
Python Mini Reference 2023
A Quick Guide to the Modern Python

Programming Language for Busy Coders

Harry Yoon

Version 1.1.1, 2023-05-14

Copyright
Python Mini Reference:
A Quick Guide to the Python Programming Language

© 2022-2023 Coding Books Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor its dealers and distributors
will be held liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Published: October 2022

Harry Yoon
San Diego, California

1

Preface
Python is a dynamic language.

It means many different things. It means that the language is more
flexible. It means that Python is an easier language to program with.
You can quickly write a simple program without having to go through
too much "rituals", compared to many other programming languages.
Python scripts tend to require less boilerplate code. Python gives you
more freedom.

On the other hand, it also means that the language is less safe, and
more error prone. It means that it is harder to build a larger system
with Python. It means that software written in Python is generally
harder to maintain over a longer period of time.

The key to using Python effectively is to understand this tradeoff.
Python can be an ideal language, for instance, for quick prototyping, or
"scripting". On the flip side, Python is not as much used for the
"enterprise software" development.

Python is a general purpose programming language. Python is used in
many different application areas, from system administration tasks to
web application development. Python is now one of the most widely
used programming languages for scientists, who have traditionally
been using more high-level tools like Matlab. Python provides an easier
"upgrade" path to these "non-professional" programmers. Now, Python
is becoming the language for machine learning and data science.

Python is beginner-friendly. In fact, it seems to be the most favorite first
language for beginning programmers, even more so than JavaScript.

It should be noted, however, that Python is not a simple language. Over
the past 30 years or so of its history, it has gone through a lot of big and
small changes. It is still easy to get started with programming in Python.

2

Nonetheless, once you reach a certain point, say, from the advanced
beginners to intermediate level, its complexity can be overwhelming.

This book will give you a broad and sanitized overview of the Python
language, as of its most recent incarnation (e.g., 3.10 and 3.11). This
book can be useful to anyone who has been dabbling with Python
without solid foundation. It can also be useful to the people who have
experience with other programming languages and want to get some
quick overview of the language.

This book is written as an (informal) language reference. The goal of
this book is not to teach you how to program effectively in Python, but
rather to provide a concise summary of the language grammar. If you
have some basic programming knowledge, you can read this book more
or less from beginning to end, and you should be able to get the overall
understanding of the Python programming language quickly, regardless
of your particular programming background.

The book is written for a broad audience, but one caveat is that there
are a fair amount of cross references, unlike in the books written in a
tutorial style. If you have no prior experience with programming in
Python or any similar language, then you may find it a little difficult to
go through some parts of the book. This book is not for complete
beginners. It skims through some elementary concepts in the
beginning, for the sake of brevity, so that we can focus more on the
intermediate and advanced level topics.


This book is not an authoritative language reference.
For that, we recommend the readers to refer to the
official language specification.

3

Dear Readers:

Please read b4 you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are
small ones and there are big ones. Some blocks are straight and some
are L-shaped. You use these lego blocks to build spaceships or
submarines or amusement parks. Likewise, you build programs by
assembling these building blocks of a given programming language.

This book is a language reference, written in an informal style. It goes
through each of these lego blocks, if you will. This book, however, does
not teach you how to build a space shuttle or a sail boat. If this
distinction is not clear to you, it’s unlikely that you will benefit much
from this book. This kind of language reference books that go through
the syntax and semantics of the programming language broadly, but not
necessarily in gory details, can be rather useful to programmers with a
wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start
learning a foreign language, for instance, you do not start from the
grammar. Likewise, this book will not be very useful to people who
have little experience in real programming. On the other hand, if you
have some experience programming in other languages, and if you
want to quickly learn the essential elements of this particular language,
then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for
you. But, as stated, this book is written for a wide audience, from
beginner to intermediate. Even experienced programmers can benefit,
e.g., by quickly going through books like this once in a while. We all
tend to forget things, and a quick regular refresher is always a good
idea. You will learn, or re-learn, something "new" every time.

Good luck!

4

Table of Contents
Copyright . 1

Preface. 2

1. Introduction. 9

2. Python Programs . 12

2.1. File/Text Input . 14

2.2. Interactive Mode. 14

3. Program Execution . 16

3.1. Code Blocks . 16

3.2. Name Binding . 16

3.3. Scope . 17

3.4. Scope Examples (Optional). 18

3.5. Program Start and Termination . 22

3.6. Exceptions . 23

4. Packages & Modules . 24

4.1. Modules. 24

4.2. Packages . 25

4.3. Package Relative Imports . 26

5. Python Source Code . 27

5.1. Line Structure . 27

5.2. Tokens . 30

5.3. Identifiers and Keywords . 30

5.4. Literals. 32

5.5. Compound Type Literals. 35

5.6. Operators . 36

5.7. Delimiters . 36

6. Objects. 37

6.1. Identities . 37

5

6.2. Attributes . 39

6.3. Types . 41

6.4. Builtin type Function . 42

6.5. Mutable vs Immutable Types. 42

6.6. Constructors. 44

6.7. Boolean Context . 45

6.8. Lifetime of an Object . 46

7. Simple Types . 47

7.1. None . 47

7.2. NotImplemented . 48

7.3. Ellipsis . 48

7.4. Numbers . 49

8. Compound Types . 51

8.1. Tuples, Lists, Sets, and Dictionaries . 51

8.2. Sequences . 54

8.3. Immutable Sequences . 55

8.4. Mutable Sequences. 56

8.5. Set Types . 57

8.6. Mappings . 58

9. Expressions . 60

9.1. Expression Lists . 61

9.2. Evaluation Order . 63

9.3. Assignment Expressions . 63

9.4. Conditional Expressions . 64

9.5. Arithmetic Conversions. 65

9.6. Arithmetic Operations. 65

9.7. Bitwise Operations . 68

9.8. Boolean Operations . 69

9.9. Comparisons . 70

6

10. Simple Statements . 72

10.1. Expression Statement . 72

10.2. Assignment Statement. 73

10.3. The pass Statement . 75

10.4. The return Statement . 75

10.5. The raise Statement. 76

10.6. The break Statement. 78

10.7. The continue Statement . 79

10.8. The global Statement . 80

10.9. The nonlocal Statement . 81

10.10. The del Statement . 82

10.11. The assert Statement . 83

11. Compound Statements . 85

11.1. The if - elif - else Statement . 86

11.2. The while - else Statement . 87

11.3. The for - in - else Statement . 89

11.4. The try Statement . 92

11.5. The with Statement . 96

12. Pattern Matching . 99

12.1. The match - case Statement . 99

12.2. Patterns. 101

13. Functions . 110

13.1. Function Definition . 110

13.2. Function Parameters . 111

13.3. Optional Parameters . 112

13.4. "Varargs" Functions . 114

13.5. Function Call . 116

13.6. Lambda Expressions . 118

13.7. map, filter, and reduce. 119

7

13.8. Function Decorators . 121

14. Classes. 127

14.1. Class Definition . 127

14.2. Classes and Instances . 128

14.3. Object Oriented Programming . 136

14.4. Data Classes . 150

14.5. Enums . 153

14.6. Class Decorators . 155

15. Coroutines & Asynchronous Programming. 156

15.1. Generators . 156

15.2. yield Expressions . 159

15.3. Generator Expressions . 161

15.4. Coroutine Objects . 163

15.5. Coroutine Functions . 165

15.6. Await Expressions . 166

15.7. Other async Statements . 167

15.8. Producer Consumer Problem . 168

A. How to Use This Book . 171

Index . 173

About the Author . 204

About the Series . 205

Community Support . 206

8

Chapter 1. Introduction
This book will give you an overview of the Python language grammar.

It appears that the line between the programming language proper and
the standard library is becoming more blurred these days. Although it
is not our goal to go through the Python standard library (which is well
beyond the scope of this book), we will touch upon a few important
concepts from the standard library modules that are considered more
or less part of the language.

This "reference" starts with the most boring part of Python.  If you
plan to read the book from beginning to end, say, rather than using it
just as a quick reference, then you can skip the first few chapters in
your first reading, and come back to them later when needed.

The term "program" means different things in different contexts, and
across different programming languages. We start with somewhat
formal explanations of what a Python program is, and how Python
programs are executed, e.g., in the Python interpreter.

Python programs are logically organized into packages and modules,
which we take a look at next. A module corresponds to a file in a
physical file system, and modules, and including package modules, are
the basic units of code reuse and sharing in Python.

Next, we briefly go through some of the lexical elements of the Python
source code. There are some small variations across different
programming languages, but their lexical compositions are rather
similar, and Python is no different. This part can be skipped in your
"reading".

Generally speaking, a program consists of code and data. Code refers to
instructions. Data in Python is represented by objects. The object in
Python is a fundamental component. Everything which we deal with in

9

a Python program is objects. We start the main part of the book by
introducing various important concepts related to the objects.

Although Python uses a dynamic type system, the types still play the
foundational roles in the Python programming language. We first go
through some of the basic builtin types in Python. Python includes quite
a few builtin types, and this reference touches on only some of them. As
indicated, this is generally true across all topics discussed in this
reference. Completeness is not the goal of this mini reference.

Python also includes a few builtin compound types such as list and
dictionary, which are important components of any non-trivial
programs. We briefly go through these types in the next chapter.
Advanced types, e.g., functions and classes, in particular, are explained
in detail later in the book.

As with any imperative programming language, Python has expressions
and statements. An expression prescribes how to compute a value using
other expressions and values. Python supports most of the common
operators and expressions found in other imperative languages. If you
are coming from other procedural programming language background,
you can skim through most of this part.

A statement is an instruction. Statements control the flow of a program
to attain the desired goal. In Python, there are two kinds of statements,
simple statements and compound statements. Compound, or complex,
statements can "include" other simple or compound statements.

Simple statements include expression statement, assignment statement,
assert statement, pass statement, del statement, return statement,
raise statement, break statement, continue statement, global
statement, and nonlocal statement. Python’s compound statements
include if statement, while statement, for statement, try statement,
with statement, match statement, function def statement, class
definition, and other coroutine-related statements.

10

One of the most significant changes to Python for the last 30+ years has
been the addition of structural pattern matching to the language, as of
Python 3.10 (2021). Pattern matching was first popularized by
functional programming languages like Haskell, and it is now becoming
more and more widely available across many different programming
languages like C#, rust, swift, scala, and (yes) even Java. 

As we more adopt this feature, as a community, pattern matching will
likely change how we program in Python in the coming years. Although
it is currently supported only in the context of the match statement, it is
conceivable, and in fact expected, that pattern matching will be
available more broadly across the language in the near future,
considering its simplicity, elegance, and power.

A function definition is a compound statement. We dedicate its own
chapter to the function definition. This chapter also includes other
function-related topics such as lambda expressions and decorators.

Another compound statement, the class definition, is explained next.
Other class-related concepts such enums and data classes are described
in this chapter as well. We also provide an informal introduction to the
object oriented programming styles in Python, including multiple
inheritance.

Special kinds of functions, generators and coroutines, are separately
discussed in the last part of the book, in the Coroutines chapter. We
briefly touch on the (high-level) asynchronous programming style in
Python using the new async and await keywords. In the last section,
we provide a simple async programming example, namely, the
producer-consumer problem.

As stated, we do not exhaustively cover every topic in Python in this
"mini reference", including the (low-level) multi-thread and multi-
process programming, etc. However, it goes through all the essential
language features that any intermediate to advanced level Python
programmers should be familiar with.

11

Chapter 2. Python Programs
A complete Python program can be passed to the Python interpreter:

• With the -c command line option with a program text,

• With the -m command line option with a module name,

• As a file name passed as the first command line argument, or

• From the standard input.

The Python interpreter executes the input file, or the input text, as a
complete program, in the namespace of a special module, __main__.

When the file or standard input is a terminal, or when the Python
interpreter is invoked without an argument, the interpreter enters the
interactive mode. The Python interpreter reads and executes one
statement at a time (simple or compound) in the interactive mode
instead of executing a complete program.

Here are a few examples:

$ python -c "print('Hello World!')" ①

① A complete Python program is executed using the -c flag.

$ python main.py ①

① The Python script is passed to the interpreter as a command line
argument.

$ python -m hello_world ①

① The Python module hello_world is executed through the -m flag.

12

$ echo "print('huh?')" | python ①

① The Python code from the stdin (via Unix pipe).

$ python <<< "print('a')" ①

① Using the Unix shell "here string" syntax.

$ python << EOF ①
> print("hello")
> print("world")
> EOF

① The "here doc".

$ python ①

① Invoking the python command without an argument starts the REPL.

$ python - ①

① Ditto. The Python interpreter ignores the flags following the dash -.

$ python -i ①

① It also starts the interactive shell. The -i flag can be combined with
other flags, e.g., -m, -c, etc.



We will use the Unix shell for illustration, throughout
the book, when relevant. Depending on your platform,
some commands may not work exactly as indicated
here.

13

2.1. File/Text Input
A complete Python program is a series of zero or more statements, with
optional newlines between the statements. A complete program with
this form is expected in the following situations:

• When a Python program is read from a file or from an input string,

• When an imported module is parsed, and

• When a string argument is passed to the builtin exec function.

As indicated, the main module of a running program is always called
__main__ in Python.

2.2. Interactive Mode
The Python interpreter in the interactive mode (aka Python REPL) does
not execute a complete program. Instead, it reads and executes one
statement at a time. Each input comprises a code block in the
namespace of __main__.

A top-level compound statement must be followed by an extra newline
in the interactive mode, which is used by the parser to detect the end of
the input.

$ python ①
Python 3.10.4 (main, Jun 29 2022, 12:14:53) [GCC 11.2.0] on
linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> ②
>>> for levels in ("White", "Black"): ③
... print(levels) ④
... ⑤
White ⑥

2.1. File/Text Input

14

Black
>>> ⑦
>>> exit() ⑧
$ ⑨

① A command that starts the Python REPL. This might be different on
your system.

② The Python REPL prompt, >>> . We just pressed Enter in this
example.

③ The first line of a for compound statement.

④ The Prompt has changed from >>> to … . The statements in the for
"suite" need to be indented.

⑤ We press Enter one more time to signal the end of the compound
statement to the Python interpreter.

⑥ The output, displayed in two lines. Note that the output lines are not
preceded by the REPL prompts.

⑦ The Python REPL waits for another command/statement. We press
Enter again in this example.

⑧ You can exit the Python REPL by calling the builtin exit or quit
functions, or by issuing the EOF signal (e.g., CTRL+D or CMD+D).

⑨ Back to the Unix shell.

2.2. Interactive Mode

15

Chapter 3. Program Execution

3.1. Code Blocks
A Python program is executed in a series of "execution frames". A piece
of Python program that is executed as a unit in an execution frame is
called a "code block".

For example, modules and function/class definitions are code blocks,
among other things. An entire program passed to the interpreter, e.g.,
as -c option or as a file argument, is a code block (more precisely, the
top-level code block). So is an imported module.

The code blocks can be nested.

3.2. Name Binding
In Python, all values are "objects", and objects are often referred to by
their "names". Names are introduced by name binding operations.

For example, import statements, function and class definitions, and
assignment expressions and statements bind names within their
enclosing code blocks. Function parameters also bind names, within the
function definition block. If a name is bound in a block, it is a "local
variable" of that block by default.

If a name is bound at the module level, it is also a "global variable". The
import statement of the form from XYZ import * can only be used at
the module level. It binds all names defined in the imported module
that do not begin with an underscore _. All names imported this way
are global (as well as local with respect to the importing module).

3.1. Code Blocks

16

3.3. Scope
A name is accessible within a particular part of a program, e.g., within
the code block where the name is bound. This is called a "scope". The
scope of a local variable bound in a code block includes that block.

When a name is used in a code block, the smallest enclosing scope is
used to find the binding of the name. It is called the "name resolution".
If the name cannot be resolved, then an exception is raised. Depending
on the context, NameError, or more specifically UnboundLocalError,
may be raised.

3.3.1. Function definition block

A function def statement defines a code block. If a name is bound in a
function block, then its scope includes this function block and any other
blocks that are contained/nested therein.

3.3.2. Class definition block

In a class definition, the scope of the names defined in a class block is
limited to that class block only, excluding those of the enclosed methods.
The local variables that are not bound in the class block are looked up
in the global namespace.

3.3.3. The global declaration

If a global statement is used for a name in a block, then the uses of the
name refer to its binding in the top-level namespace, which includes
those of the code block module and the builtins module, as well as
the builtins namespace.

3.3.4. The nonlocal declaration

If a nonlocal statement is used for a name in a code block, the name

3.3. Scope

17

refers to the one bound in the smallest enclosing function scope. If the
name binding is not found at compile time, then a SyntaxError
exception is raised

3.4. Scope Examples (Optional)
Here’s a single module (e.g., a Python source file named my_module.py)
that demonstrates the function and class blocks and the scopes of the
variables defined in those blocks. (Note: The program/module is split
into three segments for formatting reasons.)

my_module.py

 1 x, w = 1, 2 ①
 2
 3 def var_demo(): ②
 4 y = 3 ③
 5 print("A", x, w, y) ④
 6 def inner_function(): ⑤
 7 w = 22 ⑥
 8 nonlocal y ⑦
 9 y = 33 ⑧
10 print("B", x, w, y) ⑨
11 inner_function() ⑩
12 print("C", x, w, y) ⑪

① The variables x and w are local to the module, and hence they are
global variables. Their scope includes the entire module, lines 1-28.

② A function definition. It creates a block, lines 4-12.

③ A name binding introduces the name to the current scope. Hence, y
is local to this function, and its scope is the same block, lines 4-12.

④ At this point, we cannot easily tell what this print function will
print out, e.g., without going through/understanding the entire
program. x and w are global, and hence their values might have

3.4. Scope Examples (Optional)

18

changed somewhere in the code by the time this statement is
executed. The current value of y is 3.

⑤ An inner function definition. It creates a nested scope.

⑥ A new variable binding. w is a local variable to the inner_function
function, and its scope is the function block, lines 7-10.

⑦ The nonlocal statement asserts that we are going to use the
variable y from the outer function scope, lines 4-12.

⑧ We are assigning a new value 33 to this non-local variable y.
Without the nonlocal declaration, this statement could have
introduced a new variable y into the local scope, lines 7-10.

⑨ At this point, x is a global variable, w is a local variable (local to
inner_function), and y is a non-local variable (but, local to
var_demo).

⑩ Calling inner_function might have (potentially) changed the
values of the global x and nonlocal y, but it should have no effect on
the global w.

⑪ It prints the global x and w, and local y (local to var_demo).

14 class VarDemo: ①
15 z = 5 ②
16 global w ③
17 w = 222 ④
18 print("D", x, w, z) ⑤
19 def inner_method(self): ⑥
20 print("E", x, w, self.z) ⑦
21 self.z = 10 ⑧
22 print("F", x, w, self.z) ⑨

① A class definition creates a new scope (within the global scope).

② z is a local variable in the class block. Its scope is lines 15-18,
excluding the enclosed function/method blocks, e.g., lines 19-22.

3.4. Scope Examples (Optional)

19

③ This global statement declares that the name w is the same one
defined in the global scope.

④ This assignment changes the value of the global w to 222. Without
the global declaration, this statement could have introduced a new
name w to the local scope, lines 15-18.

⑤ At this point, x and w refer to the global variables (first bound in line
1), and z refers to the local variable.

⑥ An inner method definition. It creates a new scope within the global
scope (not within the scope of VarDemo).

⑦ Global x and global w. self.z refers to the class variable z (because
an instance variable named z does not (yet) exist).

⑧ This creates a new instance variable z, which shadows the class
variable z defined in line 15.

⑨ At this point, self.z refers to the instance variable z. Class vs
instance variables are discussed in more detail in a later chapter,
Classes.

25 if __name__ == "__main__": ①
26 x = 10 ②
27 var_demo() ③
28 x = 20 ④
29 obj = VarDemo() ⑤
30 obj.inner_method() ⑥

① The if statement does not create a new scope. All names
declared/referred to within the suite of this if statement are global.

② x refers to the global x (line 1). This value is reset to 10 at this point.

③ Calling var_demo will execute all statements in the function object
created by the function definition, lines 4-12.

④ The value of the global x now set to 20.

3.4. Scope Examples (Optional)

20

⑤ We create an instance of VarDemo and bind it to a global variable
obj.

⑥ Calling inner_method on obj will execute the statements defined in
the function block, e.g., lines 20-22 in this example.

This is a somewhat artificial example, but hardly more complicated
than the "real world" programs, in terms of the nested scopes and what
not. If this code does not make sense, you can come back to it later after
going through the rest of the book.

If you run the program,

1. It will first bind the global x and w to 1 and 2, respectively. Line 1.

2. It will create a function object for var_demo. Lines 3-12.

3. It will execute the statements in the class definition. Lines 15-20.

a. The new local variable z is bound to 5, line 15.

b. The global variable w is assigned a new value 222, line 17.

c. This print function will use, x == 1 (line 1), w == 222 (line
17), and z == 5 (line 15), and hence its output is, D 1 222 5.

d. Then, a function object for inner_method is created, lines 19-20.

4. Next, the if compound statement is executed. Lines 23-28.

a. A new value 10 is assigned to the global x, line 24.

b. When we call the function var_demo, x == 10 and w == 222,
line 25.

i. The local variable y is bound to 3, line 4.

ii. The print call of line 5 therefore prints out A 10 222 3.

iii. A function object for inner_function is created, lines 6-10.

iv. And, we call this function, line 11.

A. When we execute the print call statement, line 10, the

3.4. Scope Examples (Optional)

21

values of global x, local w, and non-local y, are 10 (line
24), 22 (line 7), and 33 (line 9), respectively. Hence, the
output will be B 10 22 33.

v. The print call of line 12 will print out C 10 222 33 because
the global x is 10 (line 26), the global w is 222 (line 17), and
the local y is 33 (line 9).

c. The global x is set to 20 here, line 28.

d. We call the constructor VarDemo, line 29, to create a new object
with name obj. The obj object shares the class variable z with
the VarDemo class, whose value is 5.

e. When we call inner_method on obj, x == 20 and w == 222,
line 30.

i. Hence, the print function call (line 20) prints out E 20 222 5.

ii. On the other hand, the second print function call (line 22)
prints out F 20 222 10 because self.z now refers to the
instance variable z, whose value is 10 (line 21).

Here’s the complete output:

D 1 222 5
A 10 222 3
B 10 22 33
C 10 222 33
E 20 222 5
F 20 222 10

3.5. Program Start and Termination
As indicated, the main module for a script, __main__, is a code block.

The Python interpreter starts a program by executing the main code
block, which can subsequently invoke other code blocks, which can in

3.5. Program Start and Termination

22

turn invoke other code blocks, and so forth. When the execution of a
code block is completed, it returns the control to its surrounding code
block which invoked the current code block.

When the execution of the main module code block is done, the
program terminates.

3.6. Exceptions
The normal flow of a program, via the code block call chain, can be
bypassed using the exception handling mechanism. An exception can
be explicitly "raised" under an exceptional or error condition using the
raise statement. The Python interpreter can also raise an exception
when it detects a run-time error.

A raised exception may be handled by the surrounding, or any of the
upstream, code blocks. When an exception is not handled in any of the
code blocks, the interpreter terminates execution of the program, in the
non-interactive mode. In the REPL mode, it simply returns to its
interactive main loop. In either case, it prints a stack traceback, except
when the exception is SystemExit.

Exception handlers are specified with the try statement. As of Python
3.11, a new try - except* syntax is also supported in addition to try
- except.

There are two basic builtin exception types in Python, BaseException
and Exception, which roughly correspond, for instance, to the
"runtime exception" and "checked exception" of Java, respectively.
Likewise, Python now includes (3.11+) two builtin exception group
types, BaseExceptionGroup and ExceptionGroup.

Exception handling will be further discussed, later in the book, in the
contexts of the try and raise statements.

3.6. Exceptions

23

Chapter 4. Packages & Modules

4.1. Modules
Python code is organized into "modules", which are associated with
namespaces containing other Python objects. Python code in a module
can access the code in a different module through the process of "
importing". For example, a module can be imported using the import
statement.

4.1.1. The import statement

The import statement performs the following operations:

• It first searches for the named module, and

◦ If the module is found, then

▪ It creates, and initializes, a module object, and it binds the
object to a name in the local scope.

◦ If the named module is not found, then

▪ A ModuleNotFoundError exception is raised.

For example,

>>> import math ①
>>> type(math) ②
<class 'module'> ③

① An import statement.

② We will take a look at Python’s type system throughout this book.
The builtin type function returns the type of the given object.

③ The type of a module object is module.

4.1. Modules

24

The internal implementations of the import statement, as well as other
importing related utility functions, are provided in the standard library
module, importlib.

4.2. Packages
To help organize modules, Python has a concept of packages. A
package is a special kind of module, and it provides a
namespace/naming hierarchy. Technically, packages are modules that
contains a __path__ attribute.

If the Python interpreter is invoked with a script, then a package
corresponds to a directory on a file system and a regular non-package
module corresponds to a Python source file. Like file system directories,
packages are organized hierarchically, and packages may contain other
packages, as well as regular modules.

Every module has a name. Subpackage names are separated from their
parent package name by a dot (.). A module’s __name__ attribute is set
to the fully-qualified name of the module. Module’s qualified names are
used to uniquely identify the modules in the Python import system.

There are two kinds of packages in Python, "regular packages" and "
namespace packages".

4.2.1. Regular packages

A regular package is typically implemented as a directory containing an
__init__.py file. When a regular package is imported, the __init__.py files
of the package and all of its parent packages are implicitly executed.
The objects defined in each package’s __init__.py file are bound to
names in the package’s namespace.

4.2. Packages

25

4.2.2. Namespace packages

An implicit namespace package is a (virtual) composite package that
can include subpackages from different locations in the file system (e.g.,
not constrained by the directory hierarchy).

With namespace packages, there is no package __init__.py file. A
namespace package may correspond to multiple directories unlike the
regular packages. For example, when the packages parent/one and
parent/two are imported with no physical directory corresponding to
the parent module, Python automatically creates a namespace package
for the top-level parent package.

4.3. Package Relative Imports
Relative imports use leading dots (.). A single leading dot indicates a
relative import, starting with the current package. Two leading dots
indicate a relative import of the parent to the current package, etc.

Absolute imports may use either the import X.Y or from X import Y
syntax, but relative imports may only use the second form. For
instance, from a given Python script/module xyz in a folder bbb,

aaa/bbb/xyz.py

from . import efg ①
from .hij import klm ②
from .. import mno ③
from ..opq.qrs import stu ④

① The module efg corresponds to a file aaa/bbb/efg.py.

② The module klm corresponds to a file aaa/bbb/hij/klm.py.

③ The module mno corresponds to a file aaa/mno.py.

④ The module stu corresponds to a file aaa/opq/qrs/stu.py.

4.3. Package Relative Imports

26

Chapter 5. Python Source Code
The Python interpreter reads program text as Unicode code points. The
encoding of a Python source code file is "UTF-8" by default. The source
file can also be given an explicit encoding declaration. If an encoding is
declared, the encoding name must be recognized by Python. If the text
cannot be decoded, then a SyntaxError exception is raised.

The Python interpreter first breaks a source file into "tokens", which
are then fed into the parser.

5.1. Line Structure
Python programs are "line-based". A Python source code consists of "
logical lines".

5.1.1. Logical lines

A statement is normally contained in a logical line, whose end is
represented by the NEWLINE token. A compound statement can be in
multiple logical lines if that is permitted by the Python grammar.

A logical line is constructed from one or more "physical line".

5.1.2. Physical lines

A physical line is a sequence of characters terminated by an end-of-line
sequence. In Python source files and strings, any one of the three
standard line termination sequences can be used, \n, \r\n, or \r,
regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

5.1. Line Structure

27

5.1.3. Comments

A comment starts with a hash character (#) and it continues until the
end of the physical line. Comments are mostly ignored by the syntax. A
comment can signify the end of a logical line, that is, a NEWLINE token
is generated unless the implicit line joining rules are invoked.

5.1.4. Blank Lines

A logical line that contains only spaces, tabs, formfeeds and possibly a
comment, is ignored.

5.1.5. Physical line joining

Explicit joining

Two or more physical lines may be joined into a logical line using
backslash characters (\).

When a physical line ends with a backslash, it is joined with the
following line forming a single logical line, deleting the backslash and
the following end-of-line character.

• A backslash is not allowed anywhere else on a line outside a string
literal or a comment.

• A backslash cannot split a token across physical lines except for
string literals.

• A backslash does not continue a comment.

