legal, it is not very useful. The assignment expression, e.g., _x = 30,
always returns the unit value (). Hence, z will end up being () as well.

34.7. Compound Assignment Operators
Compound assignment expressions combine arithmetic and logical/bitwise binary
operators with assignment expressions.

Symbol Name Overloading Trait

+= Addition Assignment std::ops::AddAssign

-= Subtraction Assignment std::ops::SubAssign

*= Multiplication Assignment std::ops::MulAssign

/= Division Assignment std::ops::DivAssign

%= Remainder Assignment std::ops::RemAssign

&= Bitwise AND Assignment std::ops::BitAndAssign

|= Bitwise OR Assignment std::ops::BitOrAssign

^= Bitwise XOR Assignment std::ops::BitXorAssign

<<= Left Shift Assignment std::ops::ShlAssign

>>= Right Shift Assignment std::ops::ShrAssign

34.7. Compound Assignment Operators
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34.8. Comparison Operators
Equality operators, == and !=, can be overloaded by implementing the
std::cmp::PartialEq. Likewise, other comparison operators, <, >, <=, and >=,
can be overloaded by implementing std::cmp::PartialOrd.

Symbol Name Overloading Method

== Equal std::cmp::PartialEq::eq

!= Not equal std::cmp::PartialEq::ne

> Greater than std::cmp::PartialOrd::gt

< Less than std::cmp::PartialOrd::lt

>= Greater than or equal to std::cmp::PartialOrd::ge

<= Less than or equal to std::cmp::PartialOrd::le

Rust implements these traits for all primitive types, among others. One thing to
note is that, unlike the arithmetic and logical operators, comparison operators use
implicit immutable references of their operands. For example,

fn comparison_demo() {
  let x = String::from("Hello ");
  let y = String::from("World!");
  if x == y {                            ①
    panic!("Hello Huh?");
  }
  if PartialEq::eq(&x, &y) {             ②
    panic!("World Wot?");
  }
  println!("{x}{y}");                    ③
}

34.8. Comparison Operators
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① x == y is merely a syntactic shorthand for …

② … PartialEq::eq(&x, &y). Note that both arguments are taken through
shared borrows.

③ That means that they did not move into the eq function.



PartialEq and PartialOrd are supertraits of Eq and Ord,
respectively. While the "partial" traits can be used to compare
values across two different types, Eq and Ord traits are used to
characterize a type. An Eq type T has to satisfy an implicit
requirement that a == a for all values a of T. Likewise, Ord has
to support "total ordering". That is, the values of an Ord type
should be sortable. On the other hand, PartialOrd only
requires that two values should be comparable.

34.9. Borrow Operators
The shared borrow (& and &&) and mutable borrow (& mut and && mut) operators
are unary prefix operators used for taking references of the given operand. They
cannot be overloaded. When a borrow operator is applied to a place expression, it
produces an (shared or mutable) reference to the location that the value of the
operand refers to. If the & or &mut operator is applied to a value expression, then a
temporary memory location is created. For instance,

fn shared_borrow_demo() {
  let x = 101;
  let y = &x;                            ①
  let z = &&x;                           ②
  assert_eq!(y, &x);
  assert_eq!(z, &y);
}

34.9. Borrow Operators
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① The type of y is &i32 since x is of the type i32.

② The type of z is &&i32. Note that &&x is the same as &(&x) or & &x. However,
&& is a single lexical token (because it is also used as a lazy logical AND
operator), and, for example, & & & and && & and & && are all equivalent when
they are used for borrows.

Likewise,

fn mutable_borrow_demo() {
  let (mut x1, mut x2, x3, mut x4) = (201, 301, 401, 501);
  {                                      ①
    let y1 = &mut x1;                    ②
    let z2 = &&mut x2;                   ③
    let z3 = &mut &x3;                   ④
    let z4 = &mut &mut x4;

    // println!("{x1},{x2},{x3},{x4}");  ⑤
    println!("{y1}, {z2}, {z3}, {z4}");
  }                                      ⑥
  println!("{x1}, {x2}, {x3}, {x4}");    ⑦
}

① A block expression creates a new scope.

② The variable y1 mutably borrows x1. Note that y1 itself is not mutable.

③ &&mut x2 is the same as & (&mut x2).

④ Note that x3 is immutably borrowed here.

⑤ This statement will fail because x1, x2, and x4 have been mutably borrowed.

⑥ The end of the block expression statement. Its value () is discarded.

⑦ This works now.

34.9. Borrow Operators
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Chapter 35. Operator Overloading
Rust supports some limited form of operator overloading, using predefined ops
and cmp traits, as we cover in the previous chapter. For a quick reference, we list
here all traits that can be used for the purposes of operator overloading.

Arithmetic and logical operators

Trait Op Name Required Methods

Neg - Unary
negation

neg(self) -> Output

Add + Addition add(self, rhs: Rhs) -> Output

AddAssign += Addition
assignment

add_assign(&mut self, rhs: Rhs)

Sub - Subtraction sub(self, rhs: Rhs) -> Output

SubAssign -= Subtraction
assignment

sub_assign(&mut self, rhs: Rhs)

Mul * Multiplicatio
n

mul(self, rhs: Rhs) -> Output

MulAssign *= Multiplicatio
n assignment

mul_assign(&mut self, rhs: Rhs)

Div / Division div(self, rhs: Rhs) -> Output

DivAssign /= Division
assignment

div_assign(&mut self, rhs: Rhs)

Not ! Unary logical
negation

not(self) -> Output

Rem % Remainder rem(self, rhs: Rhs) -> Output

276



RemAssign %= Remainder
assignment

rem_assign(&mut self, rhs: Rhs)

Index [] Indexing index(&self, index: Idx) ->
&Output

IndexMut [] Mutable
indexing

index_mut(&mut self, index: Idx)
-> &mut Output

RangeBounds ..
..=

Range
bounds

start_bound(&self) -> Bound<&T>
end_bound(&self) -> Bound<&T>

BitAnd & Bitwise AND bitand(self, rhs: Rhs) -> Output

BitAndAssign &= Bitwise AND
assignment

bitand_assign(&mut self, rhs: Rhs)

BitOr | Bitwise OR bitor(self, rhs: Rhs) -> Output

BitOrAssign |= Bitwise OR
assignment

bitor_assign(&mut self, rhs: Rhs)

BitXor ^ Bitwise XOR bitxor(self, rhs: Rhs) -> Output

BitXorAssign ^= Bitwise XOR
assignment

bitxor_assign(&mut self, rhs: Rhs)

Shl << Bit left shift shl(self, rhs: Rhs) -> Output

ShlAssign <<= Bit left shift
assignment

shl_assign(&mut self, rhs: Rhs)

Shr >> Bit right shift shr(self, rhs: Rhs) -> Output

ShrAssign >>= Bit right shift
assignment

shr_assign(&mut self, rhs: Rhs)

One thing to note is that the operands of all of arithmetic and logical operators are
evaluated in value expression context, which means that they are moved or
copied depending on their types.
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Comparison operators

Trait Op Name (Required) Methods

PartialEq eq(&self, other: &Rhs) -> bool

 —  == EQ eq(&self, other: &Rhs) -> bool

 —  != NE ne(&self, other: &Rhs) -> bool

PartialOrd partial_cmp(&self, other: &Rhs) ->
Option<Ordering>;

 —  < LT lt(&self, other: &Rhs) -> bool

 —  <= LE le(&self, other: &Rhs) -> bool

 —  > GT gt(&self, other: &Rhs) -> bool

 —  >= GE ge(&self, other: &Rhs) -> bool

Unlike the arithmetic and logical operators, comparison operators implicitly take
shared borrows of their operands, evaluating them in place expression context.

Here’s a quick (and, trivial) example of operator overloading:

use std::{ cmp::Ordering, fmt::{Display, Formatter}, ops::Add };

#[derive(Debug, Clone, Copy)]
struct Int(i32);

impl Add for Int {                       ①
  type Output = Int;
  fn add(self, rhs: Self) -> Self::Output {
    Int(self.0 + rhs.0)
  }
}
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impl PartialEq for Int {                 ②
  fn eq(&self, other: &Self) -> bool {
    self.0 == other.0
  }
}

impl PartialOrd for Int {                ③
  fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    self.0.partial_cmp(&other.0)
  }
}

impl Display for Int {
  fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
    write!(f, "{d}", d = self.0)
  }
}

fn overloading_demo() {
  let sum = Int(1) + Int(2);
  println!("sum = {sum}");               ④
  assert!(Int(10) == Int(10));           ⑤
  assert!(Int(1) != Int(-1));
  assert!(Int(100) > Int(1));
  assert!(Int(1) < Int(100));
}

① Overloading the + operator by implementing Add for Int.

② Overloading the equality and inequality operators

③ Overloading other comparison operators.

④ This will output sum = 3.

⑤ All assertions will succeed.
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Chapter 36. Iterators
The Iterator trait, and its related traits, in Rust wear many hats. Anybody who
has done some functional programming knows that the list data structure plays
the fundamental role in FP, no matter whether you use Lisp-style or ML-style
languages. It’s almost as if FP is all about just manipulating lists. In Rust, the
Iterator trait is the abstraction of the list. All language-supported linear data
types like arrays, slices, and vectors, among others, can be converted to an
Iterator type in some way, e.g., by implementing the IntoIterator trait. We
will not discuss this particular usage of iterators in this book.

Another important, and inherently related, role of the Iterator traits in Rust is to
support iteration, through what is called the iterator pattern. This is becoming so
ubiquitous across many different modern programming languages that it is rather
impossible not to have used this kind of iteration idioms for anyone who has done
any degree of programming these days. Unfortunately, however, different
languages use different terminologies. For reference, Rust’s IntoIterator (or,
iterable) and Iterator correspond to C#'s IEnumerable and IEnumerator and
Python’s generator and iterator, respectively, among others.

Rust’s iterators also support a particular style of APIs, often called the chaining, or
combinators, etc., which are sometimes considered synonymous with "functional
programming" (in the imperative programming world). Terms like higher order
functions are also commonly used in this context. This kind of programming style
is often based on function compositions, and hence it definitely reflects the core
functional programming philosophy.

We will briefly go over some common uses of iterators in Rust in this chapter.
Note that the idiomatic Rust programming style heavily makes use of the
Iterator-based types. (The readers are encouraged to explore further, beyond
this book, if you haven’t had much exposure to this particular programming style,
e.g., using map, filter, foreach, and collect style functions.)
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Three Forms of Iteration
All iterables need to implement the IntoIterator trait, which defines one
required method, into_iter. We won’t go into all the details here, but as
indicated, the into_iter method returns an Iterator type, which encapsulates
all iteration logic.

pub trait IntoIterator {
  type Item;
  fn into_iter(self) -> Iterator<Item = Self::Item>;
}

We can implement IntoIterator for a container type MyCon<T> as follows:

impl<T> IntoIterator for MyCon<T> {
  fn into_iter(self) -> Iterator<Item = T> { /* ... */ }
  // ...
}

Alternatively, or in addition, we can also implement IntoIterator for & MyTy
and/or &mut MyTy in the following way:

impl<'a, T> IntoIterator for &'a MyCon<T> {
  fn into_iter(self) -> Iterator<Item = &'a T> { /* ... */ }
  // ...
}
impl<'a, T> IntoIterator for &'a mut MyCon<T> {
  fn into_iter(self) -> Iterator<Item = &'a mut T> { /* ... */ }
  // ...
}
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These three different impls will end up providing three different (albeit related)
implementations for into_iter. Many standard collection types that implement
IntoIterator, e.g., arrays and vectors, provide convenience methods for one or
both of the last two variations, using the standard naming convention. That is, the
iter method on type MyCon<T> is defined to be essentially a shorthand for
into_iter on &MyCon<T>. Likewise, the iter_mut method on type MyCon<T> is
defined to be effectively the same as into_iter on &mut MyCon<T>.

In other words,

• MyCon<T>.into_iter() returns an iterator that iterates over values of T.

• MyCon<T>.iter(), if defined, returns an iterator that iterates over values of
&T.

• MyCon<T>.iter_mut(), if defined, returns an iterator that iterates over
values of &mut T.

Here’s a quick example using Vec:

fn vec_iteration_demo() {
  let mut v = vec![1, 2, 3];

  v.clone().into_iter()                  ①
    .for_each(|i| println!("{}", i));

  v.iter()                               ②
    .for_each(|j| println!("{}", *j));

  v.iter_mut().for_each(|k| {            ③
    *k += 1;
    println!("{}", *k)
  });
}
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① The type of i is i32, and we are iterating over i32. Vec is a Move type, and we
use clone to be able to use the same vector for all three cases.

② We are iterating over &i32.

③ We are iterating over &mut i32.

Note that the above three iterations are essentially equivalent to the following
three for loops, respectively.

fn vec_iteration_demo() {
  let mut v = vec![1, 2, 3];

  for i in v.clone() {                   ①
    println!("{}", i);
  }

  for j in &v {                          ②
    println!("{}", *j);
  }

  for k in &mut v {                      ③
    *k += 1;
    println!("{}", *k);
  }
}

① The type of i is i32.

② The type of j is &i32.

③ The type of k is &mut i32.
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Chapter 37. Error Handling
The try - catch exception framework was once considered the golden standard
of error handling. In a program error situation, it bypasses the normal function
return flows on the call stack, and it can be rather efficient in handling errors.
Virtually all widely used programming languages support some variations of
exceptions, including C++, Java, C#, Python, JavaScript, just to name a few. Rust
doesn’t, however.

Exception-based error handling has pros and cons, just like everything else in life.
In particular, it makes error handling explicit, which is an advantage. On the
other hand, it makes error handling too verbose, which is a downside.

In some newer, and arguably more modern, programming languages, they do
away with exceptions. Go, for example, uses the normal call stack to return error
values. By convention, Go’s functions return any error values as the last return
value. Otherwise, it uses the nil value to indicate an absence of an error. Clearly,
this is an improvement over C, which, by convention, uses certain special values
as a return value. (Unlike in most C-style languages, Go’s functions can return
multiple values.) It makes error handling explicit. And, to a certain degree, it
forces the developers to explicitly deal with possible error situations. The
downside is clearly its verbosity. It forces the developers to deal with errors,
essentially for every function call, through the call stack unwinding.

Rust’s error handling is somewhat similar to Go’s, which is in turn based on C’s as
stated, but with a twist.

By convention, all Rust functions which can cause an error return values of either
Result or Option type, or something comparable. If the function call succeeds,
the return value, if any, is included in the Ok<T> or Some<T> variant of Result or
Option, respectively. Otherwise, the error condition is indicated by returning an
Err<E> or None variant.
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Now, even at a superficial level, this is a big improvement over the error handling
mechanism of Go, or C. Rust’s error handling is more structured, and it is possibly
much more type-safe. And, unlike the exception framework, which usually stands
out like a sore thumb in normal programs, it is better "integrated" into the natural
programming styles.

37.1. Panic and Terminate
Errors are rarely black and white. There are fifty shades and one hundred
nuances to program errors. However, for practical reasons, we tend to simplify
their handling. In a potential error situation at run time, one of the easiest, and
sometimes the best, solutions is to just to terminate the program. In certain cases,
the errors can be so severe that the program may not be able to continue in any
meaningful way. Sometimes, attempting to do so may be more harmful.
Sometimes, there may not be a possibility of any reasonable recovery from a
totally unexpected situation. In certain cases, and in fact more often than not, any
elaborate error handling or recovery may not be necessary in practice. And so
forth. In such cases, we can just terminate the program, e.g., by calling the
std::process::exit function.

37.1.1. Exit

A Rust program normally ends when it runs out of the statements to execute. You
can explicitly call exit from the std::process crate, for example, to terminate a
program before the program’s normal termination and/or to return a particular
return code to the operating system, etc.

fn process_exit_demo() {
  println!("Hello and Bye! :)");
  std::process::exit(0);
}

37.1. Panic and Terminate
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37.1.2. The Termination trait

As we indicated in the beginning of the book, Rust’s main function can return
Result<(), E>. In fact, although it is not commonly used outside the system
libraries, main can also return a value of Result<T: Termination, E: Debug>.
Termination is a trait that was specifically introduced to support arbitrary
return types in the main function. This trait was stabilized in Rust 1.61, and it is
automatically implemented for the Result<T, E> type. More specifically,

impl<T: Termination, E: Debug> Termination for Result<T, E>;

Here’s a simple example of the main function using a Termination type.

use std::{
  process::{ExitCode, Termination},
  time::{Duration, SystemTime, UNIX_EPOCH},
};

#[derive(Debug)]
struct Outcome(i32);

#[derive(Debug)]
struct Fault;

impl Termination for Outcome {           ①
  fn report(self) -> ExitCode {          ②
    if self.0 == 0 {
      ExitCode::SUCCESS
    } else {
      ExitCode::FAILURE
    }
  }
}
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fn main() -> Result<Outcome, Fault> {    ③
  println!("Hello, Rust the Crab!");

  if let Ok(true) =
SystemTime::now().duration_since(UNIX_EPOCH).and_then(|d| {
    if d.as_millis() % 2 == 0 { Ok(true) } else { Ok(false) }
  }) {                                   ④
    Ok(Outcome(0))                       ⑤
  } else {
    Err(Fault)
  }
}

① We use the Outcome tuple struct type as the success return type in Result, and
hence it needs to implement the Termination trait.

② Note that the Termination trait defines one required method, fn
report(self) -> ExitCode.

③ A special main function signature.

④ Pay no attention to that man behind the curtain. 

⑤ Half of the time, it returns Ok(Outcome), and for the rest half, it returns
Err(Fault), just for illustration.

37.1.3. Panic

Rust provides a number of macros to make it easy to terminate a program in an
unexpected situation. One of the most commonly used macros is panic!, which
does not require any further explanation. The panic! macro is described earlier
in the book,
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37.1.4. Assertions

One of the most underutilized methods in error handling is runtime assertions.
They can be very effective in preventing the programs from continuing that are
possibly in an inconsistent, and unsafe, state. Those programs, if they keep
running, could potentially wreak havoc, e.g., by compromising the integrity of
data, etc. When a certain invariant condition is not satisfied, we can cause a panic
by using the assert macros in Rust. For example,

fn assert_demo() {
  let a = 1 + 2;
  assert_eq!(a, 3);                      ①

  let x = 10;
  let b = if 100 > x { true } else { false };
  assert!(b);                            ②
}

① If this assertion fails, then obviously something is very wrong, and we should
not continue. 

② Ditto.

37.2. Results and Options
In Rust, there are two ways to program: The hard way and the harder way. 
Generally speaking, if you write programs using Rust’s basic constructs, the
programs tend to get rather verbose and lengthy. It sometimes gets tedious to
write even a simple program. (This is the "harder" way.)

To compensate this, Rust provides an extensive set of APIs for virtually all types,
including even primitive types. Not just Rust. Most, if not all, community libraries
follow this pattern. By making use of the convenience APIs that are provided, one
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can write a very "ergonomic", economical, and efficient code in Rust. There is
clearly a learning curve, and it is still "hard" since it takes time and effort to get
used to the APIs, but ultimately it’s the Rust way.

As stated, Rust does not include any kind of formal error handling framework,
other than providing the standard library type Result<T, E>, which is to be used
as a return type from a function that can possibly fail. Likewise, by convention,
the Option<T> enum type is used as a container that may or may not include a
valid value.

These two types are examples of what is generally known as the Monad in
mathematics, and in pure functional programming (a la Haskell). Although it is
well beyond the scope of this book, these monads provide ideal tools in error
handling. Let’s suppose that the functions that can return one of two possible
values, e.g., success and failure, are chained together. One can quickly realize that
there will be a combinatorial explosion. That is, for each call, the situations we
need to deal with will double. This is, in fact, a rather common problem. For
example, there is this well-known problem called the "callback hell".

The interested readers are encouraged to learn more about monads, and find out
how they can remedy this combinatorial explosion problem stemming from the
multiple return values from a chain of function calls, for instance. But, this
knowledge is not required to program effectively in Rust. To circle back on the
original point that we raised in the beginning of this section, both Result and
Option come with extensive sets of functions and methods to facilitate their
ergonomic use.

We are down to the last few sections of this book, and we will not discuss any of
those APIs here, but as stated, knowing, and using, them well will make you an
effective programmer in Rust. In fact, many beginning Rust programmers start
with the methods like unwrap and expect (whose use is not generally
recommended for production code), and it’s just a matter of time before they start
using more sophisticated methods.

37.2. Results and Options

289



37.3. The Unwrap Operator (?)
The question mark operator, ?, does magic in Rust. As stated, error handling can
be rather tedious, not just in Rust, but in general, across many different
programming languages. The question mark operator, also known as the unwrap
or try operator, helps simplify, and reduce, many error handling related boiler
plate code.

This special unary postfix operator can only be used with expressions of the types
Result<T, E> and Option<T> (e.g., the two basic monad types in Rust error
handling), and it cannot be overloaded. In either case, it unwraps valid values,
from either Ok<T> or Some<T>, if successful. Otherwise, it returns the erroneous
values, either Err<E> or None, to the calling function.

37.3.1. Unwrapping Option

When the unwrap operator is applied to an operand of the Option<T> type,

• If the operand expression evaluates to Some(x), then

◦ It will automatically unwrap the value, and hence the overall expression
will evaluate to x, and

• If the operand evaluates to None, then

◦ It will cause the enclosing function or closure to immediately return with
the value, None.