For example,

>>> a, b = \
... 10, 20

5.1. Line Structure

28

This is one logical line, a, b = 10, 20, although it is written on two
physical lines. Note that no other characters, including white spaces,
are allowed after the backslash other than one of the three line
termination sequences.

Implicit joining

Expressions in parentheses ((…)), square brackets ([…]), or curly braces
({…}), as well as triple-quoted strings ("""…""" or '''…'''), can be
split over more than one physical line without using backslashes.

The implicitly continued lines can carry comments except for triple-
quoted multiline strings. The indentation of the continuation lines is
not important. Blank continuation lines are allowed.

For instance,

>>> fruits = [①
... "manzana", # apple ②
... "naranja", # orange
...] ③
>>> print(④
... ⑤
... fruits
...) ⑥
['manzana', 'naranja']

① The start of an implicit joining.

② Comments are allowed.

③ The end of a logical line.

④ The start of another implicit joining.

⑤ An empty physical line.

⑥ The end of a logical line. This statement is equivalent to
print(fruits) in one physical line.

5.1. Line Structure

29

Note that since parentheses can be used to group expressions,
practically any expression can be split into multiple physical lines.

5.1.6. Indentations

In Python, the indentations of the logical lines are used to determine
the grouping of statements.

The indentation level of a line is computed based on the leading
whitespace at the beginning of the line. The total number of spaces
preceding the first non-blank character determines the line’s
indentation.

The Python lexical analyzer generates INDENT and DEDENT tokens,
using a stack, based on the indentation levels of consecutive logical
lines, which are then used to group logical lines into statements.

5.2. Tokens
Besides NEWLINE, INDENT and DEDENT, Python has the following
categories of tokens: identifiers, keywords, literals, operators, and
delimiters.

5.3. Identifiers and Keywords
The syntax of identifiers, or names, in Python is based on the Unicode
standard. Identifiers are unlimited in length and they are case-
sensitive. Within the ASCII range (U+0001..U+007F), the names can
include the alphanumeric characters and the underscore (_). The
names cannot start with digits. Outside the ASCII range, the
unicodedata module classifies the characters which are valid in
identifiers.

5.2. Tokens

30

5.3.1. Keywords

The following names are used as reserved words, or keywords of the
language, and they cannot be used as ordinary identifiers.

• False True None and as assert async await break class
continue def del elif else except from finally for global
if import in is lambda nonlocal not or pass raise return try
while with yield

5.3.2. Reserved classes of identifiers

In addition to keywords, certain classes of identifiers have special
meanings to Python. These classes are identified by the patterns of
leading and trailing underscore characters:

_

The special identifier _ is used in the interactive interpreter to store
the result of the last evaluation.

_xyz

Not imported by from module import *.

__xyz__

System-defined names, informally known as "dunder names". These
names are defined by the interpreter and its implementation
(including the standard library).

__xyz

Class-private names. When used in a class definition, these names
are re-written to use a mangled form to help avoid name clashes
between "private" attributes of base and derived classes.

5.3. Identifiers and Keywords

31

5.4. Literals
"Literals" are a particular class of tokens that have special meanings to
the lexer, other than identifiers and other special tokens. Usually,
literals are constant values of some built-in types.

5.4.1. String and bytes literals

String and bytes literals can be enclosed in matching single quotes (')
or double quotes ("). They can also be enclosed in matching groups of
three single (''') or double (""") quotes.

The backslash (\) character is used within string and bytes literals to
"escape" characters that otherwise have special meanings, such as
newline, backslash itself, or the quote characters.

Bytes literals, instances of the bytes type, are always prefixed with 'b'
or 'B'. They may only contain ASCII characters. Both string and bytes
literals may optionally be prefixed with a letter 'r'/'R'. Such literals
are called raw strings and treat backslashes as literal characters.

5.4.2. Formatted string literals

A formatted string literal, or f-string for short, is a string literal with
prefix 'f' or 'F'. These strings may contain replacement fields, which
are variables or expressions enclosed in curly braces {}. A format
specifier may be added, after an optional colon :.

While other string literals always have constant values, f-strings are
really expressions evaluated at run time.

An equal sign = can be added after the expression and before the colon
and format string, if any. When it is included, the result string will have
the expression text, the = sign, and the evaluated value, concatenated.

For example,

5.4. Literals

32

>>> a = 10 / 7
>>> f"{a}" ①
'1.4285714285714286'
>>> f"a = {a:.5f}" ②
'a = 1.42857'
>>> f"{a=}", f"{10/7=:.5f}" ③
('a=1.4285714285714286', '10/7=1.42857')

① A simple f-string.

② The replacement field has a format specifier, .5f, after :.

③ The equal sign prints out the expression text, followed by =, before
the value.

5.4.3. String literal concatenation

We can concatenate string expressions using the + operator. As a
shortcut, in case of adjacent string literals, as well as bytes literals, they
can be concatenated without using the + operator. They can be
delimited by (possibly empty) whitespaces, and they have the same
effect as the string concatenation using the + operator.

Literal concatenation can use different quoting styles for each operand.
F-string literals may be concatenated with plain string literals. For
instance,

>>> a = "hello"
>>> (①
... "hi" "hi" ②
... f"{a} world" ③
... """bye bye""" ④
...)
'hihihello worldbye bye'

① The parenthesized expression is used here to put the string literals

5.4. Literals

33

in multiple physical lines, for illustration.

② "hi" "hi" is equivalent to "hi" + "hi".

③ An f-string literal can be concatenated with other string literals.
Again, the + operator is optional.

④ A triple quoted string literal, which can span multiple physical lines,
is concatenated with the adjacent formatted string literal, without
the + operator in this example.

5.4.4. Numeric literals

There are three types of numeric literals: integers, floating point
numbers, and imaginary numbers.

Integer literals must start with digits. Literals that start with 0x/0X, 0o
/0O, and 0b/0B are hexadecimal, octal, and binary numbers,
respectively. Decimal numbers cannot start with the digit 0 except for
the number 0.

Underscores (_) are ignored for evaluating the value of an integer
literal. Integer literals cannot start with an underscore, and multiple
consecutive underscores are not allowed. For example,

0b_010 ①
0O000_010 ②
0x0F ③
1_000_000 ④

① A binary integer literal representing a decimal number 2.

② An integer literal in base 8, representing a decimal number 8.

③ A hexadecimal literal equivalent to a decimal number 15.

④ A decimal number (base 10). Note that decimal integer literals
cannot start with 0.

5.4. Literals

34

Floating point literals include a period (.) and/or exponent symbol (e or
E). The integer and exponent parts are interpreted using base 10.

Examples of floating point number literals:

100.
03.14
.0101
0_0_0e0_0_0
31.415_927E-10

An imaginary literal, a floating point literal with a suffix j or J, yields a
complex number with a real part of 0.0. An expression 1j * 1j yields
a complex number (-1+0j).

To create a complex number with a nonzero real part, one can use an
expression that adds a floating point number to an imaginary number
literal. For instance,

100j ①
03.14J ②
10E10 + 0.0001E-100j ③
10 - 0.314_159e+10J ④

① An imaginary literal.

② Another imaginary literal.

③ An expression comprising real and imaginary number literals.

④ Another expression whose type is complex.

5.5. Compound Type Literals
The literal syntax for tuples, lists, sets, and dictionaries are discussed in
the Builtin Compound Types chapter.

5.5. Compound Type Literals

35

5.6. Operators
The following tokens are operators in Python:

+ - * ** / // % @
<< >> & | ^ ~ :=
< > <= >= == !=

5.7. Delimiters
The following tokens, other than whitespaces, serve as delimiters in the
Python grammar:

() [] { }
, : . ; @ = ->

The following tokens, the augmented assignment operators, perform
operations, and they are also lexical delimiters.

+= -= *= /= //= %= @=
&= |= ^= >>= <<= **=

5.6. Operators

36

Chapter 6. Objects
In Python, data is represented by objects. An object has an identity, type,
and value. An object may be referred to by a "name" (or, "reference").
An object has one and only one invariant identity, throughout its
lifetime, but it can have zero, one, or more names/references at any
given moment.

Python is a dynamically and loosely typed programming language.
Although the type system is at the heart of the Python programming
language, and the types play a crucial role in Python programs, they
become relevant primarily at run time, and only indirectly. (Python’s
type system is often called "duck typing".) In fact, one can create a new
type at run time and one can even change the type of an object at run
time (although that is not generally a common practice).

The values of objects of some types can change. These objects are said
to be "mutable". For example, builtin data types like lists and
dictionaries are mutable types. On the other hand, for some other types,
one cannot directly modify the values of the objects once they are
created. They are called "immutable". For example, numbers, strings,
and tuples are immutable types. (Note that the (effective) values of
immutable objects can still change.)

6.1. Identities
The "identity" is a rather abstract concept, but Python includes a builtin
id function that returns a unique value which can be used as the
identity of a given object. In fact, the id function "defines" the identities
of the objects. (In CPython implementation, it returns the given object’s
memory address.)

For example,

6.1. Identities

37

>>> ①
>>> a, b, c = 3, "the ring", ['a', 'b', 'c'] ②
>>> id(a), id(b), id(c)
(546842556784, 546841138928, 546841139008) ③
>>> x = 3
>>> id(a), id(x), id(3)
(546842556784, 546842556784, 546842556784) ④

① This prompt >>> indicates that we are in the REPL.

② We often use this "multiple assignment" syntax in this book. The
expression list on the right hand side evaluates to a tuple. Each of its
items is then assigned to a, b, c, through "tuple unpacking".

③ The names a, b, and c all have different id values. They refer to
different objects.

④ The names a and x and the object 3 all have the same id values. a
and x reference the same object, 3.

Objects' identities can also be compared with the builtin is and is not
operators. x is y evaluates to True if and only if x and y are the same
object, that is, according to the id function. Note that the identity
equality (is) between two objects implies their value equality (==).

Using the same example above,

>>> a is a, a is b, a is c ①
(True, False, False)
>>> a is x, a == x ②
(True, True)

① (a is a) == True. The names a, b, and c refer to different objects.

② (a is x) == True and (x is a) == True. Likewise, a == x and
x == a.

6.1. Identities

38

6.2. Attributes
An object is associated with a set of "attributes". An attribute is a name
that refers to (other) objects. When the object that it refers to is a
function, the attribute is called a method (of the original object).
Otherwise, it is called the data attribute (e.g., often known as "fields", or
data members, in other programming languages).

An attribute of an object can be accessed using the attribute reference
syntax (or, the "dot notation").

>>> class A: pass ①
...
>>> a = A() ②
>>> a.magic_number = 42 ③
>>> a.magic_number ④
42
>>> def f(): pass ⑤
...
>>> a.empty_method = f ⑥
>>> a.empty_method() ⑦

① The class statement creates a new type, A.

② Calling A(), which is called a constructor, returns an instance object
of the type A. The object is bound to a name a in this example.

③ Adds a data attribute, named magic_number, to a, and binds it to an
(immutable) number object 42.

④ a.magic_number refers to the object 42, whose value is 42. (Note
that, for simple types, objects' identities and values are closely tied.)

⑤ The def statement creates a new function object, f.

⑥ The new attribute a.empty_method now refers to the object f.

⑦ The method call syntax invokes the function f.

6.2. Attributes

39

The built-in dir function can be used

• To find all names in the current scope, or

• To list the attributes associated with a given object.

In the current context, with the above example,

>>> dir() ①
['A', '__annotations__', ... '__spec__', 'a', 'f']
>>> dir(A) ②
['__class__', ... '__weakref__']
>>> dir(a) ③
['__class__', ... '__weakref__', 'empty_method',
'magic_number']
>>> type(a) ④
<class '__main__.A'>

① Calling dir() without any argument returns the names in the
current scope, as a list of strings, lexically ordered. Note that there
are three names that we just introduced, A, a, and f, in addition to
some system-defined names.

② Calling dir(cls) on a class object returns the attributes of the class
cls and all of its base classes (including object).

③ Calling dir(obj) on a general (non-class) object returns a combined
list of its own attributes (for obj) and the attributes returned by
dir() for its type (and all base types).

④ In this example, the type of a is A. magic_number and
empty_method are a's own attributes, and the rest come from A.

Note that the dir function calls the object’s __dir__ method, if it exists.

>>> a.__dir__() ①
['magic_number', 'empty_method', '__module__', ...

6.2. Attributes

40

'__class__']

① This returns the same result as dir(a) (modulo the order).

One can overwrite a (user-defined) class’s __dir__ method to return a
different list from the dir() function call.

6.3. Types
Every object in Python is associated with a "type" besides its identity
and value. The type of an object affects the object’s behavior. For
instance, the type of an object defines all possible values that the object
can have. Furthermore, the type of an object determines the set of
operations that the object supports. (Note that objects (of most types) in
Python are malleable, so to speak, and their behavior can change
during the execution of the program, regardless of their designated
types/type names. Cf. Duck typing.)

As another example, the objects of immutable types are "reused" by the
Python interpreter, when possible. That is, certain operations that are
supposed to return new objects, or compute new values, for immutable
types may actually return a reference to any existing object with the
same type and value. On the contrary, objects are never "reused" for
mutable types in these situations. For example,

>>> def f():
... a, b = (1, 2), [3, 4]
... print(id(a), id(b))
... p, q = (1, 2), [3, 4]
... print(id(p), id(q))
...
>>> f()
510220577408 510220577600
510220577408 510221371520

6.3. Types

41

Note that the ids of the tuples a and p, immutable objects, are the same
whereas those of the lists b and q, mutable objects, are different. a and
p point to the same object. On the other hand, b and q point to two
different objects.

6.4. Builtin type Function
Python provides a builtin type function that returns the type/class of a
given object. A type is, in fact, a "class object" that creates a type. One
of its constructor functions takes an object as its argument and returns
the object’s type object (e.g., possibly "reused").

For example,

>>> type, type(type), type(type(type)) ①
(<class 'type'>, <class 'type'>, <class 'type'>)
>>> type(10), type('hello'), type([1, 2]) ②
(<class 'int'>, <class 'str'>, <class 'list'>)

① The type of type is type. 

② The types of objects 10, 'hello', and [1, 2] are int, str, and
list, respectively.

6.5. Mutable vs Immutable Types
In Python, the mutability/immutability is a characteristic of a type. An
object of a mutable type is mutable, and an object of an immutable type
is immutable.

One cannot directly change the value of an immutable object. However,
that does not mean that the object is truly immutable. For example, an
attribute of an immutable object references an object, and that object
may still be mutable. And, the overall effective value of the immutable
object may change.

6.4. Builtin type Function

42

This is generally true for compound types. For instance, for immutable
container types like tuples, they can still contain mutable elements, and
the overall value of a tuple can still change (although its value still may
not be directly updated).

For example,

>>> a, b = (1, 2), [3, 4] ①
>>> a[0] = 10 ②
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> b[0], b[1] = 30, 40 ③
>>> a, b ④
((1, 2), [30, 40])
>>> x = a, b ⑤
>>> x ⑥
((1, 2), [30, 40])
>>> x[1] = [3000, 4000] ⑦
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> x[1][0], x[1][1] = 300, 400 ⑧
>>> x ⑨
((1, 2), [300, 400])

① a references a tuple (1, 2) whereas b references a list [3, 4].

② Tuples are immutable, and hence one cannot change its elements.

③ In contrast, one can change a list’s items since lists are mutable.

④ a and b references the same objects as before, but b's value has
changed.

⑤ The comma-separated expression list on the right-hand side
evaluates to a tuple object.

⑥ x refers to a tuple, an immutable object.

6.5. Mutable vs Immutable Types

43

⑦ One cannot directly change its value since x is "immutable".

⑧ However, one can change the value of an item of a collection, or the
value of an attribute of an object, if it is mutable. In this example,
the second item of x happens to reference a mutable object, a list
[30, 40]. Hence, we can change its value.

⑨ The effective value of the "immutable" x has indeed changed
(although the items of x are still the same objects).

6.6. Constructors
All types in Python, built-in or user-defined, include constructor
functions, or constructors for short. The name of the type is the same as
the name of the constructor function. Or, more precisely, types/classes
are "callable". A constructor, when called, returns an instance object of
the given type/class.

For some builtin types such as tuples and lists, one can also use the
literal syntax to create instances of those types as we explain in a later
chapter, Builtin Compound Types.

>>> class A: pass ①
...
>>> type(A) ②
<class 'type'>
>>> a = A() ③
>>> type(a) ④
<class '__main__.A'>

① A class statement creates a new class object, A in this example.

② The type of type A is type.

③ A, a class object, is callable.

④ Calling the constructor returns an instance object of type A.

6.6. Constructors

44

6.7. Boolean Context
(Almost) all objects in Python have "truth values", which depend on
their types and values by default. When an object is used in an if or
while condition or as an operand of a Boolean operation, its truth
value is returned. (The and and or operators work slightly differently.)

The truth value of an object is True by default. It is False in the
following cases:

• If the object/its class has a __bool__ method defined, and

◦ This method returns False, or

• If the object does not have a __bool__ method but the object/its
class has a __len__ method, and

◦ This method returns 0.

For built-in types, the truth values of the following objects are False:

• None and False.

• The "zero value" objects of all numeric types, e.g., 0, 0.0, 0j, etc.

• Empty collections, e.g., "", (), [], {}, etc.

The truth value of an object of a custom type is always True by default,
regardless of the values of their attributes. In order to give a different
behavior, e.g., having either True or False based on their internal
states, we will need to implement the __bool__ method. This method,
by default, does not exist in a custom type.

If an object, or more precisely its class, implements this method, then it
is called in the boolean context. For example,

class BiggerThan8:
 def __init__(self, zzz):

6.7. Boolean Context

45

 self.zzz = zzz
 def __bool__(self):
 return True if self.zzz >= 8 else False

>>> z1, z2 = BiggerThan8(5), BiggerThan8(10)
>>> bool(z1), bool(z2)
(False, True)

The builtin bool function returns the Boolean value of the argument
(object or expression, or name). This code showcases another (subtle)
power of "duck typing". As long as the object z is of a type that has the
method __bool__(self), it works as expected. In other statically
typed programming languages, this kind of functionality is provided
through extra constructs, like interfaces, traits, and prototypes, etc.

6.8. Lifetime of an Object
In Python, we can create objects, e.g., using constructor functions, but
there is no way to explicitly destroy them. Any objects that are
unreachable, e.g., because they do not have any valid names referring
to them, may be "garbage collected" by the Python runtime.

The del statement can be used to remove/unbind a name from a given
object. Furthermore, Python’s standard library module gc can used to
explicitly control various aspects of the garbage collection process.

Note that some objects may reference system resources such as files
and windows, which are controlled by the operating system. When such
an object is garbage collected, those system resources are automatically
released. To explicitly release those resources, one can add a cleanup
logic (e.g., calling file.close()) in the finally block of the try
statement. Or, one can include such logic in the __exit__ method of a
context manager, to be used with the with statement.

6.8. Lifetime of an Object

46

Chapter 7. Simple Types
A number of types are built into the Python programming language.
They are called the "builtin types". Types can be classified into simple vs
compound types. Python’s builtin compound types are described in the
next chapter.

7.1. None
The NoneType simple type has a single value, None, which generally
indicates an absence of a (meaningful) value.

None has a number of uses in Python. For example, a function that does
not explicitly return a value is considered to be returning None. That is,
the value of a function call expression that does not return any concrete
values like 100 or anything else is None.

>>> type(None) ①
<class 'NoneType'>
>>> bool(None) ②
False
>>> def f(): pass ③
...
>>> print(f()) ④
None

① None is the only value of the type NoneType.

② The Boolean/truth value of None is False.

③ A function that does not return any value. It returns none.

④ The Python REPL does not print the value of an expression if it is
None. We use the print function to explicitly print the value of the
f() expression.

7.1. None

47

7.2. NotImplemented
The NotImplemented type is another singleton type, and it likewise has
a single value, NotImplemented.

>>> type(NotImplemented)
<class 'NotImplementedType'>
>>> def f(): return NotImplemented ①
...
>>> f()
NotImplemented
>>> if NotImplemented: ②
... print("Not implemented")
...
<stdin>:1: DeprecationWarning: NotImplemented should not be
used in a boolean context
Not implemented

① NotImplemented is sort of an invalid value, and it cannot be used in
numerical or comparison operations, for instance.

② The Boolean value of NotImplemented used to be True. It still is, as
of this writing. But, its use has been deprecated, and if you use
NotImplemented in a Boolean context, Python will raise a warning
or error.

7.3. Ellipsis
An ellipsis literal, … (or, Ellipsis), can be used in a few different
places in Python programs where no specific value is needed (e.g., as a
placeholder).

>>> type(...), bool(...) ①
(<class 'ellipsis'>, True)
>>> Ellipsis is ... ②

7.2. NotImplemented

48

True

① The Boolean value of … is True.

② Ellipsis and … are synonyms. They point to the same singleton
object.

7.4. Numbers
All builtin numeric types inherit from numbers.Number from the
numbers module. Numeric objects are immutable. In fact, the objects of
the simple types in Python are all immutable.

One thing to note is that bool is a numerical type in Python.

7.4.1. Integers (numbers.Integral)

The numbers.Integral type defines a set of integers.

int

The int type in Python represent (arbitrary-precision) integers.

bool

The bool type represent the truth values False and True. Their
numeric values are 0 and 1, and their string values are "False" and
"True", respectively.

>>> import numbers
>>> issubclass(int, numbers.Integral)
True
>>> issubclass(bool, int)
True
>>> isinstance(True, int), isinstance(10, int)
(True, True)

7.4. Numbers

49

7.4.2. Real numbers (numbers.Real)

float

The float type, a subtype of numbers.Real, represents a set of
double precision floating point numbers.

>>> import numbers
>>> issubclass(float, numbers.Real)
True
>>> isinstance(1.5, float), isinstance(1.2E-5, float)
(True, True)

7.4.3. Complex numbers (numbers.Complex)

complex

The complex type represents a set of all pairs of double precision
floating numbers, namely, the real and imaginary parts.

>>> import numbers
>>> issubclass(complex, numbers.Complex)
True
>>> c = 1 + 2j
>>> isinstance(c, complex), isinstance(0.1 + .5j, complex)
(True, True)
>>> c.real, c.imag ①
(1.0, 2.0)

① The complex type has attributes real and imag, which return the
real and imaginary parts of the complex number object,
respectively.

7.4. Numbers

50

Chapter 8. Compound Types
Objects can be built from other objects. Likewise, types can be built
from other types. They are called the complex or "compound types".

Python’s builtin compound types such as tuples and lists, which we will
discuss in this chapter, and the user-defined compound types, which we
will discuss later in the book, are built using other simple and complex
types as building blocks.

Python’s builtin compound types fall into three categories,

• Sequences, such as tuple and list,

• Sets, such as set, and

• Mappings, such as dict.

We will go through each of these three categories in this chapter after a
brief discussion on how to construct tuples, lists, sets, and dicts.

8.1. Tuples, Lists, Sets, and Dictionaries
The builtin collection types, tuples, lists, sets, and dictionaries, can be
constructed in a few different ways.

8.1.1. Constructors

First, we can use type constructors, tuple, list, set, and dict.

>>> tuple() ①
()
>>> list() ②
[]
>>> set() ③
set()

8.1. Tuples, Lists, Sets, and Dictionaries

51

>>> dict() ④
{}

① Calling a tuple() type constructor function without any arguments
creates an empty tuple, whose literal representation is ().

② Calling a list() constructor. It creates an empty list, [].

③ This constructor call set() creates an empty set. Note that there is
no literal syntax for an empty set.

④ This call dict() creates an empty dictionary, {}.

These constructors also accept arguments of an iterable type, for their
initial elements. For instance,

>>> tuple((1, 2)), tuple([1, 2])
((1, 2), (1, 2))
>>> list((1, 2)), list([1, 2])
([1, 2], [1, 2])
>>> set((1, 2)), set([1, 2])
({1, 2}, {1, 2})
>>> dict([('a', 1), ('b', 2), ('c', 3)]) ①
{'a': 1, 'b': 2, 'c': 3}

① An iterable of two-element iterables.

In addition, the dict constructor supports a special keyword argument
syntax. dict can also be initialized with other mapping object. For
instance,

>>> x = dict(a = 1, b = 2)
>>> x
{'a': 1, 'b': 2}
>>> y = dict(x)
>>> y
{'a': 1, 'b': 2}

8.1. Tuples, Lists, Sets, and Dictionaries

52

8.1.2. Literal syntax

Another way to create builtin collections is to use the literal syntax,

• Either by explicitly listing the elements, or

• By providing "instructions" as to how to generate the element list,
which is called a comprehension.

Here are some examples of the explicit literal syntax:

(1, 2, 3) ①
[1, 2, 3] ②
{1, 2, 3} ③
{"a": 1, "b": 2, "c": 3} ④

① This literal creates a tuple of three integer elements, 1, 2, and 3,
enclosed in a pair of parentheses ((…)). For a one-element tuple, a
trailing comma is required. E.g., (1,).

② A list literal, enclosed in a pair of square brackets ([…]).

③ A set literal, enclosed in a pair of curly braces ({…}).

④ This literal creates a dict of three key-value pairs, ("a", 1), ("b",
2), and ("c", 3). Dictionary literals use the same curly braces ({…
}) as sets. The literal {} represents an empty dictionary.

8.1.3. Comprehensions

Lists, sets, and dictionaries (but not tuples) can also be constructed
using the comprehension syntax. The comprehension consists of the
following general components:

• An expression, followed by

• At least one for clause, and

• Zero or more if or (nested) for clauses.

8.1. Tuples, Lists, Sets, and Dictionaries

53

The for clause has the following general syntax:

• The for keyword, or async for,

• The target variable list, and

• The in keyword, followed by

• An iterable, or an async iterable, respectively.

8.2. Sequences
Sequences are ordered sets indexed by non-negative integers. The i-th
item of a sequence a is selected by a[i]. The index runs from 0 to
len(a) - 1. len is a built-in function that returns the number of items
in a sequence.

"Slicing" a sequence produces another sequence of the same type, called
a slice. For example, a[i:j] selects all items with index between i
(inclusive) and j (exclusive). The index of a slice starts from 0
regardless of how it is sliced.

8.2.1. Sequence unpacking

An expression list evaluates to a tuple object. When the resulting tuple
is assigned to a single variable, it is called "tuple packing":

>>> x = 1, 'a', True ①
>>> x
(1, 'a', True)

① "Tuple packing". The type of x is tuple. The three values on the
right-hand side have been "packed" into one variable.

On the flip side, a sequence type object can be "unpacked" to multiple
variables.

8.2. Sequences

54

>>> p, q, r = ['a', 'b', 'c'] ①
>>> p, q, r
('a', 'b', 'c')

① A single list with three items on the right-hand side has been
"unpacked" to three variables, p, q, and r.

Normally, the number of variables must be the same as that of elements
in the sequence. Python, however, supports a special syntax for the
"remaining elements". For example,

>>> p, *q = [1, 2, 3, 4] ①
>>> p, q
(1, [2, 3, 4])

① At most one variable in the unpacking syntax can be marked with *.
This variable gets all the remaining elements from the sequence
after each leading or trailing element has been mapped to the
corresponding variable. Note that the type of q is list.

8.3. Immutable Sequences
Objects of immutable sequence types cannot change once created.

8.3.1. Strings

A string is a sequence of values that represent Unicode code points.
Python does not have a character type. The built-in function ord
converts a code point from its string form to an integer in the range 0 -
0x10FFFF. On the other hand, chr converts an integer in the range 0 -
0x10FFFF to the corresponding length-1 string object.

Strings can be concatenated with the + operator. Adding two strings
returns a new string. Strings are truly immutable in Python. The string

8.3. Immutable Sequences

55

type includes a number of builtin methods like count, index, find,
replace, format, join, split, startswith, endswith, upper, lower,
isalnum, isalpha, islower, isupper, and isspace.

8.3.2. Tuples

A tuple is an immutable sequence of zero, one, or more arbitrary
Python objects within a pair of parentheses. The length of a tuple, that
is, the number of elements, or items, in the tuple, can be computed
using the Python builtin function, len.

>>> len((False, "Hello", 1_000_000))
3

8.3.3. Bytes sequences

Python does not have a byte type. Instead, it has a bytes sequence type,
which is an immutable array of 8-bit bytes.

8.4. Mutable Sequences
Items of a mutable sequence can be changed after they are created, e.g.,
using the assignment or del (delete) statements.

8.4.1. Lists

The list type is another important builtin data type in Python. A list is
a mutable sequence of zero, one, or more objects. A list can be modified
using the builtin list methods such as append, insert, pop, and
remove, etc. The order of the elements in a list can be updated using the
methods, reverse and sort.