For example, if a function o() is defined as follows:

fn o() -> Option<T> { /* ... */ }

Then, the following two functions are more or less equivalent to each other.
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fn use_o() -> Option<T> {
  let x = o()?;
  // Use x...
}

fn use_o() -> Option<T> {
  match o() {
    Some(x) => // use x...
    None => return None,
  }
}

37.3.2. Unwrapping Result

When the unwrap operator ? is applied to an operand of a Result<T, E> type,

• If the operand expression evaluates to Ok(x), then

◦ It will automatically unwrap the value and hence the overall expression
will evaluate to x, and

• If the operand evaluates to Err(e), then

◦ It will cause the enclosing function or closure to immediately return with
the error value, Err(From::from(e)).

For example, if a function r() is defined as follows:

fn r() -> Result<T1, E1> { /* ... */ }

Then, the following two functions are more or less equivalent to each other.
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fn use_r() -> Result<T2, E2> {
  let t1 = r()?;
  // Use t1...
  // Return Ok(t2), with t2 being of the type T2.
}

fn use_r() -> Result<T2, E2> {
  match r() {
    Ok(t1) => // use t1, and return Ok(t2)
    Err(e1) => return Err(e2), // with e2 = From::from(e1) unless E1
== E2, in which case e1 == e2.
  }
}

Note that, in the first form, the error type conversion, if necessary, is implicit in
the unwrap operator expression.

37.4. Error Type Conversions
As we showed in the previous section, some error types used in a program may
need to be convertible to one another, e.g., by implementing the From trait, in
order to be able to take advantage of the elegant syntax of the unwrap operator ?.

Here’s a quick example illustrating this point.

#[derive(Debug)]
struct Error1(u8);                       ①

#[derive(Debug)]
struct Error2(u16);
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① We use two simple types as error types in this example. Rust includes the
Error trait, but it is not necessary to use this trait. At least, for now.

impl From<Error1> for Error2 {           ①
  fn from(value: Error1) -> Self {
    Error2(value.0 as u16)
  }
}

① The type Error2 implements the From<Error1> trait, which means that
values of type Error1 can be converted to values of type Error2.

fn error_1() -> Result<i32, Error1> {    ①
  Err(Error1(1))
}

① This error_1 function merely returns an error of type Error1.

fn error_2() -> Result<i32, Error2> {    ①
  let x = error_1()?;                    ②
  println!("{x}");                       ③
  Ok(0)
}

① The error_2 function returns an error of type Error2 in case of errors.

② error_1()? can potentially return a value of i32, in which case we assign the
value to the variable x, or it can just return an error, in which case the error
returned from error_1() will be converted using the From::from function.

③ Note that if the program execution reaches this point, then x will always have
a valid value.
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fn error_2() -> Result<i32, Error2> {
  Ok(error_1()?)                         ①
  // Ok(error_1()?.abs())
  // Ok(error_1()? + 2)
}

① Since the overall expression postfixed with the unwrap operator is also an
expression, it can be used anywhere an expression is expected. Note that, in
this example, the type of these expressions are i32. The unwrap operator
expressions can also be chained.

Builtin Attributes

The test Attribute
Although we do not discuss Rust’s unit testing support in this book, it might
be a good idea to end the book with a description of the test attribute. One
can run unit tests via rustc --test or cargo test. All functions marked with the
test attribute, but not with the ignore attribute, will be run as unit tests.

The test function should be one of the following three forms:

#[test] fn test_1() -> () {}
#[test] fn test_2() -> ! {}
#[test]
fn test_3() -> Result<T: Termination, E: Debug> {
  todo!();
}
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Appendix A: How to Use This Book
Tell me and I forget. Teach me and I remember. Involve me
and I learn.

— Benjamin Franklin

The books in this "Mini Reference" series are written for a wide audience. It
means that some readers will find this particular book "too easy" and some
readers will find this book "too difficult", depending on their prior experience
related to programming. That’s quite all right. Different readers will get different
things out of this book. At the end of the day, learning is a skill, which we all can
learn to get better at. Here are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some typos. We go
through multiple revisions, and every time we do that there is a finite chance to
introduce new errors. We know that some people have strong opinions on this,
but you should get over it. Even after spending millions of dollars, a rocket launch
can go wrong. All non-trivial software have some amount of bugs. If you are
fixated over a few typos, which is probably less than 0.001% of the total word
count in the book, then this book is not for you.

Although it’s a cliche, there are two kinds of people in this world. Some see a
"glass half full". Some see a "glass half empty". This book has a lot to offer. As a
general note, we encourage the readers to view the world as "half full" rather than
to focus too much on negative things. Despite some (small) possible errors, and
formatting issues, you will get a lot out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several years ago,
and it became an instant best seller. There are now many similar books, copycats,
published since then. The book is written for "laypeople", and illustrate how
computer science concepts like specific algorithms can be useful in everyday life.
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Inspired by this, we have some concrete suggestions on how to best read this
book. This is one suggestion which you can take into account while using this
book. As stated, ultimately, whatever works for you is the best way for you.

Most of the readers reading this book should be familiar with some basic
algorithm concepts, at least at a high level, although you may not remember all
the details. When you do a graph search, there are two major ways to traverse all
the nodes in a graph. One is called the "depth first search", and the other is called
the "breadth first search". At the risk of oversimplifying, when you read a tutorial
style book, you go through the book from beginning to end. Note that the book
content is generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially often
corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are written to
cover broad and wide range of topics, and which have many interdependencies
among the topics, it is often best to adopt the breadth first traversal.

This advice should be especially useful to new-comers to the language. The core
concepts of any (non-trivial) programming language are all interconnected. That’s
the way it is. When you read an earlier part of the book, which may depend on the
concepts explained later in the book, you can either ignore the things you don’t
understand and move on, or you can flip through the book to go back and forth.
It’s up to you. One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

In essence, the best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get the high-
level concepts. At each iteration, you try to get more and more details. It is really
up to you, and only you can tell, as to how many passes would be required to get
much of what this book has to offer.

Again, good luck!
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continue, 29, 254, 260, 263
continue expression, 263
continue Expressions, 263
control, 257
control blocks, 68
control flow, 239, 242
control flow expression, 232, 241
convenience, 282
convenience APIs, 288
convenience methods, 93, 96, 115
Conversion Traits, 112
converted, 293
convertible, 292
copies, 124
Copy, 79-82, 110-111, 160
copy, 79, 214, 217
copy of a value, 81
Copy or Move, 80
copy or move, 147, 217
copy semantics, 111
Copy trait, 79-80
Copy type, 80-81, 94, 159, 217
Copy type, 200
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Copy types, 81, 84, 148
Copy types, 82, 101, 153
copy types, 77
Copy vs Move, 79
copying, 79
copying, 237
core language, 19
core language features, 49
core traits, 20, 106
core types, 100
crate, 38, 47-48, 68
crate level, 56, 67
crate module, 47
crate name, 48
crate root module, 67
crate_name Attribute, 48
crate_type, 39
Crates, 47
crates, 28
crates.io, 16
crates.io, 48
create type, 39
cross-architecture development, 14
Curly braces, 25
curly braces, 25, 159, 168, 171, 202
current crate, 73
current directory, 17
current thread, 42
custom attributes, 40
custom derives, 40
custom discriminant values, 175
custom names, 97

custom type, 154
custom types, 69, 202
custom value, 174
custom values, 174

D

dashes, 48
data structure, 154
data type, 111
data values, 174
dbg!, 45
dbg! Macro, 45
dbg! macro, 45
Debug, 111, 114-116
debug formats, 114
Debug trait, 114
Debug::fmt, 114
decimal literals, 30-31
decimal number, 35
declaration, 152, 191, 250
declaration statement, 229-230
Declaration statements, 229
declaration statements, 229, 233
Declarations, 191
declarations, 191, 193, 264
Declarative macros, 40
declared names, 229
declaring file, 55
declaring scope, 73
decrement, 264
deep copy, 183
Default, 82
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Default, 82, 111
default implementation, 85, 111, 188-189,

194, 197-198, 200-201
default implementations, 193
Default trait, 82
default value, 188, 192, 201
default values, 82, 192
definite inference, 230
definition, 122
Definitions, 191
definitions, 187
Delimiters, 25
delimiters, 25
deny, 74, 76
dependency management, 15
Deref, 83
Deref, 83-84
deref coercions, 83
Deref trait, 83-84, 183-184
dereference, 83, 129, 220
dereference operator, 83
dereferenced, 180, 183, 238
dereferenced, 184
Dereferences, 128
DerefMut, 83
DerefMut, 83
DerefMut trait, 84
Derivable, 106
derivable, 81
derivable trait, 85, 111
Derivable Traits, 111
derivable traits, 85, 111

derive, 83
derive Attribute, 85
derive attribute, 85, 111
Derive macro attributes, 38
destruction, 122
destructor, 123
destructor method, 84
destructors, 84
destructure, 224
destructure tuple structs, 226
Destructuring, 211
destructuring, 211, 231
destructuring syntax, 168
diagnostics, 38
different modules, 203
disabling warnings, 75
discard variable, 117, 214
discriminant value, 171, 173-174
discriminant values, 171, 174-175
discriminants, 174
discriminated unions, 171
disjoint set, 154
disjoint unions, 171
Display, 100, 112, 114-116
Display trait, 113
Display::fmt, 114
dividend, 266
Division, 266
Division Assignment, 272
doc attribute, 23
doc attribute, 24
doc attributes, 22
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doc comment, 24
doc comment syntax, 24
Doc comments, 22
doc comments, 18, 21
doc comments, 22
doc directory, 18
docs, 18
documentation, 18, 23-24
documentation output, 18
dot operator, 161
double precision, 88
double quote, 34, 37
double quote character, 33
double quotes, 33
Drop, 80
drop, 84
drop method, 85, 181
Drop trait, 84
Drop type, 84
Drop Types, 84
Drop types, 84
Drop types, 84
DSTs, 82, 204
dyn trait, 78
Dynamic Dispatch, 78
dynamic dispatch, 83
dynamic dispatch, 204
dynamic memory allocation, 67
dynamic trait objects, 83
dynamic-size array, 92
dynamic-sized, 100, 105, 180
dynamically sized, 82, 95, 121

dynamically sized type, 89
dynamically sized types, 82, 204

E

E, 33
e, 33
e/E, 33
Each variant, 171
early binding, 204
edition, 19
edition = "2021", 17
edition entry, 19
editions, 18
effects, 233
element, 93
element access syntax, 93
element type, 95
elements, 93, 95, 98, 256
elided lifetimes, 117
elision, 126
elision rules, 126
else, 250
else block, 246-248
else if, 247
else if let blocks, 249
else keyword, 246, 248
emphasis, 24
empty format, 113
empty instance, 105, 111
empty slice pattern, 227
empty tuple, 90
empty tuple, 223
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enclosed expression, 235
enclosed item, 241
enclosed statements, 242
enclosing block, 232
enclosing function, 290-291
enclosing items, 23
enclosing statement block, 229
encoded, 33
end of the line, 21
entire array, 95
entire crate, 39
entire lifetime, 138
Enum, 173
enum, 69, 81, 101, 154, 171-172, 175, 182
enum, 154, 156, 171-173, 178, 211, 252
enum declaration, 171
enum declaration, 173
enum definition, 71
Enum Discriminants, 173
enum item, 171
Enum Items, 71
enum name, 171
enum type, 71, 153
enum type, 171
Enum types, 101
Enum values, 71
enum values, 174, 226
enum variant, 172, 231
Enum Variants, 171
Enum variants, 172
enum variants, 171, 179, 215
enumerate method, 97

enumerated types, 171
Enums, 71, 154, 171, 173
enums, 174-175, 177, 179, 211, 224, 226,