As with tuples, the len builtin function can be used to get the number
of elements in a list. For instance,

8.4. Mutable Sequences

56

>>> len([1.0, 2.0, 3.0])
3

8.4.2. List comprehension

A list can be created by using the list comprehension syntax, in
addition to the explicit literal syntax. For example,

>>> [x*x for x in range(5)] ①
[0, 1, 4, 9, 16]
>>> [x*x for x in range(5) if x % 2 == 0] ②
[0, 4, 16]

① This expression evaluates to [0, 1, 4, 9, 16].

② The if clause can be used to filter elements.

The list comprehension, as well as the list literal expression, yields a
new list object every time they are evaluated.

8.4.3. Byte arrays

bytearray objects are like bytes sequences, but they are mutable. A
bytearray object is created by the built-in bytearray constructor.

8.5. Set Types
The set types represent unordered sets of unique, immutable objects.
(Elements of set types are comparable to the keys of the mapping types.)
The items in a set cannot be indexed using the subscription syntax. But
they can be iterated over, as with other sequence types. (That is, a set is
an iterable.) The len function returns the number of items in a set.

8.5. Set Types

57

8.5.1. Sets

A set represents a mutable set. They can be created by the built-in set
constructor, as illustrated earlier.

8.5.2. Set comprehension

A set can be created using the set comprehension syntax, in addition to
the explicit set literal syntax. For example,

>>> type({1, 3, 5, 7}) ①
<class 'set'>
>>> { x*2 for x in range(5) } ②
{0, 2, 4, 6, 8}

① A set literal, {1, 3, 5, 7}.

② This comprehension expression evaluates to {0, 2, 4, 8, 6}.

A set comprehension, as well as the literal expression with a comma-
separated list of elements, returns a new mutable set object each time
they are evaluated.

8.5.3. Frozen sets

The built-in frozenset constructor creates a frozenset object, which
is an immutable set.

8.6. Mappings
Mapping types represent ordered or unordered sets of objects indexed
by arbitrary index sets, or keys. The built-in function len returns the
number of items in the given mapping object. The subscript notation
a[k] selects the item indexed by k from the mapping a. This can be
used, for example, as the target of assignments or del statements.

8.6. Mappings

58

8.6.1. Dictionaries

A dictionary is the builtin mutable mapping type in Python. They
represent finite sets of objects indexed by the values of any type that
support constant hash values. Dictionaries preserve insertion order.
That is, keys will be produced in the same order they were added
sequentially to the dictionary.

8.6.2. Dictionary comprehension

A new dict object can be created using the dictionary comprehension
syntax, in addition to the dictionary literal syntax by listing elements.
For example,

>>> { str(x): x**2 for x in range(4) } ①
{'0': 0, '1': 1, '2': 4, '3': 9}

① Note the expression syntax (k:v) before the for clause.

8.6.3. Element insertion/deletion

>>> d = {"a": 1}
>>> d['b'] = 2 ①
>>> del(d['a']) ②
>>> d
{'b': 2}

① Overwrites an existing element if the element exists with a given
key. Otherwise, it inserts a new element.

② The del statement is described later in the book.

8.6. Mappings

59

Chapter 9. Expressions
An "expression" comprises operators and operands and it evaluates to a
value. A value is (trivially) an expression.

In Python, the building blocks of an expression are called "atoms".
Atoms include lexical tokens like identifiers and literals, and they can
be nested. Expressions enclosed in parentheses, square brackets or
curly braces are also syntactically atoms.

At the next level up, the following "primaries" represent the most
tightly bound operations:

Attribute References

A primary followed by a period and a name, called the attribute
reference, is also a primary. An object’s attribute reference can be
customized by overriding its __getattr__ method.

Subscriptions

Subscription, or indexing, of a sequence (e.g., string, tuple, or list) or
mapping object (e.g., dictionary) selects an item from the given
collection. User-defined objects can support subscription by
implementing a __getitem__ method.

Slicings

A slicing operation selects a range of items in a sequence object.
Slicings may be used as expressions or as targets in assignment or
del statements. The primary is indexed (using the same
__getitem__ method as the subscription) with a key that is
constructed from the slice list, as follows.

• If the slice list contains at least one comma, the key is a tuple
containing the conversion of the slice items.

• Otherwise, the conversion of the lone slice item is the key.

60

Calls

A "call" calls a callable object (e.g., a function or class) with a
(possibly empty) series of arguments. All objects having a __call__
method are callable such as built-in functions, methods of built-in
objects, class objects, methods of class instances, and user-defined
functions. All argument expressions are evaluated before the call is
attempted.

There are a few different kinds of expressions in Python. An expression
can comprise one or more other (sub-)expressions, e.g., combined with
operators.

• Arithmetic conversions.

• Arithmetic operations, unary and binary.

• Bitwise operations, unary and binary.

• Shifting operations.

• Comparisons (==, !=, >, >=, <, <=)

• Boolean operations (not, and, or).

• Assignment expressions.

• Conditional expressions.

Lambda expressions and await expressions are described later.

9.1. Expression Lists
An expression list is a series of one or more expressions, separated by
commas. A trailing comma is optional, except for an expression list
comprizing a single expression. The expressions in an expression list
are evaluated from left to right.

An expression list of one or more expressions yields a tuple object with
the corresponding number of elements. For instance,

9.1. Expression Lists

61

>>> 50 + 50, 100 * 2 ①
(100, 200) ②

① The Python interpreter first computes 50 + 50, which is evaluated
to 100, and then it computes 100 * 2, which is evaluated to 200.

② The value of this expression list is a tuple, e.g., as represented by a
tuple literal (100, 200) in this case.

>>> 1 / 2 ①
0.5
>>> 1 / 2, ②
(0.5,)

① The value of an expression 1 / 2 is 0.5.

② The value of an expression list 1 / 2, is (0.5,). The trailing
comma is required for single-expression expression lists.

The "iterable unpacking" syntax, using the asterisk * operator, may be
used in the expressions of the iterable types in an expression list.

>>> a, b, c = 1, [2, 3, 4], 5 ①
>>> a, b, c
(1, [2, 3, 4], 5)
>>> a, *b, c ②
(1, 2, 3, 4, 5)
>>> *b, ③
(2, 3, 4)

① b is a list, an iterable type.

② Unpacking b. The elements of b is now a part of the resulting tuple.

③ Unpacking in an expression list comprising a single iterable
expression. Note that the trailing comma is required.

9.1. Expression Lists

62

9.2. Evaluation Order
As a general rule, Python evaluates expressions from left to right, based
on the operator precedence rules.

When evaluating an assignment, the right-hand side is evaluated before
the left-hand side. In an "augmented assignment" expression, however,
the left hand side target is evaluated first before the right hand side.
Then the final result is assigned back to the left hand side target.

>>> a, b = 1 + 2, 2 * 5 ①
>>> a, b
(3, 10)
>>> a += 1 + 2 * 3 ②
>>> a
10

① The expressions, 1 + 2 are 2 * 5 evaluated first (e.g., from left to
right) and the resulting value (a tuple) is "unpacked" and assigned to
a and b, respectively.

② In this augmented assignment, the (current) value of a is evaluated
first, which is 3. The right hand side is next evaluated to 7 (since the
multiplication 2 * 3 has a higher precedence than the addition +). 3
+ 7 is then evaluated and its result is assigned back to a.

9.3. Assignment Expressions
An assignment expression assigns an expression on the right hand side
of the assignment operator := (informally called the "walrus" operator)
to a name on the left hand side, and it returns its value (which is the
same as that of the target).

Assignment expressions are commonly used in compound statements
where the result of an expression evaluation needs to be retained, e.g.,

9.2. Evaluation Order

63

so that it can be used in the statement suite. For instance,

>>> import random
>>> def zero_or_not():
... return random.randint(0, 4)
...
>>> while r := zero_or_not(): ①
... print("Not zero:", r) ②
...
Not zero: 1
Not zero: 1
Not zero: 4

① The while clause depends on the result of the function call,
zero_or_not().

② The same value is used in each iteration. Hence, the value was
previously stored in the variable r.

9.4. Conditional Expressions
In addition to the conditional statement, Python also supports the
conditional expression, through the if - else expression syntax. In
the expression x if C else y, comprising three (sub-) expressions, C,
x, and y, if C evaluates to True, then the value of the expression is x.
Otherwise, its value is y.

For instance,

family = input("What is your family name? ")
print(f"You are {'a reptile' if family == 'Python' else
'nobody'}!")

Python’s if expression corresponds to the ternary operator ? : in
other C-style languages. An expression x if C else y is roughly

9.4. Conditional Expressions

64

equivalent to C ? x : y in those languages.

Note that only two of these tree expressions are evaluated regardless of
the value of C. The condition C is always evaluated first, and if it true,
then x evaluated, but not y. Otherwise, y is evaluated, but not x.

9.5. Arithmetic Conversions
When a binary arithmetic operation is performed,

• If either argument is a complex number, the other is converted to
complex, and

• Otherwise

◦ If either argument is a floating point number, the other is
converted to floating point, and

◦ Otherwise, both arguments are integers and Python does no
automatic conversion.

9.6. Arithmetic Operations

9.6.1. Unary arithmetic operators

The unary - (minus) operator yields the negation of its numeric
argument. The unary + (plus) operator yields its numeric argument
unchanged. In either case, if the argument does not have the proper
type, a TypeError exception is raised.

All unary arithmetic and bitwise operations have the same priority.

9.6.2. Binary arithmetic operators

The * (multiplication) operator yields the product of its arguments. The
arguments must either both be numbers, in which case they are

9.5. Arithmetic Conversions

65

multiplied together, or one argument must be an integer and the other
must be a sequence, in which case sequence repetition is performed. A
negative repetition factor yields an empty sequence.

The / (division) and // (floor division) operators yield the quotient of
their arguments. Division of floats or integers yields a float, while floor
division of integers results in an integer. Division by zero raises a
ZeroDivisionError exception.

The % (modulo) operator yields the remainder from the division of the
first argument by the second. A zero right argument raises a
ZeroDivisionError exception. The arguments may be floating point
numbers, e.g., 3.14 % 0.7 equals 0.34 (since 3.14 equals 4 * 0.7 +
0.34). The modulo operator always yields a result with the same sign as
its second operand.

The floor division and modulo operators are connected by the following
identity: x == (x //y) * y + (x % y). Floor division and modulo
are also connected with the built-in function divmod: divmod(x, y)
== (x // y, x % y).

The + (addition) operator yields the sum of its arguments. The
arguments must either both be numbers, in which case they are added
together, or both be sequences of the same type, in which case the
sequences are concatenated. The - (subtraction) operator yields the
difference of its arguments.

9.6.3. The power operator

The power operator (**) takes two arguments and it works the same
way as the built-in pow function. That is, x ** y is equivalent to
pow(x, y), which yields the value x raised to the power of y.

For example,

9.6. Arithmetic Operations

66

>>> 2 ** 3 ①
8
>>> 2 ** -3 ②
0.125
>>> -2 ** 0.5 ③
-1.4142135623730951
>>> (-2) ** 0.5 ④
(8.659560562354934e-17+1.4142135623730951j)
>>> 10 ** 0 ⑤
1
>>> 0.0 ** 2 ⑥
0.0
>>> 0.0 ** -2 ⑦
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: 0.0 cannot be raised to a negative power

① 2 ** 3 is the same as 2 * 2 * 2, which is an integer 8.

② 2 ** -3 is the same as 1.0 / (2 * 2 * 2), which yields a float
number even though both operands are int.

③ -2 ** 0.5 is the same as - (2 ** 0.5), which is -1 times the
square root of 2.

④ On the other hand, a fractional power over a negative number
returns a complex number.

⑤ x ** 0 yields 1 regardless of x. Likewise, x ** 0.0 is always 1.0.

⑥ 0 ** x, for integer and float x, yields 0 and 0.0, respectively. 0.0
** x always returns 0.0 regardless of the type and value of x.

⑦ Zero (0 or 0.0) to the power of a negative number raises a
ZeroDivisionError exception.

9.6. Arithmetic Operations

67

9.7. Bitwise Operations

9.7.1. Unary bitwise operator

The unary ~ (inversion) operator only applies to integral numbers. It
yields the bitwise inversion of its integer argument. The bitwise
inversion of x is defined as -(x+1). If the argument does not have the
proper type, a TypeError exception is raised.

9.7.2. Binary bitwise operators

• The bitwise AND (&) operator yields the bitwise AND of its integer
arguments.

• The bitwise XOR (^) operator yields the bitwise exclusive OR of its
integer arguments.

• The bitwise OR (|) operator yields the bitwise (inclusive) OR of its
integer arguments.

>>> 0b0 & 0b0, 0b0 & 0b1, 0b1 & 0b0, 0b1 & 0b1
(0, 0, 0, 1)
>>> 0b0 ^ 0b0, 0b0 ^ 0b1, 0b1 ^ 0b0, 0b1 ^ 0b1
(0, 1, 1, 0)
>>> 0b0 | 0b0, 0b0 | 0b1, 0b1 | 0b0, 0b1 | 0b1
(0, 1, 1, 1)

9.7.3. The shift operators

Both left shift (<<) and right shift (>>) operators accept integers as
arguments. They shift the first argument to the left << or to the right >>
by the number of bits given by the second argument.

• A right shift by n bits is defined as floor division by pow(2,n).

• A left shift by n bits is defined as multiplication with pow(2,n).

9.7. Bitwise Operations

68

9.8. Boolean Operations
An expression that evaluates to a bool value, either True or False, is
called a Boolean expression. Hence True is a (trivial) Boolean
expression, and so is False.

9.8.1. The not operator

The operator not yields

• True if its argument is false, or

• False otherwise.

9.8.2. The and operator

The and operation x and y first evaluates x, and

• If x evaluates to false, its value is returned (which may not be
Boolean).

• Otherwise, y is evaluated, and the resulting value is returned.

Note that the type of the overall expression is effectively the union of
the types of x and y (not necessarily a Boolean type). That is, the type of
the and expression is that of x if x's Boolean value is false. Otherwise, it
is the type of y.

9.8.3. The or operator

The or operation x or y first evaluates x, and

• If x evaluates to true, then its value is returned (which again may
not be True).

• Otherwise, y is evaluated and the resulting value is returned.

9.8. Boolean Operations

69

The type of the overall expression x or y is likewise the union of the
types of x and y. That is, the type of the or expression is that of x if x's
Boolean value is true. Otherwise, it is the type of y.

9.9. Comparisons
Comparisons yield boolean values: True or False. Comparisons in
Python can be chained arbitrarily. For example, x < y <= z is a valid
expression unlike in many other C-style languages, and it is more or less
equivalent to x < y and y <= z. Or more precisely, it is equivalent to
x < (t := y) and t <= z, using a temporary variable t. Note that y
is evaluated only once.

In general, if a, b, c, …, y, z are expressions and op1, op2, …, opN are
binary comparison operators, then a op1 b op2 c … y opN z is
semantically equivalent to a op1 b and b op2 c and … y opN z,
except that each expression is evaluated at most once.

9.9.1. Identity comparisons

The operators is and is not test for an object’s identity: x is y is
true if and only if x and y are the same object. The object’s identity is
determined using the id function. x is not y yields the inverse truth
value.

9.9.2. Value comparisons

The operators <, >, ==, >=, <=, and != compare the values of two objects.
The objects do not need to have the same type.

Because all types are (direct or indirect) subtypes of object, they
inherit the default comparison behavior from object. Types can
customize their comparison behavior by implementing comparison
dunder methods such as __lt__ and __gt__, etc.

9.9. Comparisons

70

The default behavior for equality comparison (== and !=) is based on
the identity of the objects. Hence, the equality comparison of
instances with the same identity results in equality, and the equality
comparison of instances with different identities results in inequality,
which may be counter-intuitive in many cases. In general, user-defined
types will need to customize their comparison behavior.

9.9.3. Membership test operations

For collections, the operators in and not in test for membership. x in
s evaluates to True if x is a member of s, and False otherwise. x not
in s returns the negation of x in s. All built-in sequences and set
types support this. For dict, the in operator tests whether the
dictionary has a given key.

For the string and bytes types, x in y is True if and only if x is a
substring of y. The operator not in is defined to have the inverse truth
value of in. For example,

>>> 2 in [1, 2, 3, 2]
True
>>> 'c' not in { 'a', 'b', 'd'}
True
>>> "k1" in { "k1": "v1", "k2": "v2" }
True
>>> "world" in "hello world"
True

For user-defined classes which define the __contains__ method, x in
y returns True if y.__contains__(x) returns a true value, and False
otherwise.

9.9. Comparisons

71

Chapter 10. Simple Statements
Statements, unlike expressions, are primarily used for side effects, e.g.,
to control program flows or to generate outputs. A simple statement
comprises a single logical line. Several simple statements may occur on
a single line separated by semicolons. We will discuss the compound
statements in the next chapter.

Simple statements include:

• Expression statement,

• Assignment statement,

• assert statement,

• pass statement,

• del statement,

• return statement,

• raise statement,

• break statement,

• continue statement,

• global statement, and

• nonlocal statement.

The import statement was explained in the beginning of the book,
Package and Modules. The yield statement is described in the context
of the coroutines, or more specifically, the yield expressions.

10.1. Expression Statement
In Python, an expression, or an expression list in general, can be used
as a statement, e.g., solely for its side effects. This is called an

10.1. Expression Statement

72

expression statement, and it evaluates the expression list and discards
its result. The most common use case is to call a function that returns
None. Another common use case is using a constant string expression
for documentation purposes.

For example,

def a():
 "Nada" ①
 return "Something"

a() ②

① The function definition a() includes an expression statement, which
is a string literal.

② Calling the function a() is an expression, but it is written as a
statement here. The function’s return value, "Something", is
discarded.

10.2. Assignment Statement
Assignment is one of the simple statements in Python. Assignment
statements are primarily used to bind a new name, or rebind an
existing name, to an object. They are also used to modify attributes or
items of a mutable object.

The left-hand side of an assignment statement can be

1. A new name or a name referring to an object, or

2. An attribute or item of a mutable object.

An assignment statement evaluates the expression, or the expression
list, on the right hand side, from left to right, and it assigns the single
resulting object to the corresponding target list on the left hand side,

10.2. Assignment Statement

73

from left to right. If the target list is a single target with no trailing
comma, the object is assigned to that target. (As indicated, the
assignment of an expression list to a target list is a combination of the
tuple packing and sequence unpacking.)

In Python, we can also bind multiple names to a single object in one
statement. For example,

>>> x = y = "dragon" ①
>>> p = q = ['a', 'b'] ②
>>> id(x), id(y)
(140593323269680, 140593323269680)
>>> id(p), id(q)
(140593324864960, 140593324864960)

① The variables x and y refer to the same object.

② p and q refer to the same object.

10.2.1. Augmented Assignment Statements

An augmented assignment statement is the combination of a binary
operation and an assignment statement. The following operators are
used in augmented assignment: +=, -=, _=, @=, /=, //=, %=, _*=, >>=,
<<=, &=, ^=, and |=.

Unlike normal assignments, an augmented assignment evaluates the
target on the left-hand first, and then the expression list on the right-
hand side. It then performs the binary operation and writes back the
result to the target.



Python’s assignment statement does not make a copy
of the source object, unlike in some other
programming languages. It merely binds, or rebinds, a
name to the object. For copying, the standard library
copy module provides functions for both shallow and

10.2. Assignment Statement

74

deep copying.

10.3. The pass Statement
The pass statement is used as a placeholder, e.g., in places where the
Python grammar requires a statement. When this statement is
executed, nothing happens. pass is a null operation. It is primarily used
during development, and it serves no other purposes.

For example,

def find_numbers(arg):
 pass # To be implemented ①

① The function definition syntactically requires at least one statement.

class OrdinalNumber:
 pass # Placeholder ①

① The same with the class definition. Clearly, these comments like
"Placeholder" are not needed since the use of the pass statements
generally implies that they are placeholders.

10.4. The return Statement
A return statement is only allowed syntactically within a function
definition. When executed, it leaves the current function call. A return
statement can include an optional argument, an expression list. If
present, the expression list is returned to the caller as the value of the
function call. If not, the None return value is assumed.

>>> def f():
... return 1, 2, 3 ①

10.3. The pass Statement

75

...
>>> f()
(1, 2, 3) ②

① The function f returns an expression list with three expressions.

② The value of the function call expression f() is a tuple, e.g., through
the tuple packing.

When return passes control out of a try statement with a finally
clause, that finally clause is executed before leaving the function.

10.5. The raise Statement
A raise statement raises, or throws, an exception or an exception
group:

• If an argument is provided,

◦ If it evaluates to an instance of BaseException or its subtype, it
raises the exception/exception group object.

◦ If the expression is a class, then it creates an instance of the class
constructed with no argument.

• If no argument is provided,

◦ If an exception is active in the current scope, it re-raises this
exception.

◦ Otherwise, it is a RuntimeError.

When a new exception is raised when another exception is currently
active, the new exception can be tied to the existing exception using the
__cause__ attribute. This is known as the "exception chaining". This
can be accomplished by attaching the from clause at the end of the
raise statement.

10.5. The raise Statement

76

>>> class UnusualException(Exception): pass ①
...
>>> raise UnusualException ②
Traceback (most recent call last): ③
 File "<stdin>", line 1, in <module>
__main__.UnusualException

① A new exception type should inherit from
Exception(BaseException).

② An exception that inherits from BaseException can be raised.

③ The Python REPL catches the exception. Normally, we will need the
try - except statement to catch the raised exceptions. Otherwise,
the program will crash.

>>> try: raise UnusualException
... except: raise ①
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.UnusualException

① Re-raising the current exception.

>>> try:
... raise UnusualException("Unusual")
... except BaseException as ex: ①
... raise UnusualException("Really unusual") from ex ②
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
__main__.UnusualException: Unusual

The above exception was the direct cause of the following
exception:

10.5. The raise Statement

77

Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
__main__.UnusualException: Really unusual

① The as clause is used to name an exception.

② Exception chaining using the raise - from syntax.

10.6. The break Statement
A break statement can be used in a for or while loop, only directly
included, and not as part of a function of class definition within the
loop. It terminates the innermost enclosing loop. If the loop has an else
clause, it is skipped.

>>> for i in range(3): ①
... try:
... print(i)
... if i == 1:
... break ②
... print(i)
... finally:
... print("finally")
... else:
... print("huh?") ③
...
0
0
finally
1 ④
finally ⑤

① A for loop with range function.

② A break statement in this for loop.

③ The else clause is not executed when the loop is terminated with a

10.6. The break Statement

78

break statement.

④ The break statement is executed after printing the first 1. The
second print statement is skipped.

⑤ The finally clause is still executed before exiting the loop.

10.7. The continue Statement
Just like break, a continue statement can only be used directly in a
for or while loop. It continues with the next cycle of the innermost
enclosing loop, without executing the rest of the statements in the
current loop.

>>> for i in range(3): ①
... try:
... print(i)
... if i == 1:
... continue ②
... print(i)
... finally:
... print("finally")
... else:
... print("huh?")
...
0
0
finally
1 ③
finally ④
2 ⑤
2
finally
huh ⑥

① A for complex statement.

10.7. The continue Statement

79

② A continue statement in this for loop.

③ The continue statement is executed after printing the first 1. The
second print function call is skipped.

④ The finally clause is still executed before continuing with the next
iteration.

⑤ The next iteration continues.

⑥ The else clause is executed when the loop is normally terminated.

10.8. The global Statement
The global and nonlocal statements were briefly discussed earlier in
the context of code blocks and scopes.

The global statement, the keyword global followed by a comma-
separated list of names, indicates that the declared names, in the
current code block, are to be interpreted as globals (e.g., the current
module scope). The names listed in a global statement cannot be used
in the same code block before that global statement.

Note the asymmetry between name binding and use in Python. There is
no way to bind a value to a global variable without using the global
declaration in a non-global code block. On the other hand, to
access/read the value of a global variable, the global declaration is not
needed.

>>> def f():
... print(x) ①
... global y ②
... y = 4 ③
... print(y)
...
>>> x, y = 1, 2 ④
>>> f() ⑤

10.8. The global Statement

80

1
4

① No global declaration is needed to access the (later-defined) global
variable, x, in the function scope. Note that the variable x is used
within the function f without being declared first. This is called a "
free variable".

② This global declaration allows the global variable, y, to be
assignable.

③ After the global statement, we can assign a value to the global
variable. Now, y is bound to a different object 4 in this example.

④ The global variables, x and y, are declared.

⑤ The function call f() uses these global variables.

10.9. The nonlocal Statement
The nonlocal statement works in a similar way as the global
statement. The names declared in a nonlocal statement refer to the
previously bound variables in the innermost enclosing scope (excluding
globals).

Some examples were given earlier, in the Scope Examples section.
Here’s another example:

>>> def a():
... x, y = 1, 2 ①
... def b(): ②
... print(x) ③
... nonlocal y ④
... y = 4 ⑤
... print(y)
... b()
...

10.9. The nonlocal Statement

81

>>> a()
1
4

① x and y are variables local to the code block of the function
definition for a.

② The start of a new (nested) code block.

③ x refers to the variable x declared outside the local scope (for b).

④ In order to be able to assign a new value to the non-local variable y,
the variable needs to be declared as nonlocal.

⑤ The variable y refers to the one defined in the scope of a, but outside
the scope of b.

10.10. The del Statement
A del statement deletes the listed target name(s). Deletion of a target
list recursively deletes each target, from left to right. If a target name is
unbound, a NameError exception will be raised.

Deletion of a name removes the binding of that name from the local or
global namespace, depending on whether the name occurs in a global
statement in the same code block.

For example,

>>> x = 1
>>> def f():
... global x
... del x ①
...
>>> print(x)
1
>>> f() ②
>>> print(x) ③

10.10. The del Statement

82

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

① This del statement deletes the global variable x.

② Calling f() will execute the del statement.

③ Attempting to use a deleted/unbound name will raise a NameError
exception.

10.11. The assert Statement
An assert statement is a convenient way to insert debugging
assertions into a program. There are two forms.

10.11.1. The basic form

assert <expression>

This is equivalent to:

if __debug__:
 if not <expression>: raise AssertionError

Note that the values for the built-in variables, such as __debug__, are
determined when the Python interpreter starts and they cannot be
modified. The variable __debug__ is True under normal
circumstances, False when optimization is requested (command line
option -O). The assert statement generates no code when optimization
is requested at compile time.

10.11. The assert Statement

83

10.11.2. The extended form

assert <expression1>, <expression2>

is equivalent to

if __debug__:
 if not <expression1>: raise AssertionError(<expression2>)

For example,

>>> a = 1, 2, 3, ①
>>> assert a == (1, 2, 3) ②
>>> assert a == [1, 2, 3] ③
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

① An expression list evaluates to a tuple.

② This assert statement succeeds, and hence there is no output.

③ This assertion fails and it throws an AssertionError exception.

10.11. The assert Statement

84

Chapter 11. Compound
Statements
A compound statement comprises other statements, and it affects or
controls the execution of those statements in some way. A compound
statement can span multiple (logical) lines.

A compound statement consists of one or more "clauses". A clause
consists of a "header" and a "suite". The clause headers of a particular
compound statement are all at the same indentation level. Each clause
header begins with a uniquely identifying keyword (e.g., if, else, try,
except, etc.), and it ends with a colon :. A suite is a group of one or
more statements controlled by the clause. A suite can be

• One or more semicolon-separated simple statements on the same
line as the header, following the colon, or

• It can be one or more one-level more indented simple or compound
statements on subsequent lines.

Python uses, as in many imperative programming languages, the
common control flow statements such as the if statement, while
statement, and for statement. They are all compound statements in
Python. The for statement is often used with the builtin range and
enumerate functions.

The try statement, along with the simple raise statement, is used for
exception handling and/or for providing cleanup code. Another
compound statement, the with statement, which is closely related to
the context manager, is used to provide initialization and finalization
code for a series of statements.

The new match statement (new as of 3.10) is discussed later in a
broader context of pattern matching. Likewise, two other important
compound statements, the function def statement and the class

85

definition statement, are discussed in their own chapters. Finally,
coroutines and other related statements are explained separately in the
last chapter of the book. async/await is Python’s (relatively) new
construct for high-level asynchronous programming.

11.1. The if - elif - else Statement
The if statement is used for conditional execution. It selects at most
one of the suites by evaluating the if/elif expressions one by one,
from top to bottom, until one is found to be True. Then the
corresponding suite is executed (and no other part of the if compound
statement is executed or evaluated). If all expressions are False, then
the suite of the else clause, if present, is executed.

For example,

 1 from datetime import datetime
 2
 3 weekday = datetime.today().isoweekday() ①
 4
 5 if weekday == 7: ②
 6 println("Today is Sunday!")
 7 elif weekday == 6: ③
 8 println("Today is Saturday!")
 9 else: ④
10 println("Just another day. :(")
11
12 println("Regardless, let's learn some programming!")

① datetime's isoweekday method returns integer values, 1 for
Monday, 2 for Tuesday, and 7 for Sunday, etc.

② This if statement comprises three clauses, if (lines 5-6), elif (lines
7-8), and else (lines 9-10). The if expression checks if today is
Sunday. If so, it will print out today is Sunday! and the control moves
to the end of the if statement, e.g., line 11.

11.1. The if - elif - else Statement

86

③ If today is not Sunday, it is then tested against Saturday (6). If this
expression evaluates to True, the statements in the suite (a single
statement, line 8, in this example) are executed, and the execution of
the if statement terminates.

④ In all other cases, this if statement will end up printing Just another
day. :(. After executing the if statement (regardless of which clause
has been executed), the program execution moves to the next
statement, line 12, in this example.

Note that, unlike in many C-style languages, Python’s if statement
syntax does not require parentheses around the Boolean expressions in
the if and elif lines. Parentheses can still be used for expression
grouping purposes.

11.2. The while - else Statement
The while statement is used for repeated execution, similar to the for
statement. The while statement’s execution depends on an expression.
It tests the expression at every start of iteration and, as long as an
expression evaluates to True, it executes the first suite. If the
expression turns False (which may be the first time it is tested), then
the suite of the else clause, if present, is executed and the loop
terminates.

For both while and for statements,

• A break statement in the while/for suite terminates the loop
without executing the else clause’s suite.

• A continue statement in the while/for suite skips the rest of the
compound statement and goes back to testing the expression.

Python 3.0 was first released in 2008, and it now has a yearly release
schedule (since 2020?). Let’s print that information out:

11.2. The while - else Statement

87

>>> year = 2007
>>> while (year := year + 1) and (year < 3000): ①
... if year < 2018: ②
... if year == 2008:
... print(f"Python 3 was first released in {year
}.")
... continue ③
... elif year == 2022: ④
... print("Python 3.11 is to be released at the end of
2022.")
... break ⑤
...
... version = f"3.{year - 2011}"
... print(f"Python {version} in {year}.") ⑥
...
Python 3 was first released in 2008.
Python 3.7 in 2018.
Python 3.8 in 2019.
Python 3.9 in 2020.
Python 3.10 in 2021.
Python 3.11 is to be released at the end of 2022.

① This while statement is effectively an infinite loop, and its
termination is controlled by the break statement. The condition
year < 3000 is added as a precaution, e.g., to avoid a runaway
iteration in case there is a bug in the code, etc. The assignment
expression year := year + 1, which always yields True in the
Boolean context (since year > 2007 > 0), is used here, for
illustration.

② When year < 2018, we just continue unless year == 2008.

③ The continue statement.

④ When year == 2022, we terminate the loop.

⑤ This break statement terminates the while loop in this example.

⑥ Note that this message is printed only when 2018 <= year < 2022.

11.2. The while - else Statement

88

11.3. The for - in - else Statement
The for-in-else statement is used to iterate over the elements of a
sequence (such as a string, tuple, or list) or other iterable object,
including a dictionary. It has the following syntax:

for <target> in <expression_list>:
 <for_suite>
else:
 <else_suite>

The <expression_list> is evaluated first, and only once. An iterator
is created as a result. The suite, <for_suite>, is then executed once for
each item provided by the iterator. Each item in turn is assigned to the
<target> using the standard rules for assignments, and then the
<for_suite> is executed with the value of the current <target>.
When the items are exhausted, that is, when the iterator raises a
StopIteration exception, the <else_suite> in the else clause, if
present, is executed, and the loop terminates.

Note that when the <expression_list> returns an empty sequence,
the <target> variable is never assigned.

For example,

>>> features = { ①
... "3.11": "the exception group",
... "3.10": "the match statement",
... "3.9": "the dictionary union operator",
... "3.8": "the assignment expression",
... }
>>> for k in features: ②
... print(f"""Python {k} includes many new features
... such as {features[k]}.""")
...

11.3. The for - in - else Statement

89

Python 3.11 includes many new features
 such as the exception group.
Python 3.10 includes many new features
 such as the match statement.
Python 3.9 includes many new features
 such as the dictionary union operator.
Python 3.8 includes many new features
 such as the assignment expression.

① A dict is an iterable.

② A for statement, iterating over a dictionary. Note that the order is
preserved.

11.3.1. The range function

Python’s for in statement can be used just like C’s classic for loop,
with the help of the builtin range function, which generates an integer
sequence.

The range function can be called in three different ways:

range(start, end, step) ①
range(start, end) ②
range(end) ③

① It specifies start (inclusive), end (exclusive), and step, the last of
which represents an increment or decrement in the sequence. All
arguments are integers, and step cannot be zero.

② If the step is omitted, its default value is 1.

③ In this case, start/step use default values, 0/1, respectively.

For example, let’s try adding even integers from 0 to 100, using the for
statement:

11.3. The for - in - else Statement

90

>>> _sum = 0
>>> for i in range(0, 100+1, 2):
... _sum += i
...
>>> print(f"Sum of even numbers from 0 to 100 is {_sum}")
Sum of even numbers from 0 to 100 is 2550

There is, in fact, a builtin sum function which adds all elements in a
given sequence.

>>> sum(range(0, 101, 2))
2550

11.3.2. The enumerate function

The above two use cases, e.g., iterating over items in an arbitrary
sequence and iterating over an integer sequence, can be more or less
combined with the builtin enumerate function.

The enumerate function takes an iterable as an argument and
returns an iterable of indexed pairs of the original sequence. That is,
given [item1, item2, item3], it returns an iterable of three
elements, (0, item1), (1, item2), and (2, item3). The enumerate
function is not as flexible as range, but it takes an optional second
argument start. Otherwise, the index is 0-based, by default.

Here’s an example:

>>> name = "python" ①
>>> for i, v in enumerate(name, 3): ②
... print(i, v, end = ', ')
... else: ③
... print()
...

11.3. The for - in - else Statement

91

3 p, 4 y, 5 t, 6 h, 7 o, 8 n, ④
>>>

① A string is an immutable sequence type, which is an iterable.

② We use the unpacking syntax to assign the index and value, from
each iteration of the enumerate() function call, to two separate
variables, (i, v).

③ The else clause is always executed at the end of the loop unless the
loop is abnormally terminated, e.g., by break statement, etc. In this
example, we add a new line, at the end of the loop.

④ Otherwise, this line would not have ended with a new line.

11.4. The try Statement
As of Python 3.11+, Python’s exception framework has been extended to
allow programs to raise and handle multiple unrelated exceptions
simultaneously. First, a new standard exception type, the
ExceptionGroup, which represents a group of unrelated exceptions
have been introduced. Second, a new syntax except* has been added
for handling ExceptionGroups.

The classic try - except compound statement has the following
general syntax:

try:
 <suite>
except <except_expression>: ①
 <suite>
except <except_expression> as <name>: ②
 <suite>
except: ③
 <suite>
else: ④
 <suite>

11.4. The try Statement

92

finally: ⑤
 <suite>

① An expression that evaluates to an Exception or ExceptionGroup
type. The ExceptionGroup types were introduced in Python 3.11.

② A try statement can have zero, one, or more except clauses.

③ The "catch all" clause.

④ An optional else clause.

⑤ An optional finally clause. Note that, when there is no except
clause, finally is required.

Since Python 3.11+, the try clause can be followed by one or more
except* clauses instead of except.

try:
 <suite>
except* <exception_group>: ①
 <suite>
except* <exception_group> as <name>: ②
 <suite>
except* (<ex1>, <ex2>) as <name>: ③
 <suite>
else:
 <suite>
finally:
 <suite>

① An expression that evaluates to an Exception or ExceptionGroup.

② A try statement can have one or more except* clauses. Note that,
unlike except, except* cannot be used as a "catch all" clause. That
is, the exception/exception group expression is always required.

③ A quick shorthand way to create an "exception group" from the
existing exception types.

11.4. The try Statement

93

The except clauses specify exception handlers for specific
BaseException or BaseExceptionGroup types. On the other hand, the
except* clauses specify exception handlers for a set of BaseException
types contained in a BaseExceptionGroup type. except/except*,
else, finally are all optional, but at least one of except/except* or
finally is required. Note that except and except* cannot be mixed
in one try statement.

When no exception occurs in the try clause, no exception handler is
executed.

When an exception occurs in the try suite, a search for an exception
handler is started. In case of the except clauses, this search inspects
the except clauses, and evaluates the expressions, in order, from top to
bottom, until one is found that matches the exception. An expression-
less except clause, which matches any exception, must be last, if
present.

In case of the except* clauses, the clause matches the exception if the
exception or any of the exceptions in the exception group is the same or
or a base type of the given exception. Unlike in the case of except
clauses, more than one except* clauses can match the
exception/exception group. Hence, control flow statements like break
are not allowed in except* clauses.

If no except clause matches the exception, or if except* clauses do not
fully handle all exceptions in the exception group, the search for a
handler(s) for the exception, or the remaining unhandled exceptions,
continues in the surrounding code and on the invocation stack.

When a matching except clause is found, the exception is assigned to
the target specified after the as keyword in that except clause, if
present, and the except clause’s suite is executed. All except clauses
must have an executable block. When the end of this block is reached,
execution continues normally after the entire try statement. (This

11.4. The try Statement

94

means that if two nested handlers exist for the same exception, and the
exception occurs in the try clause of the inner handler, the outer
handler will not handle the exception.)

The optional else clause is executed if the control flow leaves the try
suite, no exception was raised, and no return, continue, or break
statement was executed. Exceptions in the else clause are not handled
by the preceding except clauses.

If finally is present, it specifies a 'cleanup' handler. The try clause is
executed, including any except and !else clauses. If an exception
occurs in any of the clauses and is not handled, the exception is
temporarily saved. The !finally clause is executed. If there is a saved
exception it is re-raised at the end of the !finally clause. If the
!finally clause raises another exception, the saved exception is set as
the context of the new exception. If the !finally clause executes a
return, break or continue statement, the saved exception is
discarded.

The exception information is not available to the program during
execution of the finally clause.

When a return, break or continue statement is executed in the try
suite of a try…finally statement, the finally clause is also executed
'on the way out.'

The return value of a function is determined by the last return
statement executed. Since the finally clause always executes, a
!return statement executed in the !finally clause will always be the
last one executed.

An exception can be "re-raised". For example,

>>> try:
... sum = 100 + unknown_name
... except:

11.4. The try Statement

95

... raise

...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
NameError: name 'unknown_name' is not defined
>>> ①

① The Python REPL handles the error, and it does not crash. It waits
for the next user command.

In the context where an active Exception is present, the raise
statement re-raises the current exception/error. This example code is
more or less equivalent to the following, which explicitly raises the
current exception.

>>> try:
... sum = 100 + unknown_name
... except NameError as ex:
... raise ex
...
Traceback (most recent call last):
 File "<stdin>", line 4, in <module>
 File "<stdin>", line 2, in <module>
NameError: name 'unknown_name' is not defined

11.5. The with Statement
The with compound statement is used to wrap the execution of a group
of statements with methods defined by a context manager. For
example, it can be used to encapsulate the common try…except…
finally usage patterns. It has the following syntax:

with Expression as Target: ①
 Suite

11.5. The with Statement

96

① The as clause is optional.

The Expression must evaluate to a context manager type, which
supports __enter__ and __exit__ methods. The execution of the with
statement proceeds as follows:

• The context Expression is evaluated to obtain a context manager.

• The context manager’s __enter__ is loaded first.

• The context manager’s __exit__ is loaded next.

• The __enter__ method is invoked.

• The return value from __enter__ is assigned to Target, if
specified.

• The statements in the Suite is executed.

• Finally, the __exit__ method is invoked.

For example,

>>> import pathlib
>>> path = pathlib.Path("hello.py")
>>> with (c := path.open("w")) as file: ①
... file.write("print('Hello World!')") ②
... ③
21
>>> type(c) ④
<class '_io.TextIOWrapper'>
>>> dir(c) ⑤
['_CHUNK_SIZE', '__class__', '__del__', '__delattr__',
'__dict__', '__dir__', '__doc__', '__enter__', '__eq__',
'__exit__', ...]

① The path.open function returns a context manager. Its __enter__
method returns a file object, if successful. For illustration only, we
assign the context manager to a variable c using the walrus

11.5. The with Statement

97

operator. (The context managers cannot generally be "reused".)

② All statements included in the with statement suite are executed,
e.g., until it encounters an error, if any.

③ Before terminating the with statement, regardless of the error
conditions, the context manager’s __exit__ is guaranteed to be
called. Normally, the "cleanup code" is implemented in the
__exit__ method. In the case of the file operations,
file.close() is called if file has been (successfully) opened,
among other things.

④ An internal type, _io.TextIOWrapper, is a class manager.

⑤ This object includes __enter__ and __exit__ methods, as
expected.

The with header can include more than one expression-target item.
With more than one expression-target pair, the context managers are
processed as if multiple with statements were nested, from left to right.

For example,

>>> with open("a.txt") as f1, open("b.txt") as f2:
... print(f1.read())
... print(f2.read())
...

This statement is equivalent to the following:

>>> with open("a.txt") as f1:
... with open("b.txt") as f2:
... print(f1.read())
... print(f2.read())
...

11.5. The with Statement

98

Chapter 12. Pattern Matching
Python’s match - case statements, which was first introduced in 3.10,
can now be used where complex if - elif - else statements may
have been required. Pattern matching is essentially a generalization of
the comparison expressions, which yield Boolean values.

12.1. The match - case Statement
The match statement has the following general syntax:

match SubjectExpression:
 CaseBlock
 ...
 CaseBlock

Unlike other compound statements, the match statement cannot be
written in one physical line. That is, a newline is always needed after
the colon. The SubjectExpression can be either a named expression or
one or more star named expressions (comma separated). When an
expression list is used, it is evaluated to a tuple first before the match
process starts.

At least one CaseBlock is required. That is, for instance, we cannot just
use a placeholder like the pass statement in the body of the match
statement. Each CaseBlock has the following forms:

case Pattern:
 Suite

Or

12.1. The match - case Statement

99

case Pattern Guard:
 Suite

We go through all different pattern categories in the next section that
are currently supported in Python. Guard is an optional Boolean
condition. If included, the case clause matches only if the pattern
matches and the condition is also satisfied.

In the simplest usage, the match statement can be used more or less like
the traditional switch statement in C. For instance,

>>> color = Color.BLUE
>>> match color:
... case Color.RED:
... print("Color red detected")
... case Color.BLUE:
... print("Blue wins!")
... case _:
... print("We don't care about other colors :)")
...
Blue wins!

The case clauses do not require break statements, unlike in C’s switch
- case statement. They do not "fall through".

In this example, the first case does not match since color !=
Color.RED. Then the match statement matches the next case because
color == Color.BLUE, and hence the statement(s) in the matched
case is executed.

The wildcard expression _ is used for "catch all". That is, the case _
clause is more or less equivalent to the default case in the C-style switch
statement. If there is no matching case, then the match statement
terminates without executing any suites. If the catch-all case case _ is

12.1. The match - case Statement

100

specified, then the statements within this default case are executed.

12.2. Patterns

12.2.1. The wildcard pattern

As indicated at the end of the previous section, the special pattern _
matches any subject expression. This is the simplest pattern, and
because it matches any expression, it can only be used in the last case
clause in the match statement unless a guard is used.

>>> match 5:
... case _:
... print("I always match!")
...
I always match!

12.2.2. Literal patterns

Matching literal patterns is effectively equivalent to comparison
operations between the subject expression and the literal patterns.
Most of the constant literal expressions are supported, including
Booleans, integer and float numbers, and strings. Complex numbers
(which are not constant literals) also belong to this category.

For example,

>>> arr = (False, 30, 0.5 + 2j, """hello""", None)
... for val in arr:
... match val:
... case False: ①
... print(f"{val} matched False")
... case 30: ②
... print(f"{val} matched 30")

12.2. Patterns

101

... case 0.5 + 2j: ③

... print(f"{val} matched 0.5 + 2j")

... case "hello": ④

... print(f"{val} matched 'hello'")

... case _: ⑤

... print("Matched none")

...
False matched False
30 matched 30
(0.5+2j) matched 0.5 + 2j
hello matched 'hello'
Matched none

① This case matches if val is False.

② This case matches if val == 30

③ This case matches if val == 0.5 + 2j

④ This case matches if val == "hello"

⑤ The catch-all pattern. Note that the literal None in the tuple arr
would have matched a case if the case expression was None.

12.2.3. Value patterns

Another class of patterns are names/variables that refer to values,
including objects' attributes. For example,

>>> class X: pass
...
>>> x = X()
>>> x.A, x.B = 5, 50 ①
>>> match 1 + 4: ②
... case x.A: ③
... print("Matched x.A")
... case x.B:
... print("Matched x.B")
...

12.2. Patterns

102

Matched x.A

① The object x now has two (additional) attributes A and B with values
5 and 50, respectively.

② The subject expression evaluates to 5.

③ This case matches since x.A == 5.

12.2.4. Group patterns

A pattern enclosed in parentheses is also a pattern, in fact, the same
pattern. For instance,

>>> match True:
... case (True):
... print("True is true no matter what")
...
True is true no matter what

12.2.5. Capture patterns

A capture pattern comprises a name. When a match occurs, it binds the
subject value to the specified name. For instance,

>>> match 1 + 2:
... case _sum: ①
... print(f"sum is {_sum}.")
...
sum is 3.

① The capture pattern always succeeds. The name _sum is bound to the
value of the subject expression, 3.

The name cannot be an underscore _, and the capture pattern always

12.2. Patterns

103

matches the subject expression. Capture patterns can be used as part of
other patterns such as the OR patterns or sequence patterns.

12.2.6. OR patterns

We can use the vertical bars | to include alternative patterns in one
case. For example,

>>> today = "Saturday"
>>> match today.lower():
... case "saturday" | "sunday": ①
... print("It is a weekend!")
... case _:
... print("Just a weekday.")
...
It is a weekend!

① This case matches if the subject expression is equal to either one of
the alternative patterns. In this example, today.lower() ==
"saturday", hence this case ends up matching. The patterns in the
OR pattern is tested from left to right.

12.2.7. AS patterns

The matched expression of the OR pattern can be given a name using
the as keyword. For example,

>>> import random
>>> match random.randint(0, 3):
... case 0 | 2 as e:
... print(f"Got {e}. We are even now.")
... case 1 | 3 as o:
... print(f"Got {o}. That is odd!")
...
Got 1. That is odd!

12.2. Patterns

104

12.2.8. Sequence patterns

The sequence patterns match structures and values of a sequence
expression, e.g., tuples, lists, and strings.

A sequence pattern uses either parentheses () or square brackets [],
and it includes one or more subpatterns, separated by commas, each to
be matched against an element or elements of the subject expression.
When only one subpattern is used in parentheses, a trailing comma is
required. Otherwise, it is considered a group pattern.

A subpattern can belong to any one of the pattern categories. In
addition, at most one "star pattern" can be used, using an asterisk *
followed by a capture pattern or a wildcard pattern. The star pattern
matches the "remaining elements". If there is no star subpattern, all
elements in a pattern must match the corresponding elements in the
subject sequence. (Hence, their lengths should be the same to match.)

Here’s a recursive implementation of the builtin len function, using
pattern matching:

>>> def seq_length(seq):
... match seq:
... case []: ①
... return 0
... case [_, *y]: ②
... return 1 + seq_length(y)
...

① This is a fixed length pattern. It matches a sequence with zero
elements.

② This is a variable length pattern, with two subpatterns, a wildcard
pattern for the first element and the star capture pattern for the rest.
This case will match any sequence with at least one element. We
ignore the specific value of the first element, in this example, and

12.2. Patterns

105

use the rest, a subsequence, to call the function recursively. Note
that the length of a one-element sequence is 1.

Here’s another example.

>>> for p in [(0, 0), (0, 2), (3, 3), (2, 4)]:
... match p: ①
... case (0, 0): ②
... print("I'm the origin!")
... case (x, 0): ③
... print(f"I'm on the x-axis, x = {x}")
... case (0, y): ④
... print(f"I'm on the y-axis, y = {y}")
... case (x, y) if x == y or x == -y: ⑤
... print(f"I'm on a diagonal, ({x}, {y})")
... case (x, y): ⑥
... print(f"I'm just a random point. ;(")
...
I'm the origin!
I'm on the y-axis, y = 2
I'm on a diagonal, (3, 3)
I'm just a random point. ;(

① In this example, the subject expression is a tuple.

② This pattern matches the tuple with specified elements, 0 and 0.
Note that the pattern need not use parentheses (just because the
subject expression is a tuple in this example). Parentheses and
square brackets are interchangeable, except for the one-element
sequence pattern, as we alluded above.

③ This pattern comprises a capture subpattern and a literal pattern.
This will match any two-element tuple with its second element 0,
and x will be bound to the first element of the tuple.

④ Similarly, this fixed-length pattern comprises a literal pattern for the
first element and a capture subpattern for the second element. This
will match any two-element tuple with the form (0, y), and y will

12.2. Patterns

106

be bound to the second element of the tuple.

⑤ The pattern (x, y) will match any two-element sequence since
both subpatterns are capture patterns. This particular case includes
a guard conditional expression. Besides matching the pattern, the
guard expression must evaluate to True. Otherwise, the pattern as a
whole is considered not a match. Note that we can use the captured
names in the guard expression.

⑥ Since we do not use the captured name in this example, this pattern
is equivalent to the catch-all wildcard pattern for all valid two-
element sequences. The wildcard pattern _, if included as the last
case, would have caught all expressions which are not a two-
element sequence.

12.2.9. Mapping patterns

The mapping types can be used as patterns as well. It works in a similar
manner to the sequence pattern, except that the subject expression is a
mapping, e.g., a dictionary, and the subpatterns involve keys and values
of the mapping elements.

For example,

>>> m = {"k1": 1, "k2": 2, "k3": 3}
>>> match m:
... case {"k1": 1, "k2": 2}:
... print("Exactly matched the 'k1' and 'k2'
elements.")
... case {"k1": v1, "k2": v2}:
... print(f"For key 'k1', the value is {v1}, for 'k2',
the value is {v2}.")
... case {"k1": 1}:
... print("Exactly matched the 'k1' element.")
... case {"k1": v1}:
... print(f"For key 'k1', the value is {v1}.")
... case {}:

12.2. Patterns

107

... print("An empty mapping pattern matches all
objects of a mapping type.")
...
Exactly matched the 'k1' and 'k2' elements.

In this example, every case is "matchable" to the given subject
expression, a dictionary m. Hence, the first case ends up matching, and
the match statement terminates. The mapping pattern also supports a "
double star subpattern", for "the rest" of the elements in a mapping
expression. For example, {"k1": v1, **rest}.

The sequence and mapping patterns can be nested.

12.2.10. Class patterns

The class patterns are another category of patterns that Python’s match
statement supports. A class pattern represents a class and its positional
and keyword arguments. The keyword argument uses the equal sign =
instead of the colon :, which is used in the mapping pattern.

Here’s an example,

>>> class A:
... def __init__(self):
... self.x, self.y = 1, 2
...
>>> a = A()
>>> match a:
... case A(x = 1, y = 2):
... print("Exactly matched the attributes 'x' and
'y'.")
... case A(y = 2):
... print("Matched 'y'. The value of 'x' is ignored.")
... case A(x = u):
... print(f"As long as 'a' is of type A, it always
matches. The captured value of 'x' is {u}.")

12.2. Patterns

108

... case A():

... print("Ditto. But, we ignore both values. In this
case, the parentheses is optional.")
...
Exactly matched the attributes x and y.

The patterns of the four cases, in this example, are again all compatible
with the subject expression, an object a. Hence, it matches the first case,
and the match statement terminates. The positional argument patterns,
e.g., A(1) or A(u, v), etc., can be used as well when the type’s
constructor function has positional parameters.

If any positional patterns are present in the case clauses, they are
converted to keyword patterns first, using the __match_args__
attribute of the class.

This attribute must be a tuple type of string elements. Furthermore, the
length of the tuple must be equal to, or bigger than, the number of the
positional arguments. Each positional argument is then converted to
the keyword using the __match_args__ tuple, by mapping the index of
the argument to the corresponding tuple element. All keywords
mapped this way must be unique.

If this mapping succeeds, the resulting keywords are used for pattern
matching using the keyword patterns. For instance, the class A in the
above example has the following __match_args__ attribute:

>>> A.__match_args__
('x', 'y')

Hence, the positional patterns, A(1) and A(u, v), for instance, are
translated to the keyword patterns, A(x = 1) and A(x = u, y = v),
respectively.

12.2. Patterns

109

Chapter 13. Functions

13.1. Function Definition
A function definition is a compound statement that defines a new
function.

• A def function definition defines a user-defined function.

• When a function definition statement is executed, it creates a
function object and it binds the function name in the current local
namespace to the function object.

• The function definition does not execute the function body. It gets
executed every time the function object is called.

• If the first statement in the function body is a constant string literal
expression, then the literal is used as the value of the function
object’s __doc__ attribute. Hence, it becomes the function’s
docstring.

For example, the following statement, when executed, creates a
function object named add which takes two arguments, p1 and p2, and
returns one value.

>>> def add(p1, p2): ①
... "Adds p1 and p2" ②
... return p1 + p2 ③
...
>>> add.__doc__ ④
'Adds p1 and p2'
>>> add(1, 2) ⑤
3

① The add function takes two arguments. Note that there is no way to
specify the return values in Python. See below.

13.1. Function Definition

110

② A docstring. Note that an f-string expression does not work as a
docstring.

③ We can only infer the complete function signature by reading the
function implementation.

④ The docstring is stored in the function object’s __doc__ attribute.

⑤ Calling this function with 1 and 2. It returns 3.

13.2. Function Parameters
A function can be defined with zero, one, or more parameters. There
are three kinds of function parameters in Python.

Positional only parameters

For this type of parameters, when the function is called, the
corresponding arguments need to be provided in the exactly the
same positions as they are defined in the parameter list (e.g., as in
C/C++ and some other C-style languages). In order to define
positional only parameters, we use a separator / (forward slash).
Any parameter preceding this optional separator is positional-only.

Keyword only parameters

For this type of parameters, they do not have the fixed positions in
the parameter list, and the corresponding arguments need to be
provided using the parameter=value syntax (known as the "
keyword arguments"). To define keyword only parameters, we use a
separator * (asterisk). (Or, the varargs arguments are also used as a
separator for this purpose. See below.) The parameters following this
optional separator, if any, are keyword-only.

Positional or keyword parameters

By default, for all other parameters, they have fixed positions and
they can be used either with the positional argument syntax (in the
corresponding positions) or with the keyword argument syntax.

13.2. Function Parameters

111

Here are examples:

def fa(p2): pass ①
def fb(p1, /, p2): pass ②
def fc(p2, *, p3): pass ③
def fd(p1, /, p2, *, p3): pass ④

① p2 is a "normal" function parameter. It can be used either as a
positional argument (fa(v2)) or keyword argument (fa(p2 = v2)).

② In this example, p1 is a positional-only parameter.

③ For function fc, p3 can be only used as a keyword arguments.

④ p1 and p2, but not p3, can be used as positional arguments. p2 and
p3, but not p1, can be used as keyword arguments.

13.3. Optional Parameters
The function parameters can have default values, in the form of
parameter = expression. Those parameters are said to be optional.
In a function call, if no argument value is explicitly provided for an
optional parameter, its default value is used.

• Any keyword-only parameter can be made optional.

• Only a consecutive list of last one or more positional parameters
(positional-only or otherwise), before *, if present, can be also made
optional.

• The default parameter values are evaluated only once, from left to
right, when the function definition is executed. The same objects are
then used for any subsequent function calls. When the default value
objects are mutable, this can lead to an unexpected result since the
default values can be effectively different across different function
calls.

13.3. Optional Parameters

112

For example,

>>> def f(arr = []): ①
... arr.append(1)
... return list(arr)
...
>>> f(), f(), f() ②
([1], [1, 1], [1, 1, 1])

① In this example, the default value of arr is set to [], a list object,
which is mutable.

② The expressions in an expression list are evaluated from left to right.
Each call f() leads to a different result.

Every time we call the same function f, relying on the default value of
the optional parameter arr, it behaves differently. One way around this
is to set the real default value within the function. For instance,

>>> def f(arr = None): ①
... if arr == None: ②
... arr = []
... arr.append(1)
... return list(arr)
...
>>> f(), f(), f() ③
([1], [1], [1])

① This is idiomatic. When the same default value is required for a
mutable parameter across multiple function calls, which is generally
the case, we set the default value to None.