259
eprint macros, 42
eprint!, 42
eprintln!, 42
eprintln! macro, 42
Eq, 111, 274
eq function, 274
Equal, 273
equal sign, 248, 258
equality, 279
Equality operators, 273
Err, 226
Err<E>, 103, 284, 290
Err<Error>, 103
erroneous values, 290
error, 175, 293
error condition, 284
error handling, 20, 112, 284-285, 288-290
error handling framework, 289
error message, 103
error situation, 285
error situations, 284
Error trait, 293
error type conversion, 292
Error Type Conversions, 292
error types, 292-293
error value, 291
error values, 284
Errors, 285
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errors, 284-285, 293
escape byte syntax, 36
escape characters, 33-34
escape sequence, 37
escaping, 33-34
evaluation, 233
evaluation order, 235
example code, 24
exception framework, 284-285
Exception-based, 284
exceptions, 284
exclusive borrow, 124
executable, 47
executable binary, 56
exhaustive, 179, 246
Exit, 285
expect, 289
explicit implementation, 110
explicitly typed, 117
exponent, 33
exponent symbol, 33
expression, 145, 229, 232-238, 251, 254,

256-257, 262, 294
expression, 248
expression blocks, 25
expression context, 235
expression evaluations, 229
expression grouping, 25
expression statement, 232
expression statement, 232, 272
Expression Statements, 232
Expression statements, 229

expression structures, 229
expression values, 234
expression-based language, 233
expression-oriented programming, 233
Expressions, 40, 128, 229, 234
expressions, 19-20, 77, 128, 229, 232-235,

237, 239-241, 243, 248, 254, 290
expressions, 233
expressive power, 264
extern, 143
extern block functions, 141
Extern Blocks, 73
Extern blocks, 73
extern blocks, 73
extern crate, 73
Extern Crate Declarations, 73
External blocks, 73
external crate, 73
external crate dependency, 17
external file module, 55
external file modules, 54
external variable, 149
external variables, 149

F

f32, 30, 32-33, 88
f32 type, 33
f64, 30, 32, 88
f64 by default, 33
false, 30, 86, 268
feature Attribute, 91
feature attribute, 91
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feature flags, 91
field, 31, 70, 155, 157, 161, 211
Field Access, 161
field access, 129
field access expression, 162
field access syntax, 162
field expression, 161-162
field name, 161
field names, 164
field patterns, 225
Field references, 128
field struct expression, 164
field structs, 168
field types, 97
Fields, 155
fields, 28, 80-81, 97, 156-158, 161, 178, 215,

224
fields, 154
file, 67
file names, 48
file path, 54
final expression, 242
final operand, 241
final operand, 242
final operand expression, 242
finite lifetimes, 123
first parameter, 214
first-class value, 142
float literal, 33
float literals, 33
floating point, 31, 86
floating point literal, 32

Floating point literals, 212
floating point numbers, 88, 246
floating point types, 213
floating-number literal, 33
floating-point literal, 30, 33
Floating-point literals, 32, 234
floating-point literals, 32
floating-point numbers, 30, 226
Floating-point types, 88
floating-point types, 88
fmt, 113-114
fmt method, 114
Fn, 151
fn keyword, 141
Fn trait, 151
FnMut, 151
FnMut trait, 151
FnMut<Args>, 151
FnOnce, 151
FnOnce trait, 151
FnOnce<Args>, 151
following item, 24
for, 203, 260
for Expression, 255
for expression, 97, 254-255
for expressions, 209, 256
for keyword, 133, 138
for loop, 94, 212, 255-256, 262
for loops, 283
forbid, 74, 76
format string, 41
format string, 41
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format strings, 44, 113
format!, 41
format! extension, 113
format! macro, 41
format! macro syntax, 89
formatted string, 42
Formatters, 116
formatting arguments, 113
Formatting Traits, 113
FP, 233, 280
FP languages, 233
FP styles, 233
free-form metadata, 38
From, 112
From trait, 112, 292
From::from function, 293
full expressiveness, 233
full path, 55
full paths, 193
full range syntax, 95
full slice, 95
fully qualified name, 198
Function, 71
function, 24, 71, 90, 140-142, 146, 153, 229,

237, 289
function and closure arguments, 221
Function and closure parameters, 209
function arguments, 141
Function as a value, 142
function block, 127
function body, 24, 71, 122, 141
Function body block, 141

function body block, 138, 140, 240
function call, 84, 237, 284
function call expression, 236, 239
function call notation, 199
Function Calls, 237
function calls, 25, 229, 289
function compositions, 280
function declaration, 140, 197
function definitions, 146, 206
function implementation, 126, 207
function item, 196
Function Items, 71
function names, 28
function operand, 237
function parameter, 140, 199
Function Parameters, 122
Function parameters, 122, 140
function parameters, 28, 121-122, 140, 146,

216, 237
function return flows, 284
function return values, 122
function scope, 79
function signature, 126, 207
function traits, 142
function type, 142, 153, 237
Function types, 141
function types, 153
function-like macro, 40
function-like macros, 40, 43
function-like types, 151
functional languages, 233
functional programming, 90, 158, 233, 242,
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280, 289
functional programming philosophy, 280
functional update syntax, 158
functional update syntax, 160
Functions, 71, 73, 140, 143, 196, 202, 229
functions, 20, 72, 79, 126, 142, 153, 173,

187, 202, 289
Functions and methods, 191
function’s body, 143
fundamental types, 20
Future, 143-144, 236, 242
future, 143, 236, 242
future edition of Rust, 212

G

generated doc, 24
generic, 130, 171, 188, 195-196
generic definitions, 133
generic function, 133, 206
generic functions, 130
generic implementations, 130
generic impls, 202
generic item, 130
generic lifetime, 133
generic parameter, 134, 190, 201
Generic Parameters, 130
generic parameters, 125, 130-131, 133, 155,

187-188, 202, 230
generic trait, 188, 196
generic trait bounds, 136
generic trait syntax, 195
Generic Traits, 195

generic traits, 84, 196
generic type, 133, 194
generic type arguments, 152
generic type parameter, 134, 196
generic type parameters, 136, 152, 196
generic types, 69, 130, 181, 188
generically, 155
Generics, 130
generics, 20, 126, 130, 189
get, 93, 96
get_mut, 93, 96
get_mut method, 186
Go, 78, 128, 165, 178, 233, 264, 284
Greater than, 273
Greater than or equal to, 273
grouped, 236
Grouped Expressions, 235
grouped expressions, 235
Grouped Patterns, 222
Grouped patterns, 222
grouped patterns, 221-222
grouped sub-expression, 236

H

half-open range pattern, 213
handling errors, 284
Hash, 111
hash, 38, 111
hash symbol, 24
hashes, 34, 37
Haskell, 77-78, 165
head, 227
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heap, 82, 122, 180-181
heap memory, 67, 82, 180
heap-allocated, 82, 92, 100, 123, 180
heap-allocation, 105
heap-based types, 180
hex literal, 31
hexadecimal, 116
hexadecimal literals, 30
high-level structures, 47
higher order functions, 280
higher-ranked lifetime bound, 138
higher-ranked lifetimes, 133
Higher-Ranked Trait Bounds, 138

I

i128, 30-31, 87
i16, 30-31, 87
i16 suffix, 31
i32, 30-31, 87, 159
i32 by default, 31
i64, 30-31, 87
i8, 30-31, 87
identifier, 26, 216-217
identifier pattern, 214, 216, 218, 228, 231
Identifier Patterns, 216
identifier patterns, 214, 216, 224, 245
identifier suffixes, 30
Identifiers, 25-27
identifiers, 26-27, 29, 48, 260
idiomatic programming style, 233
idiomatic Rust programming style, 280
if, 246, 248, 250

if - else, 246, 248
if - else branch, 250
if - else expression, 246
if block, 246
if else branching, 246
if expression, 232, 246-248
If expressions, 241
if Expressions, 246
if expressions, 249
if keyword, 245-246
if let, 226, 246, 250, 253
if let - else, 246, 248
if let - else branch, 250
if let block, 248
if let context, 252
if let expression, 94, 213, 219, 248-250,

252
if let expression syntax, 213
If let expressions, 241
if let Expressions, 248
if let expressions, 209, 249
if let statement, 251
ignore attribute, 294
immutability, 233
immutable, 77, 84, 216
immutable, 122
immutable borrow, 147
immutable receiver, 151
immutable references, 124, 148
immutable types, 77
immutable update, 158
immutable update syntax, 160
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immutable update syntax, 164
immutable variable, 149, 216
immutably, 237
immutably borrowed, 275
immutably borrowing, 149
imperative languages, 158, 229, 233
imperative programming, 79, 229, 233, 264
imperative programming languages, 101
imperative style, 127
impl, 72, 111, 192-193, 202-203
impl block, 140
impl keyword, 202-203
impl trait, 78, 206-207
impl trait type, 150
impl TRAIT types, 206
Impl Traits, 206
impl traits, 78, 207
impl traits, 206
implement, 203
implementation, 72, 191-194, 196-197, 202
implementation detail, 79
Implementation Items, 72
Implementations, 72, 102, 104
implementations, 72, 119, 173, 188, 191,

202, 282
implemented, 202
implemented automatically, 83
implemented trait, 203
implemented trait, 203
Implementing, 194
implementing type, 72
implementing type, 188, 192-193, 196-197,

199, 202-203
implementing types, 189
Implicit Borrows, 129
implicit borrows, 129
implicit borrows, 129
implicit conversions, 88
implicit immutable references, 273
Impls, 187, 202
impls, 126, 282
increment, 32, 264
increments, 183
index, 93
index notation, 96
indices, 97, 164
inequality, 279
inferred type, 164-165
infinite loop, 90, 254, 259
infix notation, 266
inherent, 187
inherent implementation, 157, 202
inherent implementation, 197, 202-203
Inherent Implementations, 202
Inherent implementations, 72, 202
inherent implementations, 193, 203
initial capacity, 105
initializer, 117
initializer expression, 230
initializer operand, 98
initializer operands, 98
inline Attribute, 120
inlined, 68
inlined, 117