② Then, in the function body, if the argument value is None, then we
set the argument with the real default value, [] in this example.

③ Each function call f() now returns the same result.

13.3. Optional Parameters

113

13.4. "Varargs" Functions
An optional (at most one) positional varargs parameter can be included
in a function definition as the last parameter before the keyword-only
parameters, if any. Syntactically, this parameter name is preceded by *.
When a varargs argument is present, the keyword-only parameter
separator * is not needed.

When this function is called, all arguments before this varargs
argument should be specified and they should use the positional syntax.
A tuple including any excess positional arguments (which could be
empty) is assigned to the positional varargs argument.

For example,

def f(
 a, ①
 *args, ②
 b): ③
 print(a, args, b)

① Either positional argument or keyword argument syntax can be
used for a. But, when the varargs argument is used in a function call,
all preceding arguments, including a in this example, should use the
positional syntax.

② A (positional) varargs argument. Although it is not required, it is
conventional to use the name args for the varargs argument in
Python.

③ b is a keyword-only parameter since it is preceded by the varargs
parameter.

This function f can be called in a number of different ways. For
instance,

13.4. "Varargs" Functions

114

f(1, b = "baby") ①
f(b = "boy", a = 5) ②
f(10, 20, 30, b = "girl") ③

① The value of a is 1 in the function body. This function call will print
out 1 () baby, including an empty tuple for *args.

② This function call will print out 5 () boy.

③ This will print out 10 (20, 30) girl.

We can also include (at most one) keyword varargs parameter in the
function parameter list. Its name should be preceded by **, and it can
be used only as the last parameter, either after * or *args and other
keyword-only parameters, if any.

Any excess keyword arguments that are not explicitly specified in a
function call is included in the keyword-only varargs argument, as an
ordered map.

For example, for a function defined as follows,

def f(
 a, ①
 /, *,
 b = "rice", ②
 **kwargs): ③
 print(a, b, kwargs)

① a is a positional-only parameter.

② b is a keyword-only parameter, with a default value "rice", in this
example.

③ kwargs is a keyword varargs parameter, as indicated by the prefix
**. It is conventional to use the name kwargs, e.g., **kwargs, for
this kind of keyword-based varargs parameters in Python.

13.4. "Varargs" Functions

115

f(1) ①
f(5, b = "wheat") ②
f(10, c = "oats", d = "hops") ③

① The output will be 1 rice {}, including an empty dict for
**kwargs.

② The output will be 5 wheat {}.

③ This function call will print out 10 rice {'c': 'oats', 'd':
'hops'}.

The more flexible varargs functions tend to include both *args and
**kwargs, often placed together at the end of the parameter list (e.g.,
with no additional keyword-only parameters).

13.5. Function Call

13.5.1. Calls

A function call is an expression. A call expression (with parentheses)
calls any callable object, not just a function, with zero, one, or more
(positional and/or keyword) arguments. Arguments are separated by
commas. A trailing comma may optionally be added if at least one
argument is included.

13.5.2. Callable

All objects having a __call__ method are callable. The following
objects are also callable:

• Built-in and user-defined functions,

• Methods of built-in objects,

• Class objects, and

13.5. Function Call

116

• Methods of instance objects of a class.

For example,

>>> class X: pass ①
...
>>> x = X() ②
>>> callable(X), callable(x) ③
(True, False)
>>> x() ④
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'X' object is not callable
>>> X.__call__ = lambda self: 42 ⑤
>>> callable(x) ⑥
True
>>> dir(x) ⑦
['__call__', ...]
>>> x() ⑧
42

① A new type X is created with a class statement.

② X is a class object, and hence it is callable. It returns an instance
object of type X, that is, x in this example.

③ The builtin callable() function can be used to check if an object is
callable. x is not callable.

④ Trying to call a non-callable object, with the parenthesis call syntax,
will raise a TypeError exception.

⑤ One can define the __call__ method in its type, X. Lambda
expressions are discussed in a later section, Lambda. Note that this
particular Lambda function takes one argument named self. This is
required since __call__ is a method.

⑥ Now that its type X has a __call__ method defined, x is callable.

13.5. Function Call

117

⑦ As we can easily verify, x now has a __call__ method attribute,
inherited from X.

⑧ Calling x() now calls the X.__call__ dunder method, which
happens to simply return 42 in this example.

13.5.3. Positional vs keyword arguments

As we have seen earlier, function parameters can be defined to be
positional-only, positional-or-keyword, or keyword-only, in this order,
separated by / and *, if needed.

When we call a function, or any callable, we can provide positional
arguments to positional-only and positional-or-keyword parameters,
and keyword arguments to positional-or-keyword and keyword-only
parameters.

In addition,

• All positional arguments should come before all keyword
arguments, if any.

• Each of the positional arguments should be placed in the position of
the corresponding positional parameters.

• Valid arguments should be provided for all non-optional
parameters, positional or keyword.

Some examples were given earlier, in the Function Definition section.

13.6. Lambda Expressions
A Lambda expression evaluates to an anonymous function object.
Here’s the general syntax:

lambda <parameters>: <expression>

13.6. Lambda Expressions

118

The above form is more or less equivalent to a (named) function object
defined with:

def <name>(<parameters>):
 return <expression>

Note that

• Function objects created with lambda expressions can be called "in
place", and

• The Lambda expressions cannot contain statements or annotations.

For example,

>>> (lambda x: x + 1)(10) ①
11
>>> a = [1, 2, 3]
>>> list(map(lambda x: x * 2, a)) ②
[2, 4, 6]

① A Lambda expression can be assigned to a variable, or it can be
called at the point of definition, as shown in this example.

② Lambda expressions are often used as one-time use function-type
arguments to higher-order functions (HOFs), for instance. In this
example, map is a builtin function that accepts a function object as
its first argument.

13.7. map, filter, and reduce
Although we do not go through all builtin functions in this mini
reference, let’s review the builtin map and filter functions as well as
the reduce function from the functools module. They are generally
called the high-order functions (HOFs) because they take as arguments,

13.7. map, filter, and reduce

119

and/or return, functions.

The map, filter, and reduce functions, possibly with different names,
are a few of the most commonly used high-order functions across
different programming languages, functional or imperative.

It is a rather common practice to use anonymous functions, i.e., Lambda
expressions, for their function arguments for these HOF functions since
the function arguments are often used only once.

13.7.1. The map function

The builtin map function takes arguments of function and iterable types,
and it applies the function to each element in the given iterable. For
example,

>>> list(map(lambda x: x**2, [1, 2, 3])) ①
[1, 4, 9]

① The map function returns a map object. (That is, map is a constructor.)
We use the list constructor to convert the returned map to a list.

13.7.2. The filter function

The builtin filter function likewise takes a function and an iterable,
and it returns a filtered list based on the given function. For example,

>>> list(filter(①
... lambda x: True if x%2==0 else False, ②
... [1, 2, 3, 4]))
[2, 4]

① The same with filter. It is a constructor function.

② It applies the function to each element in the given iterable, and if its

13.7. map, filter, and reduce

120

Boolean value is True (e.g., 3, 'hello', etc.), it is included in the
result. Otherwise (e.g., None, [], etc.), it is filtered out.

13.7.3. The functools.reduce function

The reduce function of the functools module works in a similar
manner, but it applies the given function cumulatively to all elements in
the given iterable. Here’s an example:

>>> from functools import reduce
>>> reduce(lambda s, a: s + a, [1, 2, 4], 0) ①
7

① The third argument is optional, and if it is provided, it is used as the
first item in the "reduction" operation. In this example, the reduce
function applies the given lambda function iteratively for each
element in the list [1, 2, 4]. That is, it computes, 0 + 1 (which is
1), 1 + 2 (which is 3), 3 + 4, which is 7, the final result.

13.8. Function Decorators
A decorator is a function, or more generally a callable, that takes a
function/callable and returns a function/callable of the same type.
Syntactically, a decorator is used with a target function definition, as a
prefix, and it transforms the target function and returns the
transformed function. In other words, the function decorator becomes
effectively a part of the target function definition.

Here’s the general syntax:

@decorator_function
def another_function(args):
 pass

13.8. Function Decorators

121

This is semantically equivalent to the following:

def another_function(args):
 pass

another_function = decorator_function(another_function)

The decorator_function is a function:

def decorator_function(f1):
 # transform f1 to f2,
 # or otherwise create f2 based on f1.
 return f2

The key to using decorators, besides the syntactic convenience, is

• The decorator_function function provides common functionalities
across multiple different functions, and

• These decorated functions, such as another_function, will always
be used as decorated/transformed in the program.

13.8.1. Built-in decorators

The @property decorator

A "property" in Python is an abstract construct that behaves like a data
attribute of an object, e.g., with a getter, setter, and deleter, and a
docstring, etc.

A property can be created using the property constructor function.
Alternatively, the @property decorator can be used to easily define
new properties, or modify existing ones, in a class definition. For
example,

13.8. Function Decorators

122

>>> class X:
... def __init__(self):
... self._a = 10
... @property ①
... def a(self):
... "I am the 'a' property." ②
... return f"Magical {self._a}"
... @a.setter ③
... def a(self, value):
... self._a = value
... @a.deleter ④
... def a(self):
... print("Urghhh, I am being deleted...")
... del self._a
...

① This creates a property named a. The decorated method is used as a
"getter" for the property a.

② This method’s docstring is used as that of the property a.

③ This sets the decorated method the setter of a. That is, a can now be
used on the left-hand side of an assignment statement or assignment
expression.

④ When the del statement is used on the property a, the decorated
method is called.

Let’s try using an object of type X:

>>> x = X()
>>> help(X.a) ①
Help on property:

 I am the 'a' property.
(END)
>>> x.a ②
'Magical 10'

13.8. Function Decorators

123

>>> x.a = 100 ③
>>> x.a
'Magical 100'
>>> del x.a ④
Urghhh, I am being deleted...
>>> x.a ⑤
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 7, in a
AttributeError: 'X' object has no attribute '_a'. Did you
mean: 'a'?

① X has a property a, and its docstring is used in the builtin help
function.

② This expression invokes the a(self) method decorated with
@property.

③ This assignment statement uses the a(self, value) method
decorated with @a.setter.

④ This del statement invokes the a(self) method decorated with
@a.deleter.

⑤ The property, or a virtual data attribute, a, no longer exists at this
point.

The @staticmethod decorator

A "static method" of a class in Python is similar to those in other OOP
languages like C++, Java, and C#. It is essentially an independent
function although it is defined in a class definition.

Syntactically, static methods can be called on the class or on an
instance, but they do not receive an implicit first argument, e.g., self.

The @staticmethod decorator converts a function within a class
definition to be a static method. For example,

13.8. Function Decorators

124

>>> class Y:
... @staticmethod ①
... def f1():
... print("I am a static method")
...
>>> Y.f1() ②
I am a static method
>>> y = Y()
>>> y.f1() ③
I am a static method

① This decorator makes the decorated method a static method.

② The static method, syntactically, can be called on the class object.

③ Or, on the instance object. Without the @staticmethod decorator, a
general function defined in a class definition cannot use the method
call syntax on an instance object.

The @classmethod decorator

A "class method" of a class in Python is a method defined on a class
object, not on an instance. Normal methods receive the instance object
as an implicit first argument. In contrast, a class method receives the
class object as the implicit first argument.

Syntactically, class methods can be called on the class or instance, just
like static methods, but they receive the class as its first argument (even
when they are called on an instance object). If a class method is called
for a derived class, the derived class object is passed as the implied first
argument.

The @classmethod decorator converts a function to be a class method.
For example,

>>> class Z:

13.8. Function Decorators

125

... @classmethod ①

... def f2(cls):

... print(f"Class method: {cls.__name__}")

...
>>> Z.f2() ②
Class method: Z
>>> z = Z()
>>> z.f2() ③
Class method: Z
>>> class Z2(Z): pass
...
>>> Z2.f2() ④
Class method: Z2

① The @classmethod decorator makes the decorated method a class
method.

② Without the decoration, this would have been a type error.

③ By default, methods defined in a class is an instance method, which
takes the instance object as the implicit first argument. For class
methods, the implicit first argument is the class object.

④ The implicit class object argument is now the subclass Z2.

13.8. Function Decorators

126

Chapter 14. Classes

14.1. Class Definition
A class definition is a compound statement that defines a callable
class object. When executed, it executes the statements in the class
suite, and it creates an object of the type type in memory as specified
by the class definition.

The general syntax is as follows:

class MyType(BaseType1, BaseType2):
 Suite

The keyword class starts the statement, followed by the new class
name (e.g, MyType in this example) and an optional list of one or more
base classes in the parentheses (e.g., BaseType1, BaseType2, etc.).
Python supports "multiple inheritance".

When no base class list is specified, the class inherits from the ultimate
base class object. In such a case, the parentheses after the class name
can be omitted. That is,

class Orange:
 pass

This definition is equivalent to the following:

class Orange(object):
 pass

• A class definition creates a local namespace, nested within the

14.1. Class Definition

127

global namespace, and the statements in the class’s suite are
executed in the newly created execution frame.

• A class object is then created, inherited from the base classes as
(explicitly or implicitly) specified in the base class list, and using the
newly created local namespace for the class’s __dict__ attribute.

• The class name, as defined in the class definition statement, is then
bound to this class object in the original local namespace (which
can be the global namespace).

14.2. Classes and Instances
Python’s class is just an object (with some special features). But, in
Python programming, it plays the role of classes in other "class-based"
object oriented programming (OOP) languages. If nothing else, using
classes can help create more modular and more structured Python
programs, whose components can be more easily reusable, etc. In many
problem domains, thinking in terms of "classes" and "objects" (in the
sense of the OOP) can be rather natural and intuitive.

Just like function definitions, a class definition includes a series of
statements. Most class definitions primarily include the definitions of
variables (e.g., "class variables") and functions (e.g., "static methods", "
class methods", and "instance methods").

When a class definition is read/executed by the Python interpreter,
these statements are executed. For example,

>>> class X(object):
... if True:
... print(True)
... else:
... print(False)
...

14.2. Classes and Instances

128

True ①

① This is the output of the if statement. Unlike the function
definitions, Python executes all statements in the class definition
scope while creating a class object.

A class definition is somewhat similar to a "module". These class suite
statements are only executed for the first time when the class
statement is executed (e.g., when the Python interpreter reads the
statement). When we use the "class object" (e.g., to create an instance
object of that class), these statements are not executed. For instance,

>>> x = X() ①
>>> ②

① We "call" the class object to create an instance of that class. The
"function" X() for class X used this way is a constructor function.

② The statements in the class definition is not executed.

14.2.1. Class objects

Python’s class statement creates a class object in memory (just like the
def statement creates a function object). A class object supports the "
attribute references" syntax, e.g., through the dot notation, just like any
other Python objects.

>>> class SoSimple:
... one_name = "simple"
...
>>> type(SoSimple) ①
<class 'type'>
>>> SoSimple.one_name ②
'simple'
>>> SoSimple.one_number = 666 ③
>>> SoSimple.one_number

14.2. Classes and Instances

129

666
>>> dir(SoSimple) ④
['__class__', ... '__weakref__', 'one_name', 'one_number']

① The type of a class object is type.

② The attribute included in the class definition.

③ We can add any additional attributes to a class object, just like any
other objects.

④ Note that a class object comes with a number of predefined
attributes, all of which start and end with double underscores (__),
aka "dunder".

This type of attributes of a class correspond to the static variables (or,
static fields) and the static methods in other OOP programming
languages.

14.2.2. Class variables

A class object (e.g., defined by the class statement) plays two roles,
among others. First, as we have seen before, it is the constructor for the
instance objects of the given class/type. Second, it holds the common
variables across all instances of the class. In fact, the class variables are
shared by all instance objects, as we just mentioned.

>>> class Car:
... brand = "GM" ①
...
>>> car1, car2 = Car(), Car()
>>> car1.brand, car2.brand ②
('GM', 'GM')
>>> Car.brand = "Ford"
>>> car1.brand, car2.brand ③
('Ford', 'Ford')

14.2. Classes and Instances

130

① Car.brand is a class variable. It belongs to the class object.

② You can access it from an instance of the class.

③ But, the variable points to the same object, Car.brand.

14.2.3. Constructors

In addition to the attribute references, a class object supports the "
instantiation operation". A class object in Python is a constructor for
the objects of the given class/type.

Using the same example from earlier,

>>> s = SoSimple()
>>> type(s)
<class '__main__.SoSimple'>
>>> s.one_name
'simple'
>>> s.one_number
666

Note that the instance object, s, includes the ad-hoc attribute,
one_number, as well as one_name, which is part of the original class
definition. One can add any additional attributes to a given instance
object as well:

>>> s.one_address = "Playa"
>>> s.one_address
'Playa'
>>> dir(s)
['__class__', ... '__weakref__', 'one_address', 'one_name',
'one_number']

Note that the instance s includes more or less the same predefined

14.2. Classes and Instances

131

attributes in the original SoSimple class as well as other attributes
added later to this class object SoSimple, and those specific to the
instance object s itself. We can also delete an attribute defined in a class
or in an instance using the del statement.

>>> del type(s).one_number
>>> dir(s)
['__class__', ... '__weakref__', 'one_address', 'one_name']

The instance object s no longer has the attribute, one_number, after
executing the del statement on the class attribute
SoSimple.one_number. (Note that, syntactically, type(s).x and
SoSimple.x both refer to the same class attribute x.) Likewise, we can
delete the instance attribute one_address via del s.one_address.

14.2.4. The __init__ function

Note that a class object is not only used as a "template" when creating
an instance object of that class, but they essentially share the same
attributes.

>>> s = SoSimple()
>>> s.one_name
'simple'
>>> SoSimple.one_name = "not simple any more"
>>> SoSimple.one_name
'not simple any more'
>>> s.one_name
'not simple any more'

Class instantiation (or, instantiating an instance object of a class) can be
customized by overwriting the __init__ method of the class. This
method is automatically called, e.g., by the Python interpreter, after an
instance has been created.

14.2. Classes and Instances

132

>>> class SoEasy:
... def __init__(self):
... self.one_title = "programmer"
...
>>> s = SoEasy()
>>> s.one_title
'programmer'
>>> dir(s)
['__class__', ... '__weakref__', 'one_title']

Note the function signature. The __init__ method has at least one
parameter. The first parameter always refers to the instance object just
created, which is always named self.

An instance object for the type SoEasy, in this example, has an
attribute, one_title, automatically attached to it. This is because we
create this name/attribute and attach it to the self object in the
SoEasy.__init__ method.

14.2.5. Instance objects

An instance object of a class includes all the attributes defined in the
class, and it can include other instance-specific attributes. Attribute
references can be used to refer to those attributes of an instance object.
There are two kinds of attributes, the data attributes, or fields or
variables, and the methods.

As mentioned, an instance object, just like everything else in Python,
has attributes, namely, the data attributes and the method attributes.
Initially, most of its attributes come from its type, and those added in
the __init__ method, when it is created. But, as with other kinds of
custom objects (including functions, classes, etc.), new attributes can be
added to the instance objects.

Instance objects have methods that correspond to the functions in a

14.2. Classes and Instances

133

class definition. All functions that take an instance object as its first
argument (e.g., self) are, by definition, "methods", and Python allows
the object method calling syntax for these functions. For example,

>>> class Ship:
... def fly(self):
... print("I cannot fly. Only spaceships can fly.")
...
>>> s = Ship()
>>> s.fly()
I cannot fly. Only spaceships can fly.

Here, we call the method fly() on the instance object, s. This is
equivalent to the function call:

>>> Ship.fly(s) ①
I cannot fly. Only spaceships can fly.

① Note the function argument in this call.

In fact, <instance>.f(…) is just a "syntactic sugar" for the more
normal function call syntax <class_name>.f(self, …). (Note the
difference in the parameter list.) This works as long as the first
argument of the function, self, is an object of the given type/class.

14.2.6. Instance variables

Although we can add any attributes to an instance object in Python, it is
conventionally done in the __init__ method. Then, all instance objects
of the class will have the same set of (not shared) attributes.

>>> class Pet:
... def __init__(self):
... self.kind = "dog"

14.2. Classes and Instances

134

...
>>> pet1, pet2 = Pet(), Pet()
>>> pet1.kind, pet2.kind
('dog', 'dog')

In the initializer, the parameter self refers to the instance object
which has been just created by calling the class object. In the case of
pet1, for instance, self and self.kind refer to pet1 and pet1.kind,
respectively. Likewise, for the pet2 instance, self and self.kind
refer to pet2 and pet2.kind, respectively.

The attribute kind is an instance variable, and it belongs to a specific
instance object, and they are not shared across different instances. In
addition, the class object does not have that attribute:

>>> Pet.kind
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: type object 'Pet' has no attribute 'kind'

Note the syntax to define an instance variable in a class definition.
Instance variables are defined on the self object. Hence, as a corollary,
in a class definition, you can only define instance variables within an
instance method.


All user-defined types are mutable. All objects of user-
defined types are mutable.

14.2.7. Instance methods

As indicated, the most common statements included in class
definitions are generally the def statements to define functions. A
function defined in a class is an attribute of a class, and it is also an
attribute of any instance object of that class. And, it can be used with

14.2. Classes and Instances

135

the method syntax on the object as long as the type of its first argument
is the same class.

Unlike the class variables, the class functions have two kinds, besides
the instance methods:

• One that is just a function (except for the dotted name syntax),
which is called the "static method", and

• The other which is a part of a class object and which can access the
class variables. This is called the "class method". The first argument
of a class method is the class object itself.

As we have seen earlier, the builtin decorators, @staticmethod and
@classmethod, can be used to specifically declare one or the other kind
of class-level methods. Otherwise, by convention, all other methods in a
class definition should be instance methods, that is, their first function
parameter must be an instance of that class, self.

14.3. Object Oriented Programming
A class definition statement is used in Python to create a "template"
for objects of that class. A class defines a custom type, how to create
an instance object of that type, and how to access the object, among
other things.

A class always implicitly "inherits" from the builtin type object in
Python, either directly or indirectly. This is true for any builtin or
custom types. A class can directly inherit from another type, which is
in turn a subtype of object. Python supports inheritance from more
than one direct base class.

14.3.1. Data encapsulation

In Python, there is no such things as real "private attributes", data or
methods. Data hiding in an instance object is supported via

14.3. Object Oriented Programming

136

conventions, as with many other features in Python.

A name prefixed with an underscore _ is treated as "private". That is, by
convention, we do not directly access the members of other class
objects or instance objects if their names start with one or more
underscores. Such attributes are considered an implementation detail,
and they are not part of the "public API".

Python does have some minimal support for name hiding, however.
When a name of a variable or a function/method in a class starts with
at least two underscores and ends with at most one underscore, then
Python modifies the attribute’s name. It is called the "name mangling"
although it does not truly "mangle" the names (e.g., as in C++).
Regardless, using the mangled names should be avoided, even within
your own programs. (Note that the "dunder names" are not mangled, or
modified, since they end with two underscores.)

14.3.2. Magic methods

The __init__ method is a special method, as indicated. This particular
method is used to provide any initialization code for the newly
instantiated instance object. This method is automatically called, by the
Python runtime, on the newly created instance object, if it is
overwritten in the object’s class.

The base type object has the following attributes:

>>> dir(object)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__',
'__hash__', '__init__', '__init_subclass__', '__le__',
'__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__']

14.3. Object Oriented Programming

137

Since every type inherits, directly or indirectly/transitively, from this
base class object, these attributes are always available to all types,
builtin or user-defined. Some of those data attributes might be empty,
and some of those method attributes might have empty
implementations. Also, some attributes may not show in the dir()
output since the __dir__ method of a class/object can be customized.

The __doc__ attribute stores the docstring of the type, if any.
Otherwise, it is an empty string. As with functions, if the first statement
in the class definition suite is a constant string literal expression, then it
is automatically used as the class’s docstring.

(Python’s builtin help function uses the object’s docstring as part of
their automatically generated help message.)

The __str__ method is used when an object is used in a string context.
When a __str__ method is not implemented in a class, it falls back to
the __repr__ method, if present. For lower-level customization, or for
displaying debug information, etc., one can overwrite the __repr__
method. For example,

>>> class A:
... def __str__(self):
... return "A from __str__()"
...
>>> class B:
... def __repr__(self):
... return "B from __repr__()"
...
>>> class C:
... def __str__(self):
... return "C from __str__()"
... def __repr__(self):
... return "C from __repr__()"
...
>>> a, b, c = A(), B(), C()

14.3. Object Oriented Programming

138

>>> print(f"""\
... a = {a}
... b = {b}
... c = {c}""")
a = A from __str__() ①
b = B from __repr__() ②
c = C from __str__() ③

① Since a's type A has the __str__ method implemented, it is called in
the string context.

② Since b's type B has the __repr__ method, but not __str__ method,
the __repr__ method is called.

③ Likewise, c's __str__ method is called in the string context.

On the other hand,

>>> print([a, b, c]) ①
[<__main__.A object at 0x7093ad81f0>, B from __repr__(), C
from __repr__()]

① The internal implementations of lists, and other collection types, use
the __repr__ method of its elements for their string
representations. Since the type A does not implement this method, it
uses the default string representation of a (which includes its type
and memory location, etc.).

We can, and we should in many cases, override some of these dunder
methods to customize the behavior of the custom classes. For example,
methods like __eq__ (for ==), __ne__ (for !=), __ge__ (for >=), __gt__
(for >), __le__ (for <=), and __lt__ (for <) are often overwritten to
customize the equality and comparison-related behaviors of the user-
defined types.

For instance,

14.3. Object Oriented Programming

139

>>> from functools import total_ordering
>>> import random
>>>
>>> @total_ordering ①
>>> class Pt(object):
... def __init__(self, x, y): ②
... self.x, self.y = x, y
... def __eq__(self, other): ③
... return (self.x == other.x) and (self.y == other.y)
... def __lt__(self, other): ④
... return (self.x + self.y) < (other.x + other.y)
... def __repr__(self): ⑤
... return f"({self.x}, {self.y})"
...
>>> points = [Pt(-2, 0), Pt(-1, 0), Pt(0, 1), Pt(0, 2)]
>>>
>>> random.shuffle(points) ⑥
>>> print("Shuffled:", points) ⑦
Shuffled: [(-2, 0), (0, 2), (0, 1), (-1, 0)]
>>>
>>> result = sorted(points) ⑧
>>> print("Sorted: ", result)
Sorted: [(-2, 0), (-1, 0), (0, 1), (0, 2)]

① By using the @total_ordering decorator, we need to implement
__eq__ and only one of __ge__, __gt__, __le__, and __lt__. The
rest of the related dunder methods are automatically generated by
this decorator.

② This class represent a two-dimensional point.

③ A typical implementation for the __eq__ method. It uses member-
wise comparison.

④ We give an (arbitrary) ordering to the points in 2-D space.

⑤ We implement a __repr__ method, but not __str__ method for this
class.

14.3. Object Oriented Programming

140

⑥ The random.shuffle function shuffles a sequence in place.

⑦ When a list of points is used in the string context, e.g., as an
argument to a print function call, it calls the __repr__ method of
its element type, Pt.

⑧ The builtin sorted function relies on the ordering of the items in a
sequence.

14.3.3. Inheritance

Another salient feature of the OOP is the type inheritance. To define a
class that inherits from a subtype of object, we specify the base class
(or, the parent class or super class) in the parentheses following the
class name. For example,

>>> class Animal(object): pass
...
>>> class Pet(Animal): ①
... def __init__(self, name = ""): ②
... self.name = name
... def __repr__(self): ③
... return self.name
... def bite(self): ④
... print(f"{self.__class__.__name__}s do not bite.")
...

① Animal is a (direct) base class of Pet.

② We override the __init__ method, which is defined in object
(since Animal does not have its own __init__ method) to add an
instance variable self.name.

③ A simple implementation of the __repr__ method, primarily for
debugging purposes.

④ The Pet class includes another instance method called bite. The
builtin object.__class__ attribute returns the type of the given

14.3. Object Oriented Programming

141

object, and type.__name__ returns the name of the type.

Let’s try using this Pet class:

>>> dog = Pet("puppy") ①
>>> dog.name ②
'puppy'
>>> dog.bite() ③
Pets do not bite.
>>> print(dog) ④
puppy

① Calling Pet returns an instance. (The user-defined types are
mutable, and hence Pet() creates and returns a new object every
time it is called.)

② The dog has name (an instance variable).

③ And, it can do bite (an instance method). They work as expected.

④ In the string context, the "correct" method Pet.__repr__ is called.

As we will see shortly, this class definition for Pet(Animal) is exactly
the same as the following using the multiple inheritance syntax:

class Pet(Animal, object): ...

Note that the class inheritance hierarchy, if you will, goes from left to
right. That is, Pet → Animal → object. Therefore, class
Pet(object, Animal) defines a different, and in fact invalid, class
because object does not inherit from Animal.

Here’s another class Python, which is a subclass of Pet:

>>> class Python(Pet): ①
... def __init__(self, name, length): ②

14.3. Object Oriented Programming

142

... super().__init__(name) ③

... self.length = length ④

... def __str__(self): ⑤

... return f"Hi, I'm {self.name}. I'm {self.length}
feet long."
... def bite(self): ⑥
... super().bite() ⑦
... print("But we swallow our prey~~") ⑧
...
>>> python = Python("Monty Python", 10) ⑨
>>> python.name ⑩
'Monty Python'
>>> python.bite() ⑪
Pythons do not bite.
But we swallow our prey~~
>>> print(python) ⑫
Hi, I'm Monty Python. I'm 10 feet long.

① This class declaration is the same as Python(Pet, Animal,
object), for instance, using the multiple inheritance syntax. The
Python class includes everything that Pet has, as well as those
which Animal and object have, e.g., by "inheritance".

② We overwrite Python's initializer.

③ In the __init__ implementation in the derived class, we (almost
always) call the (direct) base class’s initializer method. super()
refers to the closest base class (e.g., `Pet) in the class inheritance
hierarchy. In this particular example, the name instance variable is
initialized in Pet's initializer, and hence we need to call it from
Python's __init__. Note that, in case of Pet and Animal, their base
classes, including object, have empty initializers.

④ The instance variable length is defined in Python, but not in Pet.

⑤ We overwrite the __str__ method in object. Pet and Animal do
not implement this method. We can refer to instance variables
defined in one of its base classes (e.g., self.name) just like they are
its own.

14.3. Object Oriented Programming

143

⑥ We also overwrite Pet.bite.

⑦ In this particular example, we call the super method. Again,
super() refers to the direct parent base class. If Pet did not have
this bite method, then Python would have searched for it through
Pet's base class hierarchy, starting from Animal.

⑧ In the string context, __str__ will be called although Python has
__repr__, inherited from Pet. If we had a list of Pythons instead
and tried to print the list, `Pet.__repr__ would have been used.

⑨ Python constrictor. 

⑩ Since Python does not have the attribute name, it is found in one of
its base classes, starting from Pet.

⑪ Since Python has its own bite method, it is called.

⑫ In the string context, Python.__str__ is called.

14.3.4. Multiple inheritance

When there are multiple direct base classes for a given class, these base
classes as well as their base classes, and their bases classes, etc., up to
object, are "linearized", or ordered, for the purposes of looking up any
inherited attributes.

This is called the MRO, or method resolution order, in Python, and it is
done through a method called the "C3 Linearization algorithm". It
essentially tries to find an order that is consistent with the left-to-right
ordering of the base classes of each class involved. This method yields,
if successful, a unique ordering among all (direct or indirect) base
classes, including object, of a given class. This is not always
achievable, and in such cases, a compile error is raised. An obvious
example is attempting to inherit from two classes whose base classes
have incompatible orders.

class A: pass

14.3. Object Oriented Programming

144

class B: pass
class C(A, B): pass
class D(B, A): pass
class E(C, D): pass

In this example, there is no way to consistently order all base classes of
E (A, B, C, D, and object) because C requires an A → B ordering,
whereas D requires a B → A ordering. This statement will throw a
TypeError exception.

One thing to note is that, without E, these are all valid statements
although it appears that C and D are in conflict. The linearization of the
base classes are done with respect to each class. Depending on what
methods are implemented in A and B, etc., the behaviors of C and D
might turn out rather different. But, this is still a valid Python program
(without E).

Here’s an example of valid multiple inheritance. This example includes
what is often referred to as the "diamond inheritance pattern".

class A:
 def w(self): print("A.w")
 def x(self): print("A.x")
 def y(self): print("A.y")
 def z(self): print("A.z")
class B(A):
 def x(self): print("B.x")
class C(B):
 def w(self): print("C.w")
class D(A):
 def x(self): print("D.x")
 def y(self): print("D.y")
class E(C, D):
 pass

14.3. Object Oriented Programming

145

In this example, class E, for instance, has two (non-object) direct
parent classes, C and D.

E --> C --> B --> A --> object
 --> D --------> A -->

E inherits indirectly from A through two different "paths", E → C → B
→ A and E → D → A. Hence it is a diamond inheritance pattern.

Before we continue, let’s try running the following program. What
would be the output?

e = E()
print("e.w()"); e.w(); print("==")
print("e.x()"); e.x(); print("==")
print("e.y()"); e.y(); print("==")
print("z.y()"); e.z(); print("==")

If you try running this program, you will realize that

• e.w() ends up calling C.w,

• e.x() ends up calling B.x,

• e.y() ends up calling D.y, and

• e.z() ends up calling A.z.

One of the "strangest" behavior is that e.x() calls the method B.x, and
not D.x, although both have the x method defined and D is one of the
direct base classes of E, as specified in E(C, D)'s class definition. This is
because Python’s "multiple inheritance" uses the aforementioned
linearization among all base classes (whether they are explicitly
specified in the class definition or not).

In fact, Python has a builtin method type.mro to display this

14.3. Object Oriented Programming

146

information. For example,

>>> E.mro()
[<class '__main__.E'>, <class '__main__.C'>, <class '
__main__.B'>, <class '__main__.D'>, <class '__main__.A'>,
<class 'object'>]

The order is,

E --> C --> B --> D --> A --> object

Therefore, the fact that e.x() ends up calling B.x, and not D.x (which
is further up the chain), makes sense.

14.3.5. super()

In many programming languages that support OOP, the terms like
super, base, and parent have certain related meanings. In Python, the
super method, which roughly refers to a "base class", has more specific
semantics, especially in the context of multiple inheritance.

For example, when super().x is referenced in a class, for data or
method attribute, Python goes through the linearized/ordered base
class hierarchy (MRO) of the given class, from left to right (or, from
bottom to top, depending on how you see the inheritance tree), to find
the attribute, starting from the class itself. Once it is found during the
traversal, that implementation of the attribute is used and all others
(e.g., in their base classes upstream) are ignored.

Note that the MRO is defined per class. For instance, using the above
example, B's MRO is not a partial segment of D's MRO. It can be
completely different.

14.3. Object Oriented Programming

147

>>> B.mro()
[<class '__main__.B'>, <class '__main__.A'>, <class 'object'>]

The order is B → A → object.

14.3.6. Duck typing

Python is fundamentally an object-based programming language,
unlike other class-based OOP languages like C++ or Java, or C#. These
traditional OOP languages use classes and inheritance to support the
runtime polymorphism, among other things. A variable declared as one
type at compile time can be assigned a different type at run time and it
can behave differently.

Python does not need this kind of polymorphism. Python is a
dynamically typed programming language. Although Python has
adopted a lot of features from the OOP languages over the years, the
primary purpose of a class (and, its supporting features like
inheritance) is to use it as a template, or a prototype, for objects, that is,
to create more than one objects that are "structurally equivalent". A lot
of dynamic programming languages that support some kind of "classes"
like JavaScript, Perl, Lua, etc. all belong to this same category.

To demonstrate the "pseudo-polymorphism" in Python, let’s create a
few new types:

class Frog:
 def __repr__(self):
 return "Frog"
 def jump(self):
 print("Big jump")

class Bullfrog(Frog):
 def __repr__(self):
 return "Bull"

14.3. Object Oriented Programming

148

 def jump(self):
 print("Huge jump")

class Flea:
 def __repr__(self):
 return "Flea"

The two types, Frog and Flea, have little to do with each other, other
than the fact that both inherit from object just like every type in
Python. In particular, the Frog type has a method jump whereas Flea
does not. On the other hand, Bullfrog is a subclass of Frog, and it
overwrites the __repr__ method as well as jump.

Now, let’s assume that we have a list of objects and we need to call the
jump method on each of them, say, in a for loop. In a traditional OOP
language, all objects in the list need to be a type of Frog or its subclass.
For example, this is generally how it works:

>>> frog = Frog()
>>> bull = Bullfrog()
>>>
>>> for jumper in (frog, bull):
... print(jumper, end=": ")
... jumper.jump()
...
Frog: Big jump
Bull: Huge jump

In an example like this, the jumper variable needs to be the type Frog.
(We are ignoring value vs reference, etc.) Even if we add the same jump
method to Flea, fleas cannot be used in this for loop, in the strongly
typed OOP languages. On the other hand, in Python, the type does not
matter. Any object which has a jump method will work in this for loop
regardless of their specific types.

14.3. Object Oriented Programming

149

For instance, let’s try this:

>>> flea = Flea()
>>> flea.jump = lambda:print("Small jump")
>>>
>>> for jumper in (frog, flea):
... print(jumper, end=": ")
... jumper.jump()
...
Frog: Big jump
Flea: Small jump

The type of flea is Flea, and yet we can mix Flea and Frog in the for
loop. The type of jumper is not important. What’s important is the fact
that every jumper in the iterations has a jump method defined.

As mentioned, the type systems like this are generally called the "duck
typing" (as in "if it looks like a duck, swims like a duck, and quacks like
a duck, then it probably is a duck"). Python’s support for types, e.g., the
object.__class__ attribute, the issubclass and isinstance
functions, and the classes and class inheritance, etc., provide (a lot of)
convenience, but they are not essential. Ultimately, Python uses duck
typing at run time.

14.4. Data Classes
A class can be used for purely data organization and access, and not
for behavior. This kind of class is often called a "record" or "struct type".
Python provides a helper module, dataclasses, in the standard library
for creating a record-like class, called the data class.

One can use the @dataclasses.dataclass decorator to create a data
class, without having to manually implement a number of essential
methods. For example,

14.4. Data Classes

150

>>> from dataclasses import dataclass
>>>
>>> @dataclass ①
... class Point:
... x: int = 0 ②
... y: int = 0
...
>>> p1 = Point(1, 2) ③
>>> p2, p3 = Point(x=1, y=2), Point(2)
>>> p1, p2, p3 ④
(Point(x=1, y=2), Point(x=1, y=2), Point(x=2, y=0))
>>> p1 is p2, p1 == p2 ⑤
(False, True)
>>> p1 is p3, p1 == p3 ⑥
(False, False)

① By default, the @dataclass decorator automatically adds the
implementations for __init__, __repr__, and __eq__ methods to
the decorated class, among other things.

② You specify the data attributes, or "fields", with the type annotations,
e.g., x: int and y: int, in this example. Optional default values
can be added, e.g., = 0.

③ The constructor with the specified fields is automatically created.
Because both fields include the default values, both constructor
function parameters are optional as well, in this example.

④ The auto-generated __repr__ implementation uses the
names/values of the class and their fields.

⑤ The auto-generated __eq__ method ensures the value equality
semantics for data classes. That is, two different objects with the
same values are considered equal.

⑥ Likewise, two objects with different values cannot be the same
object.

14.4. Data Classes

151

In general, the @dataclass decorator accepts the following arguments
(all optional):

@dataclass(
 init=True, ①
 repr=True, ②
 eq=True, ③
 order=False, ④
 unsafe_hash=False, ⑤
 frozen=False, ⑥
 match_args=True, ⑦
 kw_only=False, ⑧
 slots=False ⑨
)
class DataClass:
 pass

① The __init__ method will not be auto-generated if init=False or
if the method already exists in the decorated class.

② The __repr__ method will not be auto-generated if repr=False or
if the method already exists.

③ The __eq__ method will not be auto-generated if eq=False or if the
method is already implemented.

④ The __lt__, __le__, __gt__, and __ge__ methods will be auto-
generated if order=True and none of these methods exist.

⑤ By default, @dataclass will add the __hash__ method only if it is
"safe" to do so. (Consult the official reference for more information.)
Setting unsafe_hash=True will always auto-generate __hash__
regardless of whether it is "safe" or not (as long as it is not already
implemented).

⑥ If frozen=True and if the decorated class does not have
__setattr__ and __delattr__ methods, the class is made to be "
immutable". Attempting to assign to fields of an immutable data

14.4. Data Classes

152

class will raise an exception.

⑦ If match_args=False, or if the __match_args__ attribute is
already included in the decorated class, then it will not auto-
generate this attribute. The __match_args__ attribute (a tuple type)
is used to support the structural pattern matching for the user-
defined classes.

⑧ If kw_only=True, all fields will be made keyword-only in the auto-
generated __init__ method.

⑨ If slots=True, then the __slots__ attribute will be generated, and
a new class will be returned instead of the original one.

14.5. Enums
An enum is a collection of names bound to (related) constant value
objects. These objects are called the members of the enum, and they
must be unique within the given enum. Each member of an enum has a
name and a value. The members of an enum type can be iterated over
just like an object of a sequence type. The values of the enum members
can be of any type, but immutable types such as int or str are
typically used.

You create a new enum class by inheriting from the enum.Enum type, or
one of its subtypes such as enum.IntEnum. Here’s an example:

>>> from enum import Enum
>>>
>>> class Color(Enum):
... RED = "red"
... GREEN = "green"
... BLUE = "blue"
...

The type of an enum member (e.g., Color.RED) is not the type of its

14.5. Enums

153

value (e.g., "red"). Its type is the same enum type, e.g., Color in this
example.

>>> isinstance(Color.RED, Color)
True
>>> issubclass(Color, Enum)
True

Note that you cannot use an enum type as a base class for other type,
including another enum type. If the type inheritance is important, then
you will need to use the normal class to create new types.

We can iterate over the enum __members__, e.g., using the for - in
statement. (That is, a collection of all enum members is an iterable.)
For instance,

>>> for c in Color:
... print(f"{c}:\t{c.value}")
...
Color.RED: red
Color.GREEN: green
Color.BLUE: blue

We can also add a __str__ method to the Color enum class to
customize its string representation. For example,

>>> class Color(Enum):
... RED = "red"
... GREEN = "green"
... BLUE = "blue"
... def __str__(self):
... match self.value:
... case "red":
... return "Red"

14.5. Enums

154

... case "green":

... return "Green"

... case "blue":

... return "Blue"

... case _:

... raise ValueError

...
>>> for c in Color:
... print(c)
...
Red
Green
Blue

14.6. Class Decorators
Classes can also be decorated in the same way functions are decorated.

The evaluation rules for the decorator expressions are the same as
those for the function decorators. The result of the decorator
expression, a class, is then bound back to the target class name.

For example,

@decorator_function
class ClassX:
 pass

This is semantically equivalent to the following:

class ClassX:
 pass

ClassX = decorator_function(ClassX)

14.6. Class Decorators

155

Chapter 15. Coroutines &
Asynchronous Programming
A coroutine is essentially a generalization of a function, or subroutine.
A function has a single entry point and, once done executing the
function’s statements according to its logic, it returns control to the
caller once and for all. In contrast, coroutines are first entered, and they
can be paused and resumed multiple times, before they are ultimately
terminated, or closed.

Most modern programming languages support some kind of coroutines.
Python has seen a few different incarnations of coroutines in the past
several years. In Python, coroutines were initially designed, and
implemented, as a generalization of generators. Now, the newer async
def based coroutines (and, tasks and futures) are the ones that
should be used moving forward. The generator-based coroutine syntax
is deprecated at this point (although the internal implementations are
still based on generators).

15.1. Generators
As indicated, Python includes a number of builtin types. Python also
has quite a few "duck types" defined in the standard modules such as
collections.abc, which are primarily used to add some (ad-hoc)
structure to the otherwise dynamically typed Python programming
language. We have seen some examples throughout this reference,
including iterable and callable, etc.



The typing module is another example of an ongoing
effort to add more "structures" to the Python’s
dynamic type system. The type hints can be used to aid
static type checking during the Python software
development process.

15.1. Generators

156

In this and the next couple of sections, we will briefly take a look at
iterators and generators before we move on to the main topic of
coroutines for the rest of the chapter.

15.1.1. Iterators

Collection objects like lists, tuples, and dictionaries that can be used
with the for loop, for instance, are "iterables". A type that implements
the dunder method __iter__ is an iterable. Objects of iterable
types are iterable, as we have seen throughout this reference.

When the builtin function iter() is called with an iterable object
(with an __iter__ method), it returns an object of an iterator type.
An iterator implements __iter__ and __next__ methods. Hence, an
iterator is also an iterable. (Internally, an iterable object and the
object’s iterator object usually share the same (stream of) data.)

Repeatedly calling the builtin next() function with an iterator object
(which calls the object’s __next__ method) returns the successive items
in the object. When no more item is available, e.g., when it reaches the
end of the data stream, a StopIteration exception is raised.

Here’s a simple class that is an iterator:

class ABC:
 def __init__(self):
 self.pointer = 0
 self.list = ('A', 'B', 'C')

 def __iter__(self): ①
 return self

 def __next__(self): ②
 if self.pointer >= len(self.list):
 raise StopIteration

15.1. Generators

157

 val = self.list[self.pointer]
 self.pointer += 1
 return val

① It has an __iter__ method defined. Hence, it is also an iterable.

② The type ABC implements both __iter__ and __next__ methods,
and therefore it is an iterator.

An object of this class can be used anywhere iterator, or iterable, is
expected. For example,

>>> abc = ABC() ①
>>> for i in abc: ②
... print(i)
...
A
B
C

① abc is an iterable object with an __iter__ method, which returns
an iterator (the same object, in this example).

② The for statement uses the iterator’s __next__ method to iterate
over the data in abc. This is a very general pattern (e.g., as in "design
pattern") that many of the modern programming languages use, not
just Python. Once the for statement catches a StopIteration, it
exits the loop. (This is hidden in the for statement implementation.)

15.1.2. Generator functions

Generator functions (synchronous or asynchronous) and coroutines are
rather similar to each other. They can have more than one entry point,
they can yield multiple times, and their execution can be suspended
and resumed.

• When a generator function is called, it returns a generator object of

15.1. Generators

158

an iterator type, which then controls the execution of the
generator function.

• When an asynchronous generator function is called, it returns an
asynchronous iterator known as an async generator object, which
then controls the execution of the asynchronous generator function.

15.2. yield Expressions
A yield expression is used when defining a generator function or
asynchronous generator function.



Python also has a yield statement, which is
semantically equivalent to a (newer) yield
expression. There is little difference between the
yield simple statement and the yield expression
statement.

A function that includes a yield expression/statement in the function
body is, by definition, a generator function. Likewise, an async def
function that includes a yield expression/statement is an
asynchronous generator function.

For example,

>>> def a(): ①
... yield 1 ②
... yield 2 ③
...
>>> for i in a(): ④
... print(i)
...
1
2

15.2. yield Expressions

159

① a is (automatically) a generator function since it includes yield
expressions (or, statements).

② An yield expression/statement behaves like a return statement.
But it does not terminate the function execution. Instead, it
temporarily yields the control to the caller, and when it is called
again, it resumes the execution from after the last executed yield.
Note that the a function need not explicitly provide the
implementations of, for example, the __iter__ method.

③ This is the last yield statement in the generator function a, and
since there is no more statements after this statement, a, or its
generator object, will throw a StopIteration when it is resumed
again.

④ When called, a() returns a generator object, which is an iterator.
Note that the returned generator object implicitly implements
__iter__ and __next__ methods. In other words, a generator
function hides the complexity of having to implement an iterator
directly (e.g., as we illustrated in the previous section).

Here’s an example of an async generator function:

>>> async def b(): ①
... yield 'a'
... yield 'b'
...
>>> async def c(): ②
... async for i in b(): ③
... print(i)
...
>>> import asyncio ④
>>> asyncio.run(c()) ⑤
a
b

① Python creates b as an async generator function (since it is an

15.2. yield Expressions

160

async def function that includes yield expressions/statements).

② As we discuss later in this chapter, async statements, like the async
for in the first line in the function body, can only be used in async
functions. We declare c as an async function.

③ Calling b() returns an async generator object, which can be used in
the async for loop.

④ Although async and await are Python keywords, much of the
asynchronous programming support is included in the standard
library asyncio module.

⑤ An async function can be run using the asyncio.run function.

15.3. Generator Expressions
A generator expression is rather similar to a comprehension, not only
in syntax but also in spirit. A generator expression yields a new
generator object, using the comprehension syntax, except that it uses
parentheses. For example,

>>> double = (①
... x * 2 ②
... for x in range(3) ③
...)
>>> for x in double: ④
... print(x)
...
0
2
4

① A generator expression is enclosed in parentheses, and hence it can
be written over multiple lines. The expression is evaluated and
assigned to a variable double, for illustration. It is more common to
define and use the generator expressions where they are needed like

15.3. Generator Expressions

161

Lambda functions.

② The "next value" expression, similar to the comprehension syntax.

③ The for clause.

④ A generator expression returns a generator object (the one bound to
double, in this example), which is an iterator.

15.3.1. Asynchronous generator expressions

If a generator expression contains async for clauses or await
expressions, then it returns a new asynchronous generator object,
which can be asynchronously iterated over.

>>> async def a(): ①
... yield 0; yield 1; yield 2
...
>>> adouble = (②
... x * 2 ③
... async for x in a() ④
...)
>>> async def c(): ⑤
... async for x in adouble: ⑥
... print(x)
...
>>> import asyncio
>>> asyncio.run(c()) ⑦
0
2
4

① An async generator function.

② An async generator expression is also enclosed in parentheses. This
is an async generator expression because it includes an async for
clause.

15.3. Generator Expressions

162

③ The "next value" expression, similar to the comprehension syntax.

④ The async for clause. Note that a() returns an async generator
object.

⑤ We define an async function here, for illustration, because async
statements can only be included in async functions.

⑥ adouble references an async generator object, which is an async
iterator. Again, the result of the async generator expression need
not have been assigned to a separate variable. We could have just
used it here "in place".

⑦ We can run the c() function with the help of the asyncio.run
function.

An iterator type implements __iter__ and __next__. Likewise, an
asynchronous iterator type implements __aiter__ and __anext__
methods.

When they run out of items, an iterator raises a StopIteration
exception, whereas an async iterator raises a StopAsyncIteration
exception. These details are all hidden in the implementations of
(synchronous or asynchronous) generator functions and generator
expressions.

15.4. Coroutine Objects

15.4.1. Awaitable objects

A type that implements a special __await__ method is an awaitable.
An await expression can be used with an awaitable.

object.__await__(self)

It returns an iterator. It is used to define an awaitable type. For
example, asyncio.Future implements this method, and hence a
Future object can be used as an operand of an await expression.

15.4. Coroutine Objects

163

15.4.2. Coroutine objects

Coroutine objects are awaitable objects. The async def functions, for
example, return coroutine objects.

A coroutine works in a similar way that an iterable works. Calling a
coroutine’s __await__ method returns an iterator, and the coroutine
is executed by iterating over this iterator object. When the coroutine
has finished executing and returns, the iterator raises a
StopIteration exception.

In contrast to an iterable, which can be iterated multiple times,
however, a coroutine object cannot be awaited more than once.
Attempting to do so will raise a RuntimeError exception.

Furthermore, coroutine objects do not directly use the iterator methods
to support iteration. Instead, they include the following methods:

coroutine.send(value)

It starts or resumes the execution of a coroutine. If the argument is
None, this is equivalent to advancing the iterator returned by
__await__(). If value is not None, then this method delegates to the
generator.send method of the iterator.

coroutine.throw(type, value, traceback)

It raises an exception of the specified type, at the suspension point of
the coroutine. If the iterator has a generator.throw method, it
delegates to this method. If the exception is not caught in the
coroutine, it propagates back to the caller.

coroutine.close()

It causes the coroutine to exit, after running clean-up code, if any. If
the iterator has a generator.close method, then it optionally
delegates to that method first. Then it raises a GeneratorExit
exception at the suspension point, causing the coroutine to

15.4. Coroutine Objects

164

immediately clean itself up. Finally, it is marked as having finished
executing, ending the lifecycle of the coroutine.

The standard library asyncio module provides a number of
convenience types and methods, such as Task and Future, for
managing coroutines.

15.5. Coroutine Functions
The async def statement defines a coroutine function in a similar way
that the def statement defines a (normal) function. A coroutine defined
with async def can, but is not required to, include await expressions
and async statements such as async for and async with.

Calling a coroutine function object returns an awaitable object, more
specifically, a coroutine object. Execution of coroutines can be
suspended and resumed, as explained in the previous section.

>>> async def a(): ①
... print("a")
...
>>> async def b(): ②
... await a() ③
...
>>> import asyncio
>>> asyncio.run(b()) ④
a

① A coroutine function definition without any async/await
expressions/statements.

② Another coroutine function definition which includes an await
expression.

③ Calling a() will return a coroutine object, which can be awaited.

15.5. Coroutine Functions

165

④ A coroutine object, which is returned by calling b(), can be run
using the asyncio.run function. Calling a (normal) function
executes the statements defined in the function object. On the
contrary, calling a coroutine function object merely returns a
coroutine object.

15.6. Await Expressions
An await expression suspends the execution of coroutine on an
awaitable object. It can only be used inside a coroutine function such as
an async def function.

For example,

>>> import asyncio ①
>>> async def a(): ②
... print("a() called")
... await asyncio.sleep(5.0) ③
... print("Leaving a() after sleeping 5 seconds")
...
>>> asyncio.run(a()) ④
a() called
Leaving a() after sleeping 5 seconds

① Much of the async/await runtime support is included in the asyncio
module.

② The async def/coroutine function, when called, returns a coroutine
object (or, just a coroutine, for short).

③ The asyncio.sleep function returns a coroutine that completes
after a given time (in seconds). The await expression can be used in
a coroutine function with an awaitable object.

④ The coroutine can be run using asyncio.run.

15.6. Await Expressions

166

15.7. Other async Statements

15.7.1. The async for statement

An "asynchronous iterable" can call asynchronous code in its iter
implementation, and "asynchronous iterator" can call asynchronous
code in its next method. The async for statement allows convenient
iteration over asynchronous iterators.

The async for in else compound statement has more or less the
same syntax as the for in else statement. But, it iterates of an async
iterator instead of a synchronous iterator.

Here’s an example:

>>> async def words(): ①
... yield "hello"
... yield "parallel"
... yield "universe"
...
>>> async def greet(): ②
... async for word in words(): ③
... print(word, end=' ')
... else: ④
... print()
...
>>> import asyncio
>>> asyncio.run(greet())
hello parallel universe ⑤
>>>

① An async def function with yield statements (implicitly) returns
an async iterator object (more specifically, a coroutine).

② The async statements can only be included in a coroutine function.

15.7. Other async Statements

167

③ The async for clause. The type of words() is an async iterator.

④ An optional else clause. This clause is executed when the async
for exits after normally iterating over the async iterator.

⑤ The trailing newline is printed from the else clause of the async
for statement in the body of greet.

15.7.2. The async with statement

An asynchronous context manager is a context manager that is able to
suspend execution in its enter and exit methods. The async with
compound statement works much the same way as the with statement.
But, instead of using a context manager, it uses an asynchronous
context manager, which supports __aenter__ and __aexit__ methods
(corresponding to __enter__ and __exit__ of the context manager,
respectively).

Here’s the syntax:

async with Expression as Target:
 Suite

• The Expression must evaluate to an asynchronous context
manager type.

• The as clause is optional as with the with statement.

• The Suite can include await expressions and other async
statements.

15.8. Producer Consumer Problem
As a final example, and an exercise, here’s a simple implementation of
the classic (single) producer - (single) consumer problem using Python’s
coroutines. (For more information, refer to the Wikipedia doc

15.8. Producer Consumer Problem

168

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

[https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem].)

This code sample is provided as is without any comments or
annotations.  The readers are encouraged to go through the code, or
try implementing a similar asynchronous program on their own.