316



inner, 74
inner attribute, 38-39
inner attribute syntax, 38
Inner attributes, 38
inner attributes, 47
inner attributes, 187, 241
inner block doc comment, 23
inner doc comment, 24
inner for, 262
inner line doc comment, 23
inner loop, 261
inner loop, 263
inner scope, 126
innermost loop, 261, 263
Input Format, 21
input parameters, 71
input tokens, 40
instance, 70, 105, 158, 163, 196, 202
instance, 72
instance destructors, 85
instance type, 187
instances, 156, 171, 173
instances of structs, 157
Integer, 86
integer, 31, 213
integer division, 266
integer literal, 30-31, 212
integer literal suffixes, 31
Integer literals, 30, 234
integer literals, 31, 33, 212
integer type, 174
Integer types, 87

integer types, 174
integer value, 174
integers, 30
integral types, 31, 87
interface type, 78, 133
interfaces, 78, 133
interior mutability, 186
interior value, 186
interpolated string, 41
Into, 112
into_iter, 255, 281-282
into_iter method, 256, 281
IntoIterator, 256, 280-282
IntoIterator trait, 96, 255-256, 280-281
IntoIterator type, 255-256
invalid expression, 236
invalid index, 93
invariant condition, 288
invoked, 46
Irrefutability, 210
irrefutable, 210, 216, 220, 252
irrefutable, 211-212, 214, 222-226, 231, 246,

252, 259
irrefutable pattern, 224-226, 230-231, 246,

255
Irrefutable patterns, 210
irrefutable patterns, 140, 146
irrefutable) patterns, 168
isize, 30-31, 87-88
item, 22, 38, 140, 202, 230, 235
item, 47
Item Declarations, 230
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Item declarations, 229
item declarations, 68, 73
item paths, 69
Items, 40, 49, 126, 202, 230
items, 22, 24, 28, 68, 72-73, 128, 155, 191,

242
items, 47, 49
iter, 282
iter_mut, 282
iterable, 254
iterables, 281
Iterating, 256
iterating over, 283
Iteration, 281
iteration, 255-256, 280
iteration idioms, 280
iteration logic, 256, 281
iterations, 173, 283
Iterator, 255, 280
iterator, 97, 255-256, 282
iterator pattern, 280
Iterator trait, 280
Iterator traits, 280
iterator traits, 97
Iterator type, 280-281
iterator-related traits, 196
iterators, 280

J

Java, 38, 78, 101, 123, 178, 180, 284
JavaScript, 19, 123, 180, 284

K

keyword, 29
keyword dyn, 204
keyword enum, 171
keyword fn, 71, 140
keyword for, 202
keyword impl, 130, 202
keyword loop, 254
keyword ref or ref mut, 217
keyword return, 239
keyword type, 152
Keywords, 25, 28
keywords, 28-29
keywords if and let, 248
keywords while and let, 258

L

label, 260, 262-263
Labels, 260
labels, 254
lambda expressions, 145
lambda function, 149
lambda functions, 145-146, 149
language features, 19
language grammar, 19, 21, 38
language prelude, 86
language specification, 48-49
language syntax, 21
language variant, 19
language variants, 18-19
Language vs Standard Libraries, 19
last expression, 240
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last field, 155
last return value, 284
late binding, 204
Lazy Boolean Operators, 268
lazy expressions, 268
lazy logical AND, 275
leading asterisk *, 23
leading hashes, 24
leading spaces, 34-35
leading white spaces, 34
Left Shift, 269
Left Shift Assignment, 272
leftmost bits, 270-271
length, 97, 105
length function, 227
length operand, 94
length operands, 94
less frequently used in Rust, 133
Less than, 273
Less than or equal to, 273
let, 27
let - else, 246, 248, 253
let - else expression, 213, 252-253
let - else Expressions, 252
let - else pattern, 253
let - else statement, 220, 253
let binding, 98, 119, 127, 140, 164, 168,

216, 226, 231, 252-253
let binding declaration, 252
let binding syntax, 231
let bindings, 140, 209, 217, 221
let declaration, 231, 250

let declaration statement, 231
let Declarations, 230
let declarations, 209, 229, 232
let else expressions, 209
let ref binding, 217
let ref identifier pattern, 217
let ref mut binding, 217
let statement, 230
let variable declaration statement, 248
let variable declarations, 217
let-bound variables, 242
lexer, 25, 29
Lexical Analysis, 88
lexical analysis, 18, 234
lexical rules, 30
lexical scopes, 125
lexical structure, 21
lexical token, 275
lexical tokens, 25, 156
lexically scoped, 122
lexically valid, 30-31
lf let expression, 252
lhs operand, 268-269
lhs variable, 272
lib, 39
library crate, 47
library crate, 47
library crates, 24
lifetime, 121, 123, 127, 137-138, 150, 199
lifetime, 125
lifetime annotations, 125
lifetime bound, 137-138, 204
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Lifetime Bounds, 137
lifetime bounds, 137-138, 187
Lifetime elision, 126
lifetime elision, 126
lifetime generic parameter, 137
lifetime parameter, 139
Lifetime parameters, 131
lifetime parameters, 28-29, 125-126, 133,

139, 260
lifetime patterns, 126
lifetime token, 29
Lifetime tokens, 29
lifetime tokens, 29
Lifetimes, 25, 29, 125
lifetimes, 20, 119, 122, 125-126, 134, 137-

138, 199
line break, 33-34
line breaks, 33
line comment, 21
Line comments, 21
line comments, 21
linear data types, 280
lines, 24
linking, 24
lint attribute, 39
lint checks, 76
lint rule, 75
lint rules, 74
lint warning, 39
Linting, 74
list data structure, 280
lists, 280

literal, 31, 33, 35, 37, 212
Literal Expressions, 234
literal expressions, 30
literal pattern, 209, 212, 220-221, 244
Literal Patterns, 212
Literal patterns, 212
literal patterns, 212, 221
literal suffix, 31-33
literal suffix f32, 33
literal syntax, 30
literal tokens, 30
literal tokens, 30
literal tokens with suffixes, 30
literal-like values, 212
Literals, 25, 30
literals, 30, 156, 212, 234
local name bindings, 68
local names, 119
local variable, 121-123, 235, 244
Local Variables, 121
Local variables, 121, 128
local variables, 121-122, 150, 230, 237
locally declared variables, 141
location, 181
location in memory, 121
logical, 273, 277-278
Logical AND, 267
Logical Binary Operators, 267
logical NOT operation, 265
Logical OR, 267
logical value, 265
Logical XOR, 267
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loop, 257, 259-260, 262-263
loop, 260-261
loop body block, 257-258
loop conditional operand, 257
loop Expression, 254
loop expression, 254
Loop expressions, 241
loop expressions, 241, 254, 260
loop label, 260
Loop Labels, 29, 260
Loop labels, 29, 260
loop labels, 28-29, 261
loop values, 262
loop variable, 212, 263
loop variable, 256
loops, 254, 262
low precedence, 222
lower bound, 213
lowercase, 116
LowerExp, 116
LowerHex, 116
lvalues, 128

M

macro, 40, 44-46
Macro attributes, 38
macro implementations, 30
macro invocation, 45
macro placeholders, 28
macro processing, 30
macro_rules!, 40
macro_rules! transcribers, 40

Macros, 40
macros, 28-29, 40, 42, 46, 287
main, 56, 286
main Function, 55
main function, 55, 286
main function signature, 287
main symbol, 56
main thread, 42
manifest file, 17
Markdown format, 24
Markdown syntax, 24
Marker trait, 106
marker trait, 80, 83
Marker Traits, 110
marker traits, 110
markups, 24
match, 209
match, 245
match block, 244
match expression, 209-210, 212, 214, 243-

244, 250, 253
Match expressions, 241
match Expressions, 243
match expressions, 102, 104, 209, 243, 248,

259
match guard, 225-226, 245-246
Match guards, 245
match guards, 245
match guards, 246
matched pattern, 243
matched value, 217, 228, 244
matched values, 220
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matching criterion, 227
matching structures, 209
memory, 79, 123, 180-181
memory address, 68, 87, 117, 121
memory efficiency, 80
memory implications, 204
memory layout, 155-156
memory leak, 180
memory location, 69, 116-117, 119, 122
memory location, 128
memory locations, 119
memory-related problems, 123
method, 190, 239
method call, 201, 238-239
method call, 238
method call expression, 162
method call expressions, 238
method call operator, 199, 201
Method Calls, 238
method resolution, 83
method type, 151
Methods, 181, 202
methods, 96, 102, 104, 110, 126, 173, 187,

196, 202, 289
ML-style languages, 77
modern programming languages, 19, 21
module, 24, 47, 55, 155, 230
module, 47
module declaration, 55
Module items, 68
module tree, 49, 68
module-level attribute, 39

Modules, 50, 68
modules, 20, 47
modules, 47, 236
Monad, 289
monad types, 290
monads, 289
most recent edition, 19
Move, 79, 160
move, 80
move, 214, 217
move closure, 149
Move Closures, 149
move closures, 150
move keyword, 145, 148
move or copy, 147
move prefix, 147
Move semantics, 79
move semantics, 79-80
move semantics, 111
Move type, 159, 217-218, 244, 283
Move types, 80-81, 84, 148, 186
move types, 77
move vs copy, 80
move-based value semantics, 160
moves, 124
moving, 79, 237
moving vs copying, 147
multiline strings, 34
multiple line comments, 23
multiple ownership, 183
multiple return values, 289
multiple traits, 193
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Multiplication, 266
multiplication, 235
Multiplication Assignment, 272
multiplicative type, 154
multiplicative types, 90, 97
mut reference patterns, 220
mut self, 199
mutable, 77, 84, 93, 119, 124, 162, 216-217,

239, 275
mutable, 122
mutable array, 96
mutable borrow, 124, 147, 239, 274
mutable borrow, 149
mutable memory location, 184-185
mutable receiver, 151
mutable reference, 95, 124, 148, 151, 186,

217
mutable references, 83, 147, 220, 256
mutable slice, 95-96
Mutable slices, 96
mutable static items, 119
mutable variable, 216
mutably, 237
mutably borrowed, 275
mutably borrows, 239, 275
mutate variables, 127
mutually exclusive sets, 187