The program consists of three files, producer.py and consumer.py under
the pc subfolder, and main.py in the project folder. You can try different
values for the four constants defined in the producer and consumer
modules, and see how they affect the coordination between the
producer and the consumer. (Note: This sample program uses some
APIs from the asyncio module, which are not explicitly covered in this
book.)

pc/producer.py

import asyncio

_PRODUCE_ITEMS = 3
_PRODUCE_IVAL = 0.5

async def produce(queue: asyncio.Queue,
 items: int = _PRODUCE_ITEMS,
 interval: float = _PRODUCE_IVAL):
 for i in range(items):
 print("Producing:", i)
 await asyncio.sleep(interval)
 await queue.put(i)
 print("Produced:", i)

 print("Producer done!")

pc/consumer.py

import asyncio

_CONSUME_ITEMS = 5

15.8. Producer Consumer Problem

169

_CONSUME_IVAL = 1.0

async def consume(queue: asyncio.Queue,
 items: int = _CONSUME_ITEMS,
 interval: float = _CONSUME_IVAL):
 for _ in range(items):
 item = await queue.get()
 print("Got item:", item)
 await asyncio.sleep(interval)
 queue.task_done()
 print("Consumed", item)

 print("Consumer done!")

main.py

import asyncio
from pc.consumer import consume
from pc.producer import produce

async def _main():
 try:
 queue = asyncio.Queue()
 p = asyncio.create_task(produce(queue))
 c = asyncio.create_task(consume(queue))

 await asyncio.gather(p)
 await queue.join()
 c.cancel()
 await asyncio.gather(c)
 except asyncio.CancelledError:
 return
 except RuntimeError as err:
 print(err)

if __name__ == "__main__":
 asyncio.run(_main())

15.8. Producer Consumer Problem

170

A. How to Use This Book
Tell me and I forget. Teach me and I remember.
Involve me and I learn.

— Benjamin Franklin

The books in this "Mini Reference" series are written for a wide
audience. It means that some readers will find this particular book "too
easy" and some readers will find this book "too difficult", depending on
their prior experience related to programming. That’s quite all right.
Different readers will get different things out of this book. At the end of
the day, learning is a skill, which we all can learn to get better at. Here
are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some
typos. We go through multiple revisions, and every time we do that
there is a finite chance to introduce new errors. We know that some
people have strong opinions on this, but you should get over it. Even
after spending millions of dollars, a rocket launch can go wrong. All
non-trivial software have some amount of bugs.

Although it’s a cliche, there are two kinds of people in this world. Some
see a "glass half full". Some see a "glass half empty". This book has a lot
to offer. As a general note, we encourage the readers to view the world
as "half full" rather than to focus too much on negative things. Despite
some (small) possible errors, and formatting issues, you will get a lot
out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several
years ago, and it became an instant best seller. There are now many
similar books, copycats, published since then. The book is written for
"laypeople", and illustrate how computer science concepts like specific
algorithms can be useful in everyday life.

171

Inspired by this, we have some concrete suggestions on how to best
read this book. This is one suggestion which you can take into account
while using this book. As stated, ultimately, whatever works for you is
the best way for you.

Most of the readers reading this book should be familiar with some
basic algorithm concepts. When you do a graph search, there are two
major ways to traverse all the nodes in a graph. One is called the "depth
first search", and the other is called the "breadth first search". At the
risk of oversimplifying, when you read a tutorial style book, you go
through the book from beginning to end. Note that the book content is
generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially
often corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are
written to cover broad and wide range of topics, and which have many
interdependencies among the topics, it is often best to adopt the breadth
first traversal.

This advice should be especially useful to new-comers to the language.
The core concepts of any (non-trivial) programming language are all
interconnected. That’s the way it is. When you read an earlier part of
the book, which may depend on the concepts explained later in the
book, you can either ignore the things you don’t understand and move
on, or you can flip through the book to go back and forth. It’s up to you.
One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

The best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get
the high-level concepts. At each iteration, you try to get more and more
details. It is really up to you, and only you can tell, as to how many
passes would be required to get much of what this book has to offer.

Again, good luck!

172

Index
@

!=, 70-71, 139
"Varargs" Functions, 114
"walrus" operator, 63
% (modulo) operator, 66
* (multiplication) operator, 65
**kwargs, 115-116
*args, 115
*args and **kwargs, 116
+ (addition) operator, 66
+ operator, 33-34, 55
- (subtraction) operator, 66
-c command line option, 12
-c flag, 12
-c option, 16
-i flag, 13
-m command line option, 12
-m flag, 12
/, 66
/ and *, 118
//, 66
3.10, 99
<, 70, 139
<=, 70, 139
==, 70-71, 139
>, 70, 139
>=, 70, 139
@classmethod, 136
@classmethod decorator, 125-

126
@dataclass, 152

@dataclass decorator, 151-152
@dataclasses.dataclass

decorator, 150
@property, 124
@property decorator, 122
@staticmethod, 136
@staticmethod decorator,

124-125
@total_ordering decorator,

140
__aenter__ and __aexit__

methods, 168
__aiter__ and __anext__

methods, 163
__await__ method, 163
__await__(), 164
__bool__ method, 45
__bool__(self), 46
__call__, 117
__call__ method, 61, 116-117
__call__ method attribute,

118
__cause__ attribute, 76
__contains__ method, 71
__debug__, 83
__dir__ method, 138
__doc__ attribute, 138
__enter__, 97
__enter__ and __exit__, 168
__enter__ and __exit__

methods, 97-98

173

__enter__ method, 97
__eq__, 139-140, 151
__eq__ method, 140, 152
__exit__, 97
__exit__ method, 97-98
__ge__, 139-140, 152
__getattr__ method, 60
__getitem__ method, 60
__gt__, 70, 139-140, 152
__hash__, 152
__hash__ method, 152
__init__, 143, 151
__init__ function, 132
__init__ implementation, 143
__init__ method, 132-134, 137, 141,

152
__init__.py file, 25
__init__.py files of the package, 25
__iter__, 157-158, 160, 163
__iter__ method, 158, 160
__le__, 139-140, 152
__len__ method, 45
__lt__, 70, 139-140, 152
__main__, 14, 22
__match_args__, 109, 153
__match_args__ attribute, 109, 153
__match_args__ tuple, 109
__ne__, 139
__next__, 157-158, 160, 163
__path__ attribute, 25
__repr__, 144, 151
__repr__ method, 138-141, 149, 152
__setattr__ and __delattr__

methods, 152

__slots__ attribute, 153
__str__, 144, 154
__str__ method, 138-140, 143
…, 48

A

Absolute imports, 26
active Exception, 96
addition, 63
additional attributes, 131
all names, 40
all objects, 45
alphanumeric characters, 30
alternative patterns, 104
and and or operators, 45
and expression, 69
and operation, 69
and operator, 69
annotations, 119
anonymous function object, 118
anonymous functions, 120
append, 56
argument, 116
argument expressions, 61
argument named self, 117
Arguments, 116
arguments, 90, 111, 119, 152
Arithmetic Conversions, 65
Arithmetic conversions, 61
Arithmetic Operations, 65
Arithmetic operations, 61
as clause, 78, 168
as keyword, 104
AS patterns, 104

174

ASCII characters, 32
ASCII range, 30
assert Statement, 83
assert statement, 72, 83-84
assertion, 84
AssertionError exception, 84
Assignment, 73
assignment, 20, 56, 63
assignment expression, 63, 88, 123
Assignment Expressions, 63
Assignment expressions, 61, 63
assignment expressions, 16
assignment of an expression list, 74
assignment operator :=, 63
Assignment Statement, 73
Assignment statement, 72
assignment statement, 73-74, 123-124
Assignment statements, 73
assignments, 89
asterisk *, 105
asterisk * operator, 62
async and await, 161
async def, 165
async def based coroutines, 156
async def function, 159, 161, 166-

167
async def functions, 164
async def statement, 165
async def/coroutine function, 166
async for, 54, 161, 165, 168
async for clause, 162-163, 168
async for clauses, 162
async for in else compound

statement, 167

async for loop, 161
async for statement, 167-168
async function, 161, 163
async function, 161
async functions, 161, 163
async generator expression, 162-163
async generator function, 160, 162
async generator object, 159
async generator object, 161, 163
async iterable, 54
async iterator, 163, 168
async iterator, 167
async iterator, 168
async iterator object, 167
async Statements, 167
async statements, 161, 163, 165, 167-

168
async with, 165
async with compound statement,

168
async with statement, 168
async/await, 86
async/await expressions/statements,

165
async/await runtime support, 166
asynchronous code, 167
asynchronous context manager, 168
Asynchronous generator, 162
asynchronous generator function,

159
asynchronous generator function, 159
asynchronous generator object, 162
asynchronous iterable, 167
asynchronous iterator, 159, 167

175

asynchronous iterator type, 163
asynchronous iterators, 167
asynchronous programming, 161
asyncio module, 161, 165-166, 169
asyncio.Future, 163
asyncio.run, 166
asyncio.run function, 161, 163, 166
asyncio.sleep function, 166
Atoms, 60
atoms, 60
attribute, 39, 73, 109, 130, 132-133,

135, 144, 147
attribute of an immutable object, 42
attribute of an object, 39, 44
attribute reference, 39, 60
Attribute References, 60
Attribute references, 133
attribute references, 129, 131
Attributes, 39
attributes, 39-40, 50, 73, 130, 132-134
attributes of the class, 40
attribute’s name, 137
Augmented Assignment, 74
augmented assignment, 63, 74
augmented assignment operators, 36
augmented assignment statement, 74
auto-generate, 152-153
auto-generated, 152
auto-generated __eq__, 151
auto-generated __init__, 153
auto-generated __repr__, 151
automatic conversion, 65
await expression, 163, 165-166
Await Expressions, 166

await expressions, 61, 162, 165, 168
awaitable, 163
awaitable object, 165-166
awaitable object, 166
Awaitable objects, 163
awaitable objects, 164
awaitable type, 163

B

backslash, 28, 32
backslash (\) character, 32
backslash characters, 28
backslashes, 29
base, 147
base and derived classes, 31
base class, 141, 147, 154
base class hierarchy, 144, 147
base class list, 127-128
base class object, 127, 138
base classes, 40, 127-128, 143-147
base type object, 137
base types, 40
BaseException, 76-77
bases classes, 144
behavior, 150
binary arithmetic operation, 65
Binary arithmetic operators, 65
Binary bitwise operators, 68
binary comparison operators, 70
binary integer literal, 34
binary numbers, 34
binary operation, 74
bind a new name, 73
binding, 17, 82

176

binding of the name, 17
bitwise (inclusive) OR, 68
bitwise AND, 68
bitwise AND (&) operator, 68
bitwise exclusive OR, 68
bitwise inversion, 68
Bitwise Operations, 68
Bitwise operations, 61
bitwise operations, 65
bitwise OR (|) operator, 68
bitwise XOR (^) operator, 68
Blank continuation lines, 29
Blank Lines, 28
block, 16-18
blocks, 17-18
bool, 49
bool type, 49
bool value, 69
Boolean condition, 100
Boolean Context, 45
Boolean context, 48, 88
boolean context, 45
Boolean expression, 69
Boolean expressions, 87
Boolean operation, 45
Boolean Operations, 69
Boolean operations, 61
Boolean type, 69
Boolean value, 46, 48-49, 69-70, 121
Boolean values, 99
boolean values, 70
Booleans, 101
break, 79
break Statement, 78

break statement, 72, 78-79, 87-88, 92
break statements, 100
built-in bytearray constructor, 57
Built-in decorators, 122
built-in dir function, 40
built-in frozenset constructor, 58
built-in function, 54
built-in function divmod, 66
built-in function len, 58
built-in functions, 61
built-in or user-defined, 44
built-in pow function, 66
built-in sequences, 71
built-in set constructor, 58
built-in types, 32, 45
built-in variables, 83
builtin bool function, 46
builtin callable() function, 117
builtin collection types, 51
builtin collections, 53
Builtin Compound Types, 44
builtin compound types, 47, 51
builtin data type, 56
builtin data types, 37
builtin enumerate function, 91
builtin exec function, 14
builtin exit or quit functions, 15
builtin filter function, 120
builtin function, 119
builtin function iter(), 157
builtin functions, 119
builtin help function, 124, 138
builtin id function, 37
builtin is, 38

177

builtin len function, 105
builtin list methods, 56
builtin map function, 120
builtin method type.mro, 146
builtin methods, 56
builtin next() function, 157
builtin object.__class__ attribute,

141
builtin or custom types, 136
builtin or user-defined, 138
builtin range function, 90
builtin sorted function, 141
builtin sum function, 91
Builtin type Function, 42
builtin type function, 24, 42
builtin type object, 136
builtin types, 44, 47, 156
builtins module, 17
builtins namespace, 17
Byte arrays, 57
byte type, 56
bytearray object, 57
bytearray objects, 57
bytes, 71
Bytes literals, 32
bytes literals, 32-33
bytes sequence type, 56
Bytes sequences, 56
bytes sequences, 57
bytes type, 32

C

C-style languages, 64, 70, 87, 111
C-style switch statement, 100

C3 Linearization algorithm, 144
call, 61
call expression, 116
Callable, 116
callable, 44, 61, 116-118
callable, 117
callable, 121
callable class object, 127
callable object, 61
callable object, 116
Calls, 61, 116
capture pattern, 103, 105
Capture patterns, 103-104
capture patterns, 107
capture subpattern, 106
captured name, 107
captured names, 107
case _ clause, 100
case clause, 100
case clauses, 100, 109
case expression, 102
catch-all case case _, 100
catch-all pattern, 102
catch-all wildcard pattern, 107
category of patterns, 108
character type, 55
chr, 55
class, 45, 108, 117, 124, 127, 129-130,

132-134, 141-142, 147, 150, 152
class, 128, 136, 148, 150, 154
class block, 17, 19
class declaration, 143
Class Decorators, 155
Class Definition, 127

178

class definition, 17, 31, 75, 122, 124-
125, 128-131, 134-136, 146

class definition, 19, 21, 85, 127-129,
142

Class definition block, 17
class definition scope, 129
class definition statement, 136
class definition suite, 138
class definitions, 16, 128
class definitions, 135
class functions, 136
class inheritance, 150
class inheritance hierarchy, 142-143
Class instantiation, 132
class manager, 98
class method, 125-126, 136
class methods, 125-126, 128
class name, 127-128, 141, 155
class object, 40, 42, 44, 117, 125-126,

129-132, 135-136
class object, 128-129, 131
Class objects, 116, 129
class objects, 61, 137
class of patterns, 102
class or instance, 125
class pattern, 108
Class patterns, 108
class patterns, 108
class statement, 129-130
class suite, 127
class suite statements, 129
class variable, 20, 22, 131
Class variables, 130
class variables, 128, 130, 136

Class vs instance variables, 20
class-based OOP languages, 148
class-level methods, 136
Class-private names, 31
class/type, 130-131
Classes, 155
classes, 128, 133, 148, 150
classes and inheritance, 148
Classes and Instances, 128
class’s __dict__ attribute, 128
class’s __dir__ method, 41
class’s docstring, 138
class’s suite, 128
clause, 85
clause header, 85
clause headers, 85
clauses, 85
cleanup code, 85
closest base class, 143
code block, 14, 16-17, 22, 80, 82
code block call chain, 23
code block module, 17
Code Blocks, 16
code blocks, 16, 22-23, 80
code point, 55
collection, 60
Collection objects, 157
collection of names, 153
collections, 71
collections.abc, 156
colon, 99
colon :, 32, 85, 108
comma, 60
comma-separated list, 58, 80

179

command line argument, 12
command line option, 83
commas, 61, 116
comment, 28
Comments, 28
comparison behavior, 70-71
comparison dunder methods, 70
comparison expressions, 99
comparison operations, 48, 101
Comparisons, 61, 70
compile error, 144
compile time, 18, 83, 148
complete program, 12, 14
complete Python program, 12, 14
complex, 35, 50
complex, 65
complex number, 35, 65, 67
complex number object, 50
Complex numbers, 50, 101
complex type, 50
compound statement, 85, 87, 110, 127
compound statements, 63, 72, 85, 99
compound types, 43, 51
comprehension, 53
comprehension, 53, 161
comprehension expression, 58
comprehension syntax, 53, 161-163
Comprehensions, 53
condition, 65, 88
conditional execution, 86
conditional expression, 64
Conditional Expressions, 64
Conditional expressions, 61
conditional statement, 64

consecutive logical lines, 30
constant hash values, 59
constant literal expressions, 101
constant literals, 101
constant string expression, 73
constant value objects, 153
constant values, 32
constructor, 22, 39, 44, 120, 131, 151
constructor, 130
constructor call, 52
constructor function, 120
constructor function, 129
constructor function parameters, 151
constructor functions, 42, 46
Constructors, 44, 51, 131
constructors, 44
constructors, 52
consumer, 169
context Expression, 97
context manager, 46, 85, 96-97, 168
context manager type, 97
context managers, 98
context manager’s __exit__, 98
continue, 88
continue Statement, 79
continue statement, 72, 79-80, 87-88
control flow statements, 85
copy module, 74
coroutine, 156, 164-167
coroutine function, 165-167
coroutine function definition, 165
coroutine function object, 165-166
Coroutine Functions, 165
coroutine object, 164-166

180

Coroutine Objects, 163
Coroutine objects, 164
coroutine objects, 164
coroutine.close(), 164
coroutine.send(value), 164
coroutine.throw(type, value,

traceback), 164
coroutines, 72, 86, 156-158, 165
coroutine’s __await__ method, 164
CPython implementation, 37
curly braces, 29, 53, 60
curly braces {}, 32
current code block, 23, 80
current module scope, 80
current package, 26
current scope, 18, 40
custom classes, 139
custom objects, 133
custom type, 45, 136

D

data, 37
data attribute, 39, 122, 124
data attributes, 133, 138, 151
data class, 150
Data Classes, 150
data classes, 151
Data encapsulation, 136
Data hiding, 136
data members, 39
data or method attribute, 147
data organization, 150
data stream, 157
dataclasses, 150

debug information, 138
debugging assertions, 83
debugging purposes, 141
decimal integer literals, 34
Decimal number, 34
decimal number, 34
declared names, 80
decorated class, 151-153
decorated functions, 122
decorated method, 123, 125-126
decoration, 126
decorator, 121, 125, 140
decorator expression, 155
decorator expressions, 155
decorators, 122
decrement, 90
def function definition, 110
def statement, 39, 129, 165
def statements, 135
default case, 100
default case, 101
default parameter values, 112
default value, 90, 112-113, 115
default value objects, 112
default values, 90, 112, 151
default values, 112
del (delete) statements, 56
del Statement, 82
del statement, 46, 59, 72, 82-83, 123-

124, 132
del statements, 58, 60
Deletion of a name, 82
Deletion of a target list, 82
Delimiters, 36

181

delimiters in the Python grammar, 36
derived class, 125, 143
derived class object, 125
design pattern, 158
diamond inheritance pattern, 145-

146
dict, 51-52, 71, 90
dict constructor, 52
dict object, 59
dict(), 52
Dictionaries, 59
dictionary, 59-60, 71, 89-90, 107-108
Dictionary comprehension, 59
dictionary comprehension, 59
dictionary literal syntax, 59
Dictionary literals, 53
difference, 66
different identities, 71
digits, 30, 34
dir function, 40
dir(), 40
dir() function call, 41
dir(cls), 40
dir(obj), 40
direct base classes, 144
direct base classes, 146
direct parent base class, 144
direct parent classes, 146
directory, 25
directory hierarchy, 26
directory on a file system, 25
Division, 66
division, 66
Division by zero, 66

docstring, 111
docstring of the type, 138
documentation, 73
dot, 25
dot notation, 39, 129
double precision, 50
double quotes, 32
double star subpattern, 108
double underscores, 130
duck types, 156
Duck typing, 41, 148
duck typing, 37, 46, 150
dunder, 130
dunder method, 118
dunder method __iter__, 157
dunder methods, 139
dunder names, 31, 137
dynamic programming languages,

148
dynamic type system, 156
dynamically typed, 156
dynamically typed programming

language, 148

E

effective value, 42, 44
Element insertion/deletion, 59
element type, 141
elements, 43, 62
elif lines, 87
Ellipsis, 48
Ellipsis and …, 49
ellipsis literal, 48
else clause, 78, 80, 86-87, 89, 92, 168

182

else clause’s suite, 87
Empty collections, 45
empty dictionary, 52-53
empty list, 52
empty sequence, 66, 89
empty set, 52
empty string, 138
empty tuple, 52
enclosed function/method blocks, 19
enclosing code blocks, 16
encoding, 27
encoding name, 27
end of a logical line, 28
end of input, 27
end of the compound statement, 15
end of the input, 14
end of the loop, 92
end of the physical line, 28
end-of-line character, 28
end-of-line sequence, 27
enter and exit methods, 168
entire module, 18
entire program, 16, 18
entry point, 158
enum, 153
enum __members__, 154
enum class, 154
enum member, 153
enum members, 153
enum members, 154
enum type, 153-154
enum type, 154
enum.Enum type, 153
enum.IntEnum, 153

enumerate, 85
enumerate function, 91
enumerate() function call, 92
Enums, 153
EOF signal, 15
equal, 151
equal sign, 33
equal sign =, 32, 108
equality, 71
equality and comparison-related

behaviors, 139
equality comparison, 71
error conditions, 98
Evaluation Order, 63
evaluation rules, 155
every type in Python, 149
exception, 23, 76-78, 153, 164
Exception chaining, 78
exception chaining, 76
exception group, 76
Exception handlers, 23
Exception handling, 23
exception handling, 85
exception handling mechanism, 23
exception type, 77
Exception(BaseException), 77
exceptional or error condition, 23
Exceptions, 23
execution, 85, 97, 158-159, 164
execution frame, 16, 128
execution frames, 16
execution of a code block, 23
execution of coroutine, 166
Execution of coroutines, 165

183

execution of the main module code
block, 23

execution of the program, 23
existing object, 41
Explicit joining, 28
explicit literal syntax, 53, 57
explicit set literal syntax, 58
exponent symbol, 35
expression, 10, 60-61, 63, 69, 72-73,

116, 124, 161
expression evaluation, 63
expression grouping purposes, 87
expression list, 38, 43, 54, 61-62, 72-

76, 84, 99, 113
Expression Lists, 61
Expression Statement, 72
Expression statement, 72
expression statement, 73
expression-target item, 98
expression-target pair, 98
Expressions, 29, 60
expressions, 32, 60-63, 72
expressions and statements, 10
expressions and values, 10
extra newline, 14

F

f-string, 32
f-string, 33
f-string expression, 111
f-string literal, 34
F-string literals, 33
f-strings, 32
False, 45, 69

False and True, 49
fields, 39, 151-153
fields or variables, 133
file argument, 16
file name, 12
file object, 97
file system, 26
file system directories, 25
File/Text Input, 14
filter, 120
filter function, 120
filtered list, 120
final physical line, 27
finalization code, 85
finally block, 46
finally clause, 76, 79-80
first argument, 125
fixed length pattern, 105
fixed-length pattern, 106
float, 50
float number, 67
float type, 50
floating numbers, 50
floating point, 65
floating point literal, 35
Floating point literals, 35
floating point number, 35, 65
floating point number literals, 35
floating point numbers, 34, 50, 66
floor division, 66, 68
Floor division and modulo, 66
flow of a program, 23
for "suite", 15
for - in - else Statement, 89

184

for - in statement, 154
for clause, 53-54, 59, 162
for clauses, 53
for complex statement, 79
for compound statement, 15
for in else statement, 167
for in statement, 90
for keyword, 54
for loop, 78, 80, 90, 149-150
for or while loop, 78-79
for statement, 85, 87, 90, 158
for statement implementation, 158
for-in-else statement, 89
format specifier, 32-33
format string, 32
formatted string literal, 32
formatted string literal, 34
Formatted string literals, 32
fractional power, 67
free variable, 81
from clause, 76
from left to right, 61, 63, 73-74, 82, 98,

104, 112-113, 142
from module import *, 31
from top to bottom, 86, 94
from X import Y syntax, 26
Frozen sets, 58
frozenset object, 58
fully-qualified name of the module,

25
function, 16, 39, 47, 76, 81, 110-111,

118, 120-121, 134-136, 159
function and class blocks, 18
function and iterable, 120

function arguments, 120
function block, 17, 19, 21
function body, 110, 113, 115, 159, 161
function call, 75, 81, 112, 114-116, 134
function call expression, 47, 76
function calls, 112-113
function decorator, 121
Function Decorators, 121
function decorators, 155
function def statement, 17, 85
Function Definition, 110, 118
function definition, 18, 20, 73, 75, 82,

110, 112, 114, 121
Function definition block, 17
function definition block, 16
function definition statement, 110
function definitions, 128-129
function execution, 160
function name, 110
function object, 20-21, 39, 110, 119,

129, 166
Function objects, 119
function object’s __doc__ attribute,

110-111
function of class definition, 78
function or class, 61
function parameter, 112, 136
function parameter list, 115
Function Parameters, 111
Function parameters, 16
function parameters, 111-112, 118
function scope, 81
function signature, 133
function-type arguments, 119

185

function/callable, 121
function/class definitions, 16
functional or imperative, 120
functions, 74, 120, 128, 133-135, 138
function’s docstring, 110
function’s return value, 73
functools module, 119, 121
functools.reduce function, 121
Future, 165
Future object, 163

G

garbage collected, 46
garbage collection process, 46
generalization of generators, 156
generator expression, 161-162
generator expression, 161
Generator Expressions, 161
generator expressions, 161, 163
generator function, 158-159
generator function, 159-160
Generator functions, 158
generator functions, 163
generator object, 158, 160
generator object, 160-162
generator-based coroutine, 156
generator.close method, 164
generator.send method, 164
generator.throw method, 164
GeneratorExit exception, 164
Generators, 156
generators, 156
Global, 20
global, 16, 18-22

global and nonlocal statements, 80
global declaration, 17, 20, 80-81
global namespace, 17, 128
global scope, 19-20
global scope, 20
global Statement, 80
global statement, 17, 20, 72, 80-82
global variable, 16, 19, 21, 80-81, 83
global variables, 18
global variables, 20, 81
global variables, 81
globals, 80-81
group pattern, 105
Group patterns, 103
grouping of statements, 30
guard, 101
guard conditional expression, 107
guard expression, 107

H

hash character, 28
help message, 138
here doc, 13
here string, 13
hexadecimal, 34
hexadecimal literal, 34
high-level asynchronous

programming, 86
high-order functions, 119
high-order functions, 120
higher-order functions, 119
HOF functions, 120

186

I

id function, 37-38, 70
id values, 38
Identifiers, 30
identifiers, 30-32
Identifiers and Keywords, 30
identifiers and literals, 60
Identities, 37
identities of the objects, 37
identity, 37
identity, 37, 71
identity and value, 41
Identity comparisons, 70
identity equality, 38
identity of a given object, 37
if, 87
if - elif - else Statement, 86
if - elif - else

statements, 99
if - else expression syntax,

64
if clause, 57
if compound statement, 21, 86
if expression, 64, 86
if or while condition, 45
if statement, 20, 85-87, 129
if/elif expressions, 86
imaginary literal, 35
imaginary number literal, 35
imaginary numbers, 34
immutable, 37, 42-44, 49, 152
immutable array, 56
immutable container types, 43
immutable data class, 152

immutable object, 42-43
immutable objects, 37, 42
immutable sequence, 55-56
immutable sequence type, 92
Immutable Sequences, 55
immutable set, 58
immutable type, 42
immutable types, 37, 41, 153
imperative languages, 10
imperative programming, 10,

85
implicit class object

argument, 126
implicit first argument, 124-126
Implicit joining, 29
implicit line joining rules, 28
implicit namespace package, 26
implicitly continued lines, 29
implied first argument, 125
import statement, 16, 24, 72
import statements, 16
import X.Y, 26
imported module, 14, 16
importing, 24
importing module, 16
in, 71
in keyword, 54
in operator, 71
incompatible orders, 144
increment, 90
INDENT and DEDENT tokens,

30
indentation, 29
indentation level, 85

187

indentation level of a line, 30
indentation levels, 30
Indentations, 30
indentations of the logical lines, 30
independent function, 124
index, 54
index and value, 92
index sets, 58
indexed pairs, 91
indexing, 60
inequality, 71
infinite loop, 88
Inheritance, 141
inheritance, 143, 148
inheritance tree, 147
inherited attributes, 144
inherits, 136, 138
initialization, 85
initialization code, 137
initializer, 135, 143
initializer method, 143
inner function definition, 19
innermost enclosing loop, 78-79
innermost enclosing scope, 81
input file, 12
input text, 12
insert, 56
insertion order, 59
instance, 21, 124-125, 129, 131-132,

142
instance method, 126, 135, 141-142
Instance methods, 135
instance methods, 128, 136
instance object, 39, 44, 117, 125-126,

129, 131-136
instance object, 133
instance object of type, 44
Instance objects, 133
instance objects, 130, 133-134, 137
instance of that class, 136
instance of the class, 131
instance variable, 20, 22, 135, 141-143
Instance variables, 134-135
instance variables, 135, 143
instance-specific attributes, 133
instances, 44, 71, 135
instances of the class, 130
instantiated instance object, 137
instantiation operation, 131
int, 49, 67
int type, 49
integer and exponent parts, 35
integer and float, 67
integer and float numbers, 101
integer argument, 68
integer arguments, 68
integer literal, 34
integer literal in base 8, 34
Integer literals, 34
integer sequence, 90-91
integer values, 86
Integers, 49
integers, 34, 49, 65, 68, 90
integral numbers, 68
interactive interpreter, 31
interactive main loop, 23
Interactive Mode, 14
interactive mode, 12, 14