N

name-based, 113
Named arguments, 41
Named Constants, 117

named counterparts, 117
named fields, 69, 162, 211
named functions, 146
named or unnamed fields, 154
names, 68
names of structs, 163
namespace, 178
naming convention, 282
naming conventions, 74
native platform, 14
negations, 212
negative implementation, 110
negative integer, 212
negative signed integer, 271
nested, 22
nested, 221
nested block comments, 22
Nested declarations, 230
nested loops, 263
nested module, 55
nested scopes, 126
network capabilities, 67
never !, 254
never ! type, 177
Never Type, 90
never type, 90
new arrays, 94
new associated function, 158
new Cargo project, 15
new constructor function, 181, 186, 200
new edition, 19
new editions, 19
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new function, 105, 185
new instance, 158, 160, 164
New instances, 156
new items, 229
new names, 69
new Rust project, 19
new scope, 275
new struct type, 154
new trait, 187
new tuple value, 98
New type, 168
new type, 165-167
New Type Pattern, 165
new type pattern, 166-168
new type structs, 168
new variables, 229, 231
newline, 33-35, 37, 41
newline characters, 37
newtype, 165
next, 255
next element, 255-256
next method, 256
nightly, 13-14
nightly build, 13
nightly build, 91
no argument constructor, 101
No-Default, 82
no_implicit_prelude, 67
no_implicit_prelude attribute, 67
no_main, 56
no_main attribute, 56
no_std, 67

no_std inner attribute, 67
no_std programs, 67
Non-capturing closures, 153
Non-Clone, 81
non-Clone types, 81
non-Drop types, 84
non-keyword identifiers, 29
non-public, 155
non-reference pattern, 219
non_exhaustive, 178-179
non_exhaustive attribute, 179
non_exhaustive enum, 179
non_exhaustive struct, 179
None, 101-102, 256, 284, 290
normal programs, 285
Not equal, 273
null references, 77
number, 26
number literal, 30
Number literals, 30
number literals, 31
numbers, 156, 180
numbers 0 through 9, 26
numeric operand, 264-265
numeric outputs, 116
Numeric Types, 87
numerical types, 88

O

Octal, 116
octal, 116
octal literal, 31
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octal literals, 30
Ok, 226
Ok<T>, 284, 290
OK<Type>, 103
older editions, 19
one-element slice pattern, 227
OOP, 77
OOP languages, 190
open bracket, 25
opening brace, 241
opening parenthesis, 235
operand, 239, 265, 274, 291
operand evaluates, 291
operand expression, 235, 290-291
operand sub-expressions, 235
operands, 128, 234, 267-268, 273, 277-278
Operaotrs, 26
operator, 264
Operator overloading, 106
operator overloading, 20, 112, 264, 276,

278
operator traits, 106, 264
Operators, 25, 236
operators, 20, 26, 95, 99, 236, 264, 267, 274,

277
ops, 276
optimization, 80
Option, 20, 226, 256, 284, 289
Option enum, 216
Option value, 93
Option<T>, 102-104, 289-290
Option<T> Enum, 101

Option<T> enum, 101
Option<T> type, 102
optional label, 241
optional value, 101
Options, 101, 288
Options<T>, 101
OR, 267
OR pattern, 221, 244-245, 252, 259
OR Patterns, 221
OR patterns, 221-222, 230, 252
Ord, 111, 274
orphan rule, 167
orphan rule, 181
ORs, 231
outer, 74
outer attribute, 38, 55
Outer attributes, 38
outer block, 230
outer block doc comment, 22
outer expression, 229
outer line doc comment, 22, 24
outer loop, 263
outer scope, 126
outer variables, 230
output stream, 42
overloaded, 236
overloaded, 264-265, 273-274, 290
Overloading, 279
overloading, 83
override, 198, 203
owner, 123
owner, 183, 218-219
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owner variable, 123
owners, 183
ownership, 45, 79, 100, 122-123, 148-149,

151
ownership and borrowing, 125
Ownership Model, 123

P

package name, 17, 48
package names, 48
Panic, 285, 287
panic, 43-44, 220, 253, 288
panic message, 44
panic!, 42, 287
panic! macro, 42-44, 90
panics, 46
parameter list, 141
parameters, 188, 237
parametrized type system, 130
parametrized types, 130
parent trait, 134
Parentheses, 25
parentheses, 25, 43, 162, 168, 222-223, 237-

238
parenthesized expression, 235
parenthesized expressions, 235
parser, 25
PartialEq, 111, 274
PartialOrd, 111, 274
passing values, 124
path, 54
path, 55

path, 55, 68, 193, 202, 235
path attribute, 54-55
path expression syntax, 215
Path Expressions, 235
path pattern, 216, 231
Path Patterns, 215
Path patterns, 215
Path Qualifiers, 60
path syntax, 193
Paths, 57
paths, 49, 68, 128
pattern, 140, 145, 209-211, 213, 217-220,

222, 224-225, 227-228, 230, 244-246,
249, 252-253, 258-259

pattern (), 223
pattern element, 222
pattern expressions, 243
pattern match, 254
pattern matches, 252
Pattern matching, 216, 259
pattern matching, 20, 71, 97, 171, 173, 209,

225, 243, 248, 257
pattern matching clause, 258
pattern matching context, 224
pattern matching if let, 250
pattern-based, 231
pattern-based expressions, 102
pattern-matching contexts, 104
pattern-matching expression, 80
Patterns, 40, 209-211
patterns, 20, 214, 220-222, 226, 243, 246,
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performance, 80
period, 33
place contexts, 77
place expression, 128, 161, 274
place expression context, 278
Place Expressions, 128
Place expressions, 128
place expressions, 77, 128-129
placeholder, 27, 45
placeholders, 41
plus symbols, 134
Pointer, 116
pointer, 84, 183
pointer arithmetic, 88
pointer type, 83-84, 87, 89, 95, 182
Pointer types, 84
pointer types, 83-84, 180, 182
pointers, 123, 180, 204
pop, 182
positional, 113
positive signed integer, 271
precedence, 222, 235-236
prefix b, 35-37
prefix br, 37
prefix r, 34
Prelude, 20, 80
prelude trait, 81
previous chapter, 233
primary block, 252
primitive data type, 86
primitive integer type, 159
primitive type, 90

primitive type values, 89, 123, 180
Primitive Types, 86
primitive types, 19, 30, 86, 273, 288
primitive types, 100
primitives, 86
print macros, 41-42
print!, 41-42
println!, 41-42
println! macro, 41
println! macro call, 232, 248
println! macro statement, 37
println! statement, 96, 219
private field, 156
private fields, 105, 158
Procedural Macros, 40
product types, 97
program error, 284
program errors, 285
program execution, 229, 233, 293
program source code, 122
programming language ecosystems, 17
programming style, 280
project, 15, 17
project files, 17
pub visibility modifier, 155
public, 155, 158
public field, 155
Public fields, 155
public struct, 155-156
Punctuation, 26
punctuation symbol tokens, 26
punctuation symbols, 25-26

327



pure functions, 233
push, 182
Python, 38, 123, 180, 284

Q

question mark operator, 290
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r#, 27
RAII, 123
RAII model, 123
RAII rule, 123
range, 213
Range Expression, 99
Range Expressions, 99
range expressions, 256
range pattern, 213, 220
Range Patterns, 213
Range patterns, 213
range patterns, 213
range subpattern, 244
range syntax, 95
RangeFrom Expression, 99
RangeFull Expression, 99
RangeInclusive Expression, 99
RangeTo Expression, 99
RangeToInclusive Expression, 99
raw byte string, 212
raw byte string literal, 37
raw byte string literal, 37
Raw byte string literals, 37, 234
raw byte string literals, 37

raw identifier, 27
raw identifier syntax, 27
raw pointers, 84
raw string, 212
raw string literal, 34-35, 37
Raw string literals, 34, 234
raw string literals, 34
raw string prefix r, 37
Rc, 183
Rc instance, 184
Rc value, 183
Rc::new, 184
Rc<T>, 183
Rc<T> Struct, 183
receiver, 181, 238-239
receiver, 199
receivers, 202
record construction syntax, 160
record type syntax, 158
record-like data types, 158
recovery, 285
recursive implementation, 227
recursive type, 182
recursive types, 182
ref binding, 219
ref identifier pattern, 218
Ref Identifier Patterns, 217
ref or ref mut binding, 219
RefCell, 186
RefCell<T>, 184-185
RefCell<T> Struct, 185
RefCell<T> type, 185
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reference, 77, 125, 136-137, 183, 186, 217,
219

reference count, 183-184
reference counting, 183
reference counting type, 183
reference immutable, 122
reference mutable, 122
reference pattern, 220
Reference Patterns, 220
Reference patterns, 220
reference patterns, 220
reference semantics, 80, 129, 217
reference type, 159
reference type declarations, 125
reference types, 77
reference value, 138, 219
reference variable, 121
Reference variables, 121
reference variables, 121, 124
reference-based programming, 124
referenced values, 121
references, 77, 84, 119, 124-125, 127, 180,

182-183, 185, 204, 217, 220
reference’s lifetime, 125
refutable, 210, 212, 252
refutable, 211, 223, 253, 259
refutable pattern, 248, 251
regular functions, 146
release cycle, 13
Remainder, 266
remainder, 266
Remainder Assignment, 272

remaining fields, 211
repeat element, 94
repeat operand, 94
replace method, 186
repr attribute, 155-156, 158
required function, 82
required method, 115-116, 255, 281
required methods, 46
reserved, 29
reserved keyword, 27
Reserved Keywords, 29
Reserved keywords, 29
resource leaks, 123
Resources, 123
resources, 123
rest, 225
rest pattern, 211, 222-224
rest pattern .., 228
Rest Patterns, 222
Rest patterns, 222
rest patterns, 222
Result, 20, 284, 289
result type, 232
Result<T, E>, 104, 286, 289-291
Result<T, E> Enum, 103
Result<T,E> enum, 103
Results, 288
return, 240
return expression, 239-240
return Expressions, 239
return expressions, 239-240
return position, 207
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return type, 103, 140-141, 145-146, 206-207,
289

return types, 286
return value, 71, 79, 90, 126, 193, 207, 240,

284
Return Values, 122
return values, 146
rhs operand, 268
Right Shift, 269
Right Shift Assignment, 272
right shift operator, 270-271
root module, 73
run time, 154, 185, 285
runtime, 204
runtime assertions, 288
runtime error, 93
runtime expressions, 41
runtime panic, 42
runtime polymorphism, 206
runtime type, 206
Rust 1.61, 286
Rust 1.65, 130, 260
Rust 1.69, 75
Rust closures, 149
Rust compiler, 13-15, 27, 47, 74, 85, 111,

124, 147
Rust crate, 68
Rust development, 14-15
Rust Editions, 18
Rust editions, 17
Rust functions, 284
Rust lexer, 21

Rust package repository, 16
Rust prelude, 67
Rust program, 21, 68, 119, 123
Rust program, 47
Rust programming, 40, 102, 104
Rust programs, 14, 21, 47, 68
Rust projects, 15
Rust reference website, 17
Rust software development, 15
Rust source code, 15
Rust statements, 229
Rust strings, 100
Rust struct, 154
Rust toolchain, 15
Rust toolchains, 13
Rust Tools, 13
Rust tools, 14
Rust type system, 77-78
Rust types, 77
Rust unions, 154
Rustc, 15
rustc, 15, 18
rustc -h, 15
Rustdoc, 18
rustdoc, 15, 18
rustdoc -h, 18
rustdoc command, 18, 22
Rustup, 13
Rustup, 13
rustup -h, 14
rustup command, 13
Rust’s closures, 146, 149
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Rust’s functions, 230
Rust’s iterators, 280
Rust’s traits, 204
Rust’s type system, 101
rvalues, 128