188

interactive shell, 13
internal states, 45
interpreter, 12, 16, 23
inverse truth value, 70-71
is, 70
is not, 38, 70
isinstance, 150
issubclass, 150
item, 60
item of a collection, 44
items of a mutable object, 73
iter implementation, 167
iterable, 54, 120-121, 164
iterable, 57, 90, 92, 154, 157-158
iterable and callable, 156
iterable expression, 62
iterable object, 89
iterable object, 157-158
iterable type, 52, 62
iterable types, 62, 157
iterable unpacking, 62
iterables, 157
iteration, 64, 92, 164
iterations, 150
iterator, 89, 160, 162-164
iterator, 157-158, 160, 163-164
iterator methods, 164
iterator object, 157, 164
iterator type, 157, 159
iterator type, 163
Iterators, 157
iterators and generators, 157
iterator’s __next__ method, 158

K

key, 59-60
key-value pairs, 53
keys, 58-59
keys and values, 107
keyword argument, 108, 112, 114
keyword argument syntax, 52, 111
keyword arguments, 108, 111-112,

115, 118
keyword class, 127
keyword global, 80
Keyword only parameters, 111
keyword only parameters, 111
keyword patterns, 109
keyword varargs parameter, 115
keyword-only, 111, 118, 153
keyword-only parameter, 112, 114-

115
keyword-only parameter separator,

114
keyword-only parameters, 114-116,

118
keyword-only varargs argument, 115
Keywords, 31
keywords, 31
keywords of the language, 31
kwargs, 115

L

Lambda, 117
Lambda expression, 118
Lambda expression, 119
Lambda Expressions, 118
Lambda expressions, 61, 117, 119-120

189

lambda expressions, 119
Lambda function, 117
lambda function, 121
last case clause, 101
leading and trailing underscore

characters, 31
leading dots, 26
leading or trailing element, 55
leading whitespace, 30
left <<, 68
left hand side, 63, 73
left hand side target, 63
left shift, 68
left to right, 147
left-hand side, 63, 73, 123
left-to-right ordering, 144
len, 54, 56
len builtin function, 56
len function, 57
length of a tuple, 56
length of the tuple, 109
lexical delimiters, 36
lexical tokens, 60
lexically ordered, 40
lifecycle of the coroutine, 165
Lifetime of an Object, 46
Line Structure, 27
line termination sequences, 29
linearization, 146
linearization of the base classes, 145
line’s indentation, 30
list, 43-44, 56, 62, 120
list, 55, 57
List comprehension, 57

list comprehension, 57
list comprehension syntax, 57
list constructor, 120
list literal, 53
list literal expression, 57
list object, 113
list of objects, 149
list of strings, 40
list type, 56
list() constructor, 52
Lists, 56
lists, 42
lists and dictionaries, 37
Lists, sets, and dictionaries, 53
lists, tuples, and dictionaries, 157
list’s items, 43
literal, 53
literal characters, 32
Literal concatenation, 33
literal expression, 58
literal None, 102
literal pattern, 106
Literal patterns, 101
literal patterns, 101
literal representation, 52
Literal syntax, 53
literal syntax, 44, 52-53
Literals, 32
literals, 32
local, 16, 18-19, 22
local namespace, 110, 127-128
local or global namespace, 82
local scope, 19-20, 24, 82
local to the module, 18

190

local variable, 16, 19-21
local variables, 17
logical line, 27-28, 72
Logical lines, 27
logical lines, 27
loop, 78-80
loosely typed programming

language, 37

M

Magic methods, 137
main code block, 22
main module, 14, 22
main.py, 169
mangled form, 31
mangled names, 137
map, 119
map and filter functions, 119
map function, 120
map object, 120
map, filter, and reduce, 119-120
mapping, 58, 107
mapping elements, 107
mapping expression, 108
mapping object, 52, 58, 60
mapping pattern, 108
Mapping patterns, 107
Mapping types, 58
mapping types, 57, 107
Mappings, 51, 58
match - case Statement, 99
match - case statements, 99
match process, 99
match statement, 85, 99-101, 108-109

matched case, 100
matched expression, 104
matching case, 100
matching single quotes, 32
member of an enum, 153
member-wise comparison, 140
members, 153
members of the enum, 153
Membership test operations, 71
method, 39
method, 133, 143, 149-150, 152
method attributes, 133, 138
method call syntax, 39, 125
method definition, 20
method resolution order, 144
method syntax, 136
methods, 133-134, 152
Methods of built-in objects, 116
methods of built-in objects, 61
methods of class instances, 61
Methods of instance objects, 117
method’s docstring, 123
modern programming languages,

156, 158
modular, 128
module, 24-25, 129
module, 24
module level, 16
module name, 12
module object, 24
ModuleNotFoundError exception, 24
Modules, 24
modules, 16, 24-25
module’s __name__ attribute, 25

191

Module’s qualified names, 25
modulo operator, 66
modulo operators, 66
MRO, 144, 147
multiple assignment, 38
multiple consecutive underscores, 34
Multiple inheritance, 144
multiple inheritance, 127, 146-147
multiple inheritance syntax, 142-143
multiple lines, 161
multiple logical lines, 27
multiple names, 74
multiple physical lines, 34
multiplication, 63, 68
mutability/immutability, 42
mutable, 37, 42-44, 57, 112-113, 135
mutable elements, 43
mutable mapping type, 59
mutable object, 44, 73
mutable objects, 42
mutable parameter, 113
mutable sequence, 56
Mutable Sequences, 56
mutable set, 58
mutable set object, 58
mutable type, 42
mutable types, 37, 41
Mutable vs Immutable Types, 42

N

name, 16-18, 20, 37, 60
name args, 114
Name Binding, 16
name binding, 18

name binding and use, 80
name binding operations, 16
name hiding, 137
name in a block, 17
name in a code block, 17
name mangling, 137
name of the constructor function, 44
name of the type, 44, 142
name resolution, 17
named expression, 99
NameError, 17
NameError exception, 82-83
Names, 16
names, 16, 30-31
names in the current scope, 40
names/references, 37
namespace of __main__, 14
namespace of a special module,

__main__, 12
namespace package, 26
Namespace packages, 26
namespace packages, 25-26
namespaces, 24
negation, 65
negative number, 67
negative repetition factor, 66
nested scope, 19
new attribute, 39
new attributes, 133
new class, 153
new class object, 44
new enum class, 153
new line, 92
new list object, 57

192

new name, 20, 73
new object, 22
new objects, 41
new scope, 19-20
new type, 117
new types, 154
new value, 82
new values, 41
new variable, 19
newline, 32, 99
NEWLINE token, 27-28
newly created instance object, 137
next iteration, 80
next method, 167
non-callable object, 117
non-global code block, 80
non-interactive mode, 23
non-local, 22
non-local variable, 19, 82
non-optional parameters, 118
non-package module, 25
None, 47, 73, 121, 164
None and False, 45
None return value, 75
NoneType simple type, 47
nonlocal, 19
nonlocal, 82
nonlocal declaration, 17, 19
nonlocal Statement, 81
nonlocal statement, 17, 19, 72, 81
normal assignments, 74
normal function call syntax, 134
not operator, 69
NotImplemented, 48

NotImplemented type, 48
null operation, 75
number of bits, 68
Numbers, 49
numbers module, 49
numbers, strings, and tuples, 37
numbers.Integral type, 49
numbers.Number, 49
numbers.Real, 50
numeric argument, 65
Numeric literals, 34
numeric literals, 34
Numeric objects, 49
numeric types, 45, 49
numeric values, 49
numerical, 48
numerical type, 49

O

object, 37, 39-40, 45-46, 73-74, 117,
127, 134, 136, 149, 153

object, 40, 70, 141-145, 149
object in Python, 41
object method calling syntax, 134
object of a custom type, 45
Object Oriented Programming, 136
object oriented programming, 128
object-based programming language,

148
object.__class__ attribute, 150
Objects, 51
objects, 16, 25, 43, 45-46, 51, 61, 70,

116, 128, 135, 148, 151, 153
objects, 37

193

objects of immutable types, 41
objects of the simple types, 49
objects' attributes, 102
Objects' identities, 38
objects' identities and values, 39
object’s __dir__ method, 40
object’s __next__ method, 157
object’s attribute reference, 60
object’s behavior, 41
object’s class, 137
object’s docstring, 138
object’s identity, 70
object’s memory address, 37
object’s type object, 42
octal, 34
one or more underscores, 137
one underscore, 137
one-element sequence pattern, 106
OOP, 128, 141, 147
OOP languages, 124, 148
OOP programming languages, 130
operands, 67
operating system, 46
operations, 41
operator not, 69
operator not in, 71
operator precedence rules, 63
Operators, 36
operators, 74
operators and expressions, 10
operators and operands, 60
operators in and not in, 71
operators in Python, 36
optimization, 83

optional, 112
optional argument, 75
Optional default values, 151
optional newlines, 14
optional parameter, 112-113
Optional Parameters, 112
optional separator, 111
or expression, 70
or operation, 69
or operator, 69
OR pattern, 104
OR patterns, 104
ord, 55
order, 144-145
ordered map, 115
ordering, 141
ordinary identifiers, 31
outer function scope, 19
output lines, 15
overall value, 43

P

package, 25
package __init__.py file, 26
Package Relative Imports, 26
Packages, 25
packages, 25
packages, 25
packages in Python, 25
package’s __init__.py file, 25
package’s namespace, 25
parameter, 133
parameter list, 111, 116, 134
parameter=value syntax, 111

194

parameters, 111
parent, 147
parent class, 141
parent module, 26
parent package name, 25
parent packages, 25
parentheses, 29, 53, 56, 60, 87, 105-

106, 116, 127, 141, 161-162
parentheses (), 105
Parentheses and square brackets, 106
parenthesis call syntax, 117
parenthesized expression, 33
pass, 75
pass Statement, 75
pass statement, 72, 75, 99
pass statements, 75
path.open function, 97
pattern categories, 100, 105
pattern enclosed in parentheses, 103
Pattern matching, 99
pattern matching, 85, 105, 109
Patterns, 101
patterns, 107, 109
period, 35, 60
Pet.__repr__, 142
physical line, 27-29, 99
Physical line joining, 28
Physical lines, 27
physical lines, 28
placeholder, 75
placeholders, 75
plain string literals, 33
polymorphism, 148
pop, 56

positional, 108
positional argument, 109, 112, 114
positional argument patterns, 109
positional argument syntax, 111
positional arguments, 109, 112, 114,

118
Positional only parameters, 111
positional only parameters, 111
Positional or keyword, 111
positional or keyword, 118
positional parameters, 109, 112, 118
positional patterns, 109
positional syntax, 114
positional varargs argument, 114
positional varargs parameter, 114
Positional vs keyword, 118
positional-only, 111, 118
positional-only parameter, 112, 115
positional-or-keyword, 118
power, 66
power of a negative number, 67
power operator, 66
precedence, 63
predefined attributes, 130-131
prefix **, 115
previously bound variables, 81
primaries, 60
primary, 60
print call, 21-22
print call statement, 21
print function, 18, 21, 47
print function call, 22, 80
print function call, 141
print statement, 79

195

private, 137
private attributes, 136
procedural programming, 10
producer, 169
producer and consumer modules,

169
Producer Consumer Problem, 168
product, 65
Program Start and Termination, 22
program text, 12, 27
program/module, 18
programming languages, 39, 74, 120,

147
project folder, 169
Prompt, 15
prompt, 38
property, 122-124
property constructor function, 122
prototype, 148
pseudo-polymorphism, 148
public API, 137
Python 3.10, 11
Python 3.11, 23, 93
Python 3.11+, 92-93
Python builtin function, 56
Python code, 13, 24
Python code in a module, 24
Python grammar, 27
Python import system, 25
Python interpreter, 12-15, 22-23, 25,

27, 41, 62, 83, 128-129, 132
Python keywords, 161
Python lexical analyzer, 30
Python module, 12

Python objects, 24
Python objects, 129
Python program, 14, 16
Python programs, 37
Python REPL, 14-15, 47, 77
Python REPL prompt, 15
Python runtime, 46, 137
Python script, 12
Python script/module, 26
Python source code, 27
Python source code file, 27
Python source file, 18, 25
Python source files, 27
Python’s coroutines, 168
Python’s type system, 24

Q

quote characters, 32
quotient, 66

R

raise - from syntax, 78
raise Statement, 76
raise statement, 72, 76, 85, 96
raised exception, 23
raised exceptions, 77
random.shuffle function, 141
range, 85, 91
range function, 78, 90
range of items, 60
raw strings, 32
Re-raising, 77
real and imag, 50
real and imaginary number literals,

196

35
real and imaginary parts, 50
Real numbers, 50
rebind an existing name, 73
record, 150
record-like class, 150
recursive implementation, 105
reduce function, 119, 121
reference, 37
regular modules, 25
regular package, 25
Regular packages, 25
regular packages, 25-26
related dunder methods, 140
relative import, 26
Relative imports, 26
relative imports, 26
remainder, 66
remove, 56
repeated execution, 87
REPL, 13, 38
REPL mode, 23
REPL prompts, 15
replacement field, 33
replacement fields, 32
Reserved classes of identifiers, 31
reserved words, 31
result of the last evaluation, 31
return, 76
return, 120
return Statement, 75
return statement, 72, 75, 160
return value, 97
reverse, 56

right >>, 68
right hand side, 38, 63, 73
right shift, 68
right-hand side, 63, 74
run time, 32, 37, 148, 150
run-time error, 23
runaway iteration, 88
running program, 14
runtime polymorphism, 148
RuntimeError, 76
RuntimeError exception, 164

S

same attributes, 132
same identity, 71
same object, 70, 74, 151
same objects, 44
same priority, 65
same sign, 66
sample program, 169
Scope, 17
scope, 17-19, 82
Scope Examples, 18
scope of a local variable, 17
scope of the names, 17
scopes, 80
scopes of the variables, 18
self, 124, 133-136
self object, 133, 135
semicolon-separated, 85
semicolons, 72
separate variable, 163
separated by commas, 105
separator, 111

197

separator *, 111
separator /, 111
sequence, 54-55, 60, 89-91, 141
sequence and mapping patterns, 108
sequence expression, 105
sequence object, 60
sequence of characters, 27
sequence pattern, 105, 107
Sequence patterns, 105
sequence patterns, 104-105
sequence repetition, 66
sequence type, 153
sequence type object, 54
sequence types, 57
Sequence unpacking, 54
sequence unpacking, 74
sequence with zero elements, 105
Sequences, 51, 54
sequences, 66
series of arguments, 61
series of statements, 128
set, 51, 58
set, 57
Set comprehension, 58
set comprehension, 58
set comprehension syntax, 58
set literal, 53
set literal, 58
Set Types, 57
set types, 57
set types, 71
set(), 52
Sets, 51, 58
shallow and deep copying, 74

shift operators, 68
Shifting operations, 61
side effects, 72
simple and complex types, 51
simple or compound statements, 85
simple statement, 72
Simple statements, 72
simple statements, 72-73, 85
simple vs compound types, 47
single entry point, 156
single expression, 61
single leading dot, 26
single line, 72
single logical line, 28
single module, 18
single object, 74
single-expression expression lists, 62
singleton object, 49
singleton type, 48
slice, 54
slice item, 60
slice items, 60
slice list, 60
Slicing, 54
slicing operation, 60
Slicings, 60
smallest enclosing function scope, 18
smallest enclosing scope, 17
software development process, 156
sort, 56
source file, 27
special method, 137
special pattern _, 101
square brackets, 29, 53, 60

198

square brackets [], 105
square root, 67
stack traceback, 23
standard input, 12
standard library, 31, 74, 150, 161, 165
standard library module gc, 46
standard line termination sequences,

27
standard modules, 156
star capture pattern, 105
star named expressions, 99
star pattern, 105
star subpattern, 105
start of iteration, 87
statement, 27, 72, 75
statement suite, 64
Statements, 72
statements, 85, 97-98, 119
static fields, 130
static method, 124-125, 136
static methods, 124-125, 128, 130
static type checking, 156
static variables, 130
statically typed, 46
StopAsyncIteration, 163
StopIteration, 89, 157-158, 160
StopIteration exception, 163-164
String, 32
string, 55, 71
string, 55, 92
String and bytes literals, 32
string and bytes literals, 32
string concatenation, 33
string context, 138-139, 141-142, 144

string elements, 109
string expressions, 33
string literal, 28, 32, 73
String literal concatenation, 33
string literal expression, 110, 138
string literals, 28, 32-34
string object, 55
string representation, 139, 154
string representations, 139
string type, 55
string values, 49
string, tuple, or list, 60, 89
Strings, 55
strings, 101
strongly typed OOP languages, 149
struct type, 150
structurally equivalent, 148
structured Python programs, 128
structures and values, 105
subclass, 126, 142, 149
subject expression, 101, 103-109
subject sequence, 105
subject value, 103
Subpackage names, 25
subpackages, 26
subpattern, 105
subpatterns, 105, 107
subscript notation, 58
Subscription, 60
subscription, 60
subscription syntax, 57
Subscriptions, 60
substring, 71
subtype of object, 136, 141

199

subtypes, 153
subtypes of object, 70
suite, 85, 89
suites, 86, 100
sum, 66
super, 147
super class, 141
super method, 144
super method, 147
super(), 143-144, 147
surrounding code block, 23
switch - case statement, 100
switch statement in C, 100
synchronous iterator, 167
syntactic sugar, 134
SyntaxError exception, 18, 27
system resources, 46
System-defined names, 31
system-defined names, 40
SystemExit, 23

T

target of assignments, 58
targets in assignment, 60
Task, 165
temporary variable, 70
terminal, 12
termination, 88
ternary operator ? :, 64
the for loop, 157
the parameter self, 135
token, 28
Tokens, 30
tokens, 27, 32, 36

top-level code block, 16
top-level compound statement, 14
top-level namespace, 17
top-level parent package, 26
traditional OOP language, 149
trailing comma, 53, 61-62, 74, 105,

116
trailing newline, 168
triple quoted string literal, 34
triple-quoted multiline strings, 29
triple-quoted strings, 29
True, 45, 48, 69
True or False, 69
truly immutable, 42, 55
truth value, 45, 47
truth value of an object, 45
truth values, 45, 49
try - except, 23
try - except statement, 77
try - except*, 23
try Statement, 92
try statement, 46, 76, 85
try…except…finally, 96
tuple, 38, 43, 54, 56, 62, 76, 84, 99
tuple, 53-54, 56, 60
tuple and list, 51
tuple element, 109
tuple literal, 62
tuple object, 43, 61
tuple object, 54
Tuple packing, 54
tuple packing, 54, 74, 76
tuple type, 109
tuple unpacking, 38

200

tuple() type constructor function,
52

tuple, list, set, and dict, 51
Tuples, 43, 56
tuples, 42-43, 53, 56
tuples and lists, 44, 51
tuples, lists, and strings, 105
Tuples, Lists, Sets, and Dictionaries,

51
tuples, lists, sets, and dictionaries, 51
tuples, lists, sets, and dicts, 51
Two leading dots, 26
two underscores, 137
two-element tuple, 106
type, 24, 39-42, 117, 133, 149, 153-154,

157, 164
type, 37
type, 42, 44
type and value, 67
type annotations, 151
type constructors, 51
type error, 126
type hints, 156
type inheritance, 141, 154
type NoneType, 47
type of a module object, 24
type of an object, 37, 41
type of type, 42
type of type, 44
type system, 37
type systems, 150
type type, 127
type.__name__, 142
type/class, 42, 44, 134

TypeError, 68, 117
TypeError exception, 65, 145
Types, 41, 47
types, 37, 47, 51
types and values, 45
types in Python, 44
types of objects, 42
types/classes, 44
type’s constructor function, 109
typing module, 156

U

unary + (plus) operator, 65
unary - (minus) operator, 65
unary and binary, 61
unary arithmetic, 65
Unary arithmetic operators, 65
Unary bitwise operator, 68
unary ~ (inversion) operator, 68
unbind a name, 46
unbound name, 83
UnboundLocalError, 17
underscore, 30, 34
underscore _, 16, 103
underscore _, 137
Underscores, 34
Unicode code points, 27, 55
unicodedata module, 30
union of the types, 69-70
unique ordering, 144
uniquely identifying keyword, 85
Unix pipe, 13
Unix shell, 13, 15
Unpacking, 62

201

unpacking syntax, 55, 92
use cases, 91
user-defined classes, 71, 153
user-defined compound types, 51
user-defined function, 110
user-defined functions, 61, 116
User-defined objects, 60
user-defined types, 71, 135, 139, 142
uses of the name, 17
UTF-8, 27

V

Valid arguments, 118
valid expression, 70
valid multiple inheritance, 145
valid names, 46
valid Python program, 145
value, 37
value, 39, 43-44, 60, 154
Value comparisons, 70
value equality, 38
value equality semantics, 151
value of an expression, 47, 62
value of an expression list, 62
Value patterns, 102
value vs reference, 149
values, 151, 153
values of objects, 37
values of the objects, 37
varargs argument, 114
varargs arguments, 111
varargs functions, 116
varargs parameter, 114
varargs parameters, 115

variable, 19, 64, 81-82, 97, 119, 131,
148-149, 161

variable __debug__, 83
variable binding, 19
variable length pattern, 105
variables, 74, 82, 92, 128
vertical bars |, 104

W

walrus operator, 97
warning or error, 48
while - else Statement, 87
while and for statements, 87
while clause, 64
while loop, 88
while statement, 85, 87-88
while statement’s execution, 87
while/for suite, 87
whitespaces, 33
wildcard expression _, 100
wildcard pattern, 101, 105
wildcard pattern _, 107
with compound statement, 96
with header, 98
with operators, 61
with Statement, 96
with statement, 46, 85, 97-98, 168
with statement suite, 98
with statements, 98

Y

yearly release schedule, 87
yield, 158
yield expression, 159

202

yield expression statement, 159
yield expression/statement, 159-160
yield Expressions, 159
yield expressions, 72, 160
yield expressions/statements, 161
yield simple statement, 159
yield statement, 72, 159-160
yield statements, 167
yields the control, 160

Z

Zero, 67
zero value, 45
ZeroDivisionError exception, 66-

67

203

About the Author
Harry Yoon has been programming for over three decades. He has
used over 20 different programming languages in his academic and
professional career. His experience spans broad areas from scientific
programming and machine learning to enterprise software and Web
and mobile app development.

He occasionally hangs out on social media:

• Instagram: @codeandtips [https://www.instagram.com/codeandtips/]

• TikTok: @codeandtips [https://tiktok.com/@codeandtips]

• Twitter: @codeandtips [https://twitter.com/codeandtips]

• YouTube: @codeandtips [https://www.youtube.com/@codeandtips]

• Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

Other Programming Books by the
Author

• The Art of Go - Basics: Introduction to Programming in Golang -
Beginner to Intermediate

• The Art of C# - Basics: Introduction to Programming in Modern C# -
Beginner to Intermediate

• Python for Serious Beginners: A Practical Introduction to Modern
Python with Simple Hands-on Projects

204

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/

About the Series
We are creating a number of books under the series title, A Hitchhiker’s
Guide to the Modern Programming Languages. We cover essential
syntax of the 12 select languages in 100 pages or so, Go, C#, Python,
Typescript, Rust, C++, Java, Julia, Javascript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach
you different ways of programming, and more importantly, different
ways of thinking.

All Books in the Series

Already published, or to be published, throughout
2023

• Go Mini Reference

• Modern {cs} Mini Reference

• Python Mini Reference

• Typescript Mini Reference

• Rust Mini Reference

• C++20 Mini Reference

• Modern Java Mini Reference

• Julia Mini Reference

• Javascript Mini Reference

• Haskell Mini Reference

• Scala 3 Mini Reference

• Lua Mini Reference

205

Community Support
We are building a website for programmers, from beginners to more
experienced. It covers various coding-related topics from algorithms to
machine learning, and from design patterns to cybersecurity, and more.
You can also find some sample code in the GitLab repositories.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Please join our mailing list, join@codingbookspress.com, to receive
coding tips and other news from Coding Books Press, including free, or
discounted, book promotions. If we find any significant errors in the
book, then we will send you an updated version of the book (in PDF).
Advance review copies will be made available to select members on the
list before new books are published.

Request for Feedback
If you find any errors or typos, or if any part of the book is not very
clear to you, or if you have any general suggestions or comments
regarding the book, then please let us know. Although we cannot
answer all the questions and emails, we will try our best to address the
issues that are brought to our attention.

• feedback@codingbookspress.com

Please note that creating and publishing quality books takes a great
deal of time and effort, and we really appreciate the readers' feedback.

Revision 1.1.1, 2023-05-14

206

https://www.codeandtips.com
https://gitlab.com/codeandtips
mailto:join@codingbookspress.com
mailto:feedback@codingbookspress.com

	Python Mini Reference 2023: A Quick Guide to the Modern Python Programming Language for Busy Coders
	Copyright
	Preface
	Chapter 1. Introduction
	Chapter 2. Python Programs
	2.1. �File/Text Input
	2.2. �Interactive Mode

	Chapter 3. Program Execution
	3.1. �Code Blocks
	3.2. �Name Binding
	3.3. �Scope
	3.4. �Scope Examples (Optional)
	3.5. �Program Start and Termination
	3.6. �Exceptions

	Chapter 4. Packages & Modules
	4.1. �Modules
	4.2. �Packages
	4.3. �Package Relative Imports

	Chapter 5. Python Source Code
	5.1. �Line Structure
	5.2. �Tokens
	5.3. �Identifiers and Keywords
	5.4. �Literals
	5.5. Compound Type Literals
	5.6. �Operators
	5.7. �Delimiters

	Chapter 6. Objects
	6.1. �Identities
	6.2. �Attributes
	6.3. �Types
	6.4. �Builtin type Function
	6.5. �Mutable vs Immutable Types
	6.6. �Constructors
	6.7. �Boolean Context
	6.8. �Lifetime of an Object

	Chapter 7. Simple Types
	7.1. �None
	7.2. �NotImplemented
	7.3. �Ellipsis
	7.4. �Numbers

	Chapter 8. Compound Types
	8.1. �Tuples, Lists, Sets, and Dictionaries
	8.2. �Sequences
	8.3. �Immutable Sequences
	8.4. �Mutable Sequences
	8.5. �Set Types
	8.6. �Mappings

	Chapter 9. Expressions
	9.1. �Expression Lists
	9.2. �Evaluation Order
	9.3. �Assignment Expressions
	9.4. �Conditional Expressions
	9.5. �Arithmetic Conversions
	9.6. �Arithmetic Operations
	9.7. �Bitwise Operations
	9.8. �Boolean Operations
	9.9. �Comparisons

	Chapter 10. Simple Statements
	10.1. �Expression Statement
	10.2. �Assignment Statement
	10.3. The �pass Statement
	10.4. The �return Statement
	10.5. The �raise Statement
	10.6. The �break Statement
	10.7. The �continue Statement
	10.8. The �global Statement
	10.9. The �nonlocal Statement
	10.10. The �del Statement
	10.11. The �assert Statement

	Chapter 11. Compound Statements
	11.1. The �if - elif - else Statement
	11.2. The �while - else Statement
	11.3. The �for - in - else Statement
	11.4. The �try Statement
	11.5. The �with Statement

	Chapter 12. Pattern Matching
	12.1. The �match - case Statement
	12.2. �Patterns

	Chapter 13. Functions
	13.1. �Function Definition
	13.2. �Function Parameters
	13.3. �Optional Parameters
	13.4. �"Varargs" Functions
	13.5. Function Call
	13.6. �Lambda Expressions
	13.7. �map, filter, and reduce
	13.8. �Function Decorators

	Chapter 14. Classes
	14.1. �Class Definition
	14.2. �Classes and Instances
	14.3. �Object Oriented Programming
	14.4. �Data Classes
	14.5. �Enums
	14.6. �Class Decorators

	Chapter 15. Coroutines & Asynchronous Programming
	15.1. �Generators
	15.2. �yield Expressions
	15.3. �Generator Expressions
	15.4. �Coroutine Objects
	15.5. �Coroutine Functions
	15.6. �Await Expressions
	15.7. Other �async Statements
	15.8. �Producer Consumer Problem

	A. How to Use This Book
	Index
	About the Author
	About the Series
	Community Support