S

safe methods, 95
safe Rust, 175
same crate, 181, 202-203
same scope, 127
same type, 36
same value, 36
scaffolded file, 17
scalar types, 213
scientific notation, 116
scope, 127, 138, 230, 242, 245, 253
scope-based shadowing, 127
Scopes, 122
Scoping, 122
scoping rules, 122
scrutinee, 249, 258
scrutinee expression, 248, 252, 258
second argument, 214
second element, 32
Self, 188, 193, 197, 199
self, 151, 199, 202
self parameter, 141
Self type, 189
self-owned, 183
semantics, 21, 145
semicolon, 94, 140, 232

semicolons, 229
Send, 110
sequence, 92, 154, 255
sequence //, 21
sequence of bytes, 36
sequence of characters, 33, 36
sequence of tokens, 25
sequence of Unicode characters, 21
sequence of values, 95
Sequence Types, 92
sequence types, 92, 96
sequence values, 227
sequentially, 242
set unions, 104
shadow, 126
shadow variables, 127
shadowed, 127, 232
shadowed variable, 127
Shadowing, 126
shadowing, 127
shadows, 127
Shared, 124
shared borrow, 274
shared borrows, 124, 274, 278
shared reference, 36, 147, 151, 218
shared slice, 95
short names, 69
shorter form syntax, 135
shorthand, 194, 199, 282
shorthand notation, 69, 155, 157
shorthand notations, 135
side effect, 232
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side effects, 229, 232-233
side effects, 233
signatures, 191
signed, 87
signed integer types, 87
signed integers, 271
simple expressions, 235
single data field, 211, 214
single doc comment, 23
single precision, 88
single quote, 29, 33
single quote character, 35
single quotes, 33
single trait, 138
single-threaded, 183
singleton objects, 169
singleton value, 102
singly linked list, 182
Sized, 82-83, 110
Sized trait, 82-83, 136
Sized trait bound, 136
Sized traits, 83
Sized type, 82
Sized types, 82
Sized types, 82, 121
Sized vs DST, 82
sizes, 182
slice, 95, 97
slice pattern, 227, 231
Slice Patterns, 227
Slice patterns, 222, 227
slice type, 95, 194

Slice Types, 95
slice types, 96
slices, 86, 92, 95-96, 280
slices of dynamic size, 227
smart pointer, 183
smart pointer Box, 205
smart pointer types, 184
smart pointers, 84, 124, 182, 184
smart pointers, 180
software development, 13
Some variant, 226
Some(T), 101, 256
Some(x), 290
Some<T>, 284, 290
sortable, 274
source, 33
source code, 18, 47
source code files, 18, 47
source code repository, 17
source crate, 49
source file, 47, 54
Source Files, 47
source files, 47
source input, 25
spaces, 23
special characters, 34
specific integer types, 175
Square brackets, 25
square brackets, 38, 227
src/main.rs, 17
stable, 13-14
stable build, 13
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stable build, 14
stable Rust, 13
stable Rust, 252
stack, 82, 121-122, 180, 204
stack allocated, 180
stack frame, 121-122
stack memory, 82, 105, 121
stack vs heap, 121
stack-allocated, 92
standard collection types, 282
standard err, 42
standard error, 45
standard libraries, 19-20
standard library, 20, 67, 100, 106, 144, 180
Standard Library Prelude, 20
standard library prelude, 67
standard library traits, 101, 103
standard library type, 289
standard library types, 105-106
standard out, 41-42
Standard Prelude, 100-101, 103, 106
star, 180
statement, 229-230, 232, 240, 248, 254, 275
statement block, 230
statement context, 240
Statements, 229
statements, 19-20, 40, 68, 229, 232-234, 239,

241, 271
statements and expressions, 229
static, 77
static, 78, 119
static, 123

static and dynamic contexts, 133
static declaration, 119
static initializer, 119
Static initializers, 119
static item, 69
static item, 119
static item declaration, 119
Static items, 73, 119
static Items, 69
static items, 69, 119
static name, 119
static type error, 31
Static Values, 69
static values, 119
Static variables, 128
statically associated, 202
std crate, 67
std::boxed::Box<T>, 181
std::clone::Clone, 81
std::cmp, 236
std::cmp::PartialEq, 273
std::cmp::PartialOrd, 273
std::convert::From, 100
std::default::Default, 82
std::fmt, 113, 116
std::fmt::Debug, 114
std::fmt::Display, 113
std::fmt::Write, 115
std::future::Future, 143
std::io::Write, 115
std::marker::Copy, 80
std::marker::Sized, 83
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std::mem::drop, 84
std::ops, 236
std::ops::Add, 266
std::ops::AddAssign, 272
std::ops::BitAnd, 267, 269
std::ops::BitAndAssign, 272
std::ops::BitOr, 267, 269
std::ops::BitOrAssign, 272
std::ops::BitXor, 267, 269
std::ops::BitXorAssign, 272
std::ops::Deref, 83
std::ops::DerefMut, 83
std::ops::Div, 266
std::ops::DivAssign, 272
std::ops::Drop, 84
std::ops::Mul, 266
std::ops::MulAssign, 272
std::ops::Neg trait, 264
std::ops::Not trait, 265
std::ops::Range, 99
std::ops::Rem, 266
std::ops::RemAssign, 272
std::ops::Shl, 269
std::ops::ShlAssign, 272
std::ops::Shr, 269
std::ops::ShrAssign, 272
std::ops::Sub, 266
std::ops::SubAssign, 272
std::option::Option<T>, 101
std::process::exit, 285
std::rc::Rc<T>, 183
std::result::Result<Type, Error>,

103
std::string module, 100
std::sync, 183
std::vec module, 105
storage, 79
storage location, 105
storage locations, 121
str, 89
streams, 115
strict, 27
Strict Keyword, 28
strict keyword, 27
Strict keywords, 28
strict keywords, 29
String, 41, 82, 89, 100, 105, 122, 159-160,

180
string, 100, 212
string formatting, 43
string interpolation, 41
string literal, 21, 33-34, 36, 41, 100, 126
String literals, 33, 234
string literals, 34, 36, 89, 156
String Struct, 100
String struct, 100
String type, 100
string types, 86
string value, 33, 232
String::from, 100
Strings, 89
strings, 100, 174
strong type system, 77
strongly typed, 130
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struct, 69, 81, 154-155, 158
struct, 154-156, 161-162, 178, 211
struct declaration, 70
struct declaration, 155
struct example, 219
struct expression, 70, 157-158, 160, 179
struct expression syntax, 159, 173
Struct Expressions, 156
struct expressions, 156
struct field, 225
struct initializer syntax, 224
struct item, 156
Struct Items, 69
struct literal, 160, 162, 169, 171
struct literal expression, 158, 160
struct literal syntax, 156, 158
struct literals, 156
struct member access, 236
struct name, 155, 164
struct pattern, 211, 224-225, 231
Struct Patterns, 224
Struct patterns, 222, 224
struct patterns, 225
struct tuple, 163
struct type, 69, 154, 160, 168
struct type, 158
struct Types, 69
struct types, 97
struct types, 171
Struct Update Syntax, 158
struct values, 224
struct variant, 156

struct variants, 173, 224
struct with fields, 154
struct-like syntax, 171
struct-like variants, 175
Structs, 69, 154-155, 215
structs, 90, 100, 126, 154, 162, 179, 211, 224
structural types, 97
structure, 211
structure of execution, 234
structure of expressions, 234
structures, 156, 209
sub-expression, 235
sub-expressions, 234
sub-pattern, 228, 252
sub-patterns, 244
subexpressions, 229
subpattern, 224, 245
subpattern elements, 223
subpatterns, 221, 223-224, 226-227
subscript, 93
Subtraction, 266
Subtraction Assignment, 272
subtrait, 189
subtype - supertype, 189
success return type, 287
supatterns, 226
supertrait, 81-83, 135, 151, 189-190
supertrait specification, 189
Supertraits, 106, 189
supertraits, 151, 189-190, 204, 207, 274
supertraits, 189
supertraits column, 112
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supporting libraries, 19
Sync, 110
synonym, 152, 165
synonyms, 152
syntactic shorthand, 243, 250, 253, 274
syntactically valid, 204
syntactically valid literals, 30
syntax, 21
system libraries, 286
system-level programming, 13
systems programming, 13

T

tab, 33
tagged unions, 171
target, 17
target platforms, 15
temporary memory location, 274
Terminate, 285
terminate the program, 285
Termination, 286
Termination trait, 286-287
test, 294
test attribute, 294
test function, 294
textual data, 89
The assignment expression, 272
threads, 42
three slashes, 22
three-element tuple, 224
three-element tuple pattern, 224
to_string method, 114

todo!, 45-46
todo! macro, 27, 45-46
token stream, 40
Tokens, 25
tokens, 26, 30
tokio, 144
TOML file format, 17
Tool attributes, 38
toolchain, 13
toolchains, 14
top-level module, 68
top-level structure, 68
ToString, 112
ToString trait, 100
traditional dichotomy, 19
trailing ;, 232, 272
trailing comma, 97-98, 135, 160, 227
trailing commas, 98
trailing else block, 246, 248
trailing field position, 159
trailing newline, 42
trailing semicolon, 232, 248, 253
trailing white spaces, 34
trait, 46, 72, 78, 151, 167, 181, 187-191, 193-

194, 196, 203-204, 207
trait, 72, 111, 140, 203
trait - supertrait, 189
trait and type, 202
trait bound, 134, 136, 138-139, 151, 155,

206
trait bound syntax, 134, 204
Trait Bounds, 133
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Trait bounds, 187
trait bounds, 26, 111, 133, 155, 189, 193,

200-201
trait class, 187
trait declaration, 197, 203
Trait Declarations, 187
trait declarations, 173
Trait dependency, 106
trait implementation, 194, 202-203
trait implementation, 203
Trait Implementations, 203
Trait implementations, 72, 101, 103, 142
trait implementations, 187, 202
Trait Items, 72
trait keyword, 187
trait name, 188, 202, 204
trait object, 204
Trait Objects, 204
trait objects, 204
trait objects, 204
Traits, 72, 78, 112, 119, 187, 195, 204
traits, 20
traits, 20, 72, 77-78, 83, 100, 106, 111, 116,

126, 133-134, 187, 189, 191, 202, 204,
206, 236, 276

Traits with Associated Types, 195
traits with associated types, 84, 195
traits with generic parameters, 195
triple-backquote, 24
true, 30, 86, 245, 247, 254, 257, 268
try - catch, 284
try operator, 290

TryFrom, 112
TryInto, 112
tuple, 32, 97, 152, 162, 211
tuple elements, 226
tuple expression, 98
Tuple Expressions, 98
tuple expressions, 97
Tuple fields, 97
Tuple index, 31
tuple index, 31
tuple index expression, 97
tuple indices, 31-32
tuple initializer operands, 98
tuple literals, 97
tuple of any size, 223
tuple pattern, 214, 223-224, 231, 246
Tuple Patterns, 223
Tuple patterns, 222-223
tuple struct, 137, 162, 166, 171, 199, 226,

287
tuple struct expression, 164
tuple struct literal, 163-165
tuple struct pattern, 168, 220, 226
Tuple Struct Patterns, 226
Tuple struct patterns, 222, 226
tuple struct type, 163, 165-166
tuple struct variants, 226
Tuple Structs, 162
Tuple structs, 154
tuple structs, 31, 154, 162, 164, 168, 226
tuple type, 97-98, 152
Tuple Types, 97
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Tuple types, 32
tuple types, 97
tuple value, 223
tuple variants, 31
tuple-like, 175
tuple-like struct variants, 172
tuple-like syntax, 223
Tuples, 92, 97
tuples, 31, 86, 90, 92, 154, 162, 211
turbofish syntax, 164
two variants, 101
two’s complement, 271
type, 72, 78, 89, 152, 187, 191, 193-194, 196,

202
type alias, 152-153, 165, 194
type alias declaration, 69
type alias declaration, 193
type alias declarations, 193
type alias syntax, 194, 201
Type Aliases, 69
Type aliases, 69, 152
type aliases, 69, 153, 187, 193, 202
type annotation, 88, 145, 217, 230
type annotations, 146
type class, 72, 78
Type Classes, 78
type conversions, 112
type definition, 165
type definitions, 163
type inference, 36
type inference rules, 30
type information, 230

type inheritance, 77, 190
type inheritance, 189
type keyword, 165
type name, 152
type parameter, 194
Type parameters, 131
type parameters, 28, 133
type specification, 119
type system, 77
type systems, 78
type T, 101
type variants, 209
type-parametrized trait, 195
type-safe, 285
type-safe syntax, 40
type-specifying, 32
typed constant value, 68
Types, 40, 106, 191, 193
types, 20, 78, 82-83, 133, 137, 153, 173, 180,

187, 204, 206
Types aliases, 153
Types and traits, 78
types of types, 72, 77
types of values, 72
TypeScript, 38

U

u128, 30-31, 87
u16, 30-31, 87
u32, 30-31, 87
u64, 30-31, 87
u64 variable, 31
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u8, 30-31, 36, 87
u8 type, 31
unary minus -, 212
unary negation operator, 264
unary NOT operator, 265
Unary Operators, 264
unary postfix operator, 290
unary prefix operators, 274
under-constrained context, 33
underlying data, 95
underscore, 27
underscore character _, 26
underscore name _, 27
underscore symbol, 214
underscores, 48
unexpected situation, 285, 287
unfinished code, 45
Unicode, 21
Unicode character, 33
Unicode letters, 26
Unicode scalar value, 89
Unicode-accepting, 115
unimplemented!, 46
unimplemented! macro, 46
union, 69-70, 154
union, 70, 154
union declaration, 70
union field, 70
Union Items, 70
union symbol, 221
union type, 70
union types, 104

union types, 104
union-type enums, 175
unions, 70, 154, 171
unique immutable borrow, 147-149
Unique immutable borrows, 148
unit, 98
unit struct, 171
unit structs, 154
unit test, 39
unit testing, 74, 294
unit tests, 24, 294
unit tuple, 98
Unit Type, 90
unit type, 90, 98
unit value, 90, 239, 257
unit value (), 272
unit-like struct, 168-169, 192
unit-like struct variants, 172
Unit-Like Structs, 168
unit-like structs, 154, 169
unit-like variants, 171
Unnamed Constants, 117
Unnamed constants, 117
unnamed constants, 117
unnamed constants, 117
unnamed field, 172
unnamed fields, 69
unnecessary mutations, 127
Unpin, 110
unsafe code, 70, 75, 119, 154
unsafe context, 73
unsafe Rust, 19, 84
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unsigned, 87
unsigned 8-bit integer, 35-36
unsigned integer, 270
unsigned integer types, 87
Unsized, 82
unsized dynamic types, 136
unsized type, 205
Unsized types, 82
unsized types, 122
unstable features, 91
unused associated, 76
unused code, 75
unused enum, 76
unused variables, 27
unused warnings, 27
unused_variables, 39
unwrap, 219, 289
unwrap, 290
Unwrap Operator, 290
unwrap operator, 290-292, 294
unwrap operator expression, 292
unwrap operator expressions, 294
Unwrapping Option, 290
Unwrapping Result, 291
unwraps, 290
upper bound, 213
uppercase, 116
UpperExp, 116
UpperHex, 116
use cases, 173
use declaration, 68
Use Declarations, 68

use Declarations, 63
use declarations, 73
Use items, 68
use items, 69
user-defined types, 82-83
usize, 30-31, 87
UTF-8, 21
UTF-8, 33
UTF-8 string, 89
UTF-8-encoded, 100

V

valid expression statement, 232
valid identifier, 29
valid lifetime token, 29
valid literals, 30
Valid patterns, 212
valid statement, 232
valid tokens, 29
valid value, 289, 293
valid values, 77, 90, 124, 290
value, 77, 124, 233
value, 79
value bindings, 217
value expression, 128, 274
value expression context, 277
Value Expressions, 128
Value expressions, 128
value expressions, 77, 128
value immutable, 122
value mutable, 122
value object, 79
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value semantics, 80, 147-148
value type, 83
value types, 77, 83
value variables, 121-122, 124
value vs reference, 128
Value-based identifier patterns, 217
value-based identifier patterns, 217
Values, 154, 180
values, 78, 122, 124, 180, 233
values in Rust, 180
values of &mut T, 282
values of &T, 282
values of T, 282
value’s lifetime, 125
vararg functions, 40
variable, 28, 33, 127, 149, 152, 216-217, 228,

231, 244, 249, 275
variable, 121
variable declaration, 232
variable declarations, 152, 241
variable-length pattern, 222
Variables, 122, 232
variables, 20, 28, 77, 122, 126, 140, 172, 230
variables' scopes, 122
variadic parameter, 141
variant, 136, 171, 173-175, 252, 284
variant members, 171
variant names, 172
Variants, 101, 103, 171
variants, 28, 71, 101, 103, 154, 171, 173-175,

177-179
variants, 71

variants of Result, 226
Vec, 46, 82, 95, 105, 122, 180
Vec struct, 105
Vec type, 46, 256
vec!, 46
vec! macro, 46, 105
Vec<T>, 92, 105
Vec<T> Struct, 105
vector, 97, 105
Vectors, 92, 105
vectors, 96-97, 227, 280, 282
vertical bars, 145
visual separator, 31
visual separators, 33
vtable, 204

W

warn, 74, 76
warning, 75
warnings, 27, 74
Weak Keywords, 28
Web applications, 13
Web Assembly development, 13
Web Assembly target, 14
where clause, 133-135, 155, 193, 202
where keyword, 134
while, 257, 260
while expression, 254, 257
while Expressions, 257
while let, 257, 259-260
while let expression, 254, 257-259
while let Expressions, 257
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while let expressions, 209
while let pattern, 258
while loop, 257
whitespace, 21
whitespaces, 25
whole crate, 38
whole function, 39
wildcard, 214
wildcard pattern, 211-212, 214, 222, 244
wildcard pattern _, 228
Wildcard Patterns, 214
Wildcard patterns, 214
wildcard patterns, 214, 224
word separators, 48
wrapped value, 183, 185
Write Trait, 115
write!, 42
write_str, 115
writeln!, 42

X

XOR, 267

Z

zero-variant enum, 178
Zero-Variant Enums, 177
Zero-variant enums, 177-178
zero-variant enums, 177
zero-variant enums, 178
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• Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

(Upcoming) Rust Books by the Author
• Rust CLI and Text UI Programming: Learn and Build Command Line and

Terminal Applications with Rust.

• Basic Algorithms in Rust: Linear Data Structures and Algorithms for Beginners
and Non-Computer Science Majors

• Functional Programming with Rust: Introduction to Theories and Practices in
Modern Functional Programming

• Rust Web Assembly Programming: Introduction to Web Assembly with Rust -
Wasm Core, Web, JavaScript, and WASI APIs
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About the Series
We are creating a number of books under the series title, A Hitchhiker’s Guide to
the Modern Programming Languages. We cover essential syntax of the 12 select
languages in 100 pages or so, Go, C#, Python, Typescript, Rust, C++, Java, Julia,
Javascript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach you
different ways of programming, and more importantly, different ways of thinking.

All Books in the Series
• Go Mini Reference [https://www.amazon.com/dp/B09V5QXTCC/]

• Modern C# Mini Reference [https://www.amazon.com/dp/B0B57PXLFC/]

• Python Mini Reference [https://www.amazon.com/dp/B0B2QJD6P8/]

• Typescript Mini Reference [https://www.amazon.com/dp/B0B54537JK/]

• Rust Mini Reference [https://www.amazon.com/dp/B09Y74PH2B/]

• C++20 Mini Reference [https://www.amazon.com/dp/B0B5YLXLB3/]

• Modern Java Mini Reference [https://www.amazon.com/dp/B0B75PCHW2/]

• Julia Mini Reference [https://www.amazon.com/dp/B0B6PZ2BCJ/]

• Javascript Mini Reference [https://www.amazon.com/dp/B0B75RZLRB/]

• Haskell Mini Reference [https://www.amazon.com/dp/B09X8PLG9P/]

• Scala 3 Mini Reference [https://www.amazon.com/dp/B0B95Y6584/]

• Lua Mini Reference [https://www.amazon.com/dp/B09V95T452/]
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Community Support
We are building a website for programmers, from beginners to more experienced.
It covers various coding-related topics from algorithms to machine learning, and
from design patterns to cybersecurity, and more. You can also find some sample
code in the GitLab repositories.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Please join our mailing list, join@codingbookspress.com, to receive coding tips
and other news from Coding Books Press, including free, or discounted, book
promotions. If we find any significant errors in the book, then we will send you an
updated version of the book (in PDF). Advance review copies will be made
available to select members on the list before new books are published.

Request for Feedback
If you find any errors or typos, or if any part of the book is not very clear to you,
or if you have any general suggestions or comments regarding the book, then
please let us know. Although we cannot answer all the questions and emails, we
will try our best to address the issues that are brought to our attention.

• feedback@codingbookspress.com

Please note that creating and publishing quality books takes a great deal of time
and effort, and we really appreciate the readers' feedback.

Revision 1.2.3, 2023-04-28
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