
Lua Mini Reference 2023
A Quick Guide to the Lua Scripting

Language for Busy Coders

Harry Yoon

Version 1.1.3, 2023-05-14

Copyright
Lua Mini Reference:
A Quick Guide to the Lua Scripting Language

© 2022-2023 Coding Books Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor its dealers and distributors
will be held liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Published: November 2022

Harry Yoon
San Diego, California

ISBN: 9798362177249

1

Preface
Few people who program actually go through any kind of formal
learning process, for any programming languages. They just "pick up"
pieces of information, here and there, and most of the time they learn
by trials and errors, "on the job", so to speak.

This is especially true for languages like Lua. Many people pick up Lua
while using beginner-friendly tools like Roblox, bit by bit. To many
people who have experience with other programming languages, on the
other hand, Lua appears to be an easy language (as in "not a serious
language"), which does not require learning.

Clearly, these are misconceptions. Learning this way has, obviously,
limitations. That is like building a house on the sand. Your progress will
be slow in the long run when you are on the shaky ground. (And, Lua is
no different from other "more professional languages".) This book will
help you build a solid foundation on your future Lua programming
journey. It goes through all the essential features of the language, not
just the syntax, but all the crucial concepts.

This book is written for a broad audience with diverse background. We
cover topics ranging from the absolute basics to rather advanced
subjects. However, it is not for complete beginners. It is written as a
reference style. Some basic programming knowledge is required to get
the most out of this book. It should be noted that this book is not a
tutorial on how to program in Lua.

On the flip side, although it is written as a reference, you can read, or
browse, this book more or less from beginning to end to get the overall
picture of the Lua programming language, as well as basic usages of all
core library functions, if you have some experience in programming in
Lua or some other similar languages.

2

Dear Readers:

Please read b4 you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are
small ones and there are big ones. Some blocks are straight and some
are L-shaped. You use these lego blocks to build spaceships or
submarines or amusement parks. Likewise, you build programs by
assembling these building blocks of a given programming language.

This book is a language reference, written in an informal style. It goes
through each of these lego blocks, if you will. This book, however, does
not teach you how to build a space shuttle or a sail boat. If this
distinction is not clear to you, it’s unlikely that you will benefit much
from this book. This kind of language reference books that go through
the syntax and semantics of the programming language broadly, but not
necessarily in gory details, can be rather useful to programmers with a
wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start
learning a foreign language, for instance, you do not start from the
grammar. Likewise, this book will not be very useful to people who
have little experience in real programming. On the other hand, if you
have some experience programming in other languages, and if you
want to quickly learn the essential elements of this particular language,
then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for
you. But, as stated, this book is written for a wide audience, from
beginner to intermediate. Even experienced programmers can benefit,
e.g., by quickly going through books like this once in a while. We all
tend to forget things, and a quick regular refresher is always a good
idea. You will learn, or re-learn, something "new" every time.

Good luck!

3

Table of Contents
Copyright . 1

Preface. 2

1. Introduction. 10

2. Lua Interpreter . 16

2.1. Lua Scripts . 16

2.2. Lua REPL. 18

2.3. LuaJIT . 19

3. Lua Program Execution . 20

3.1. Chunks. 20

3.2. Blocks. 21

3.3. Block Defining Statements . 22

3.4. The do Block Statement. 23

3.5. Scoping . 23

3.6. Environments . 24

3.7. Lua’s Global Variables . 25

3.8. The print Function . 25

3.9. The dofile Function. 25

3.10. The load Function . 27

3.11. The loadfile Function . 28

4. Modules . 30

4.1. The require Function . 30

4.2. Table-Based Modules . 31

5. Lexical Elements. 34

5.1. White Spaces . 34

5.2. Comments. 34

5.3. Names . 35

5.4. Keywords . 36

4

5.5. Operators . 36

6. Builtin Type Literals . 37

6.1. Nil and Booleans . 37

6.2. Numerals . 37

6.3. String Literals . 38

7. Types . 41

7.1. Values and Types . 41

7.2. The type Function . 42

7.3. Nil . 43

7.4. Boolean . 44

7.5. Number . 44

7.6. String . 46

7.7. Functions . 48

7.8. Userdata . 48

7.9. Thread . 48

7.10. Table . 49

8. Variables . 51

8.1. Local Variables . 51

8.2. Attributes . 52

8.3. Table Fields . 54

8.4. Global Variables . 54

9. Expressions . 56

9.1. Basic Expression Types . 56

9.2. Arithmetic Operators. 58

9.3. Bitwise Operators . 59

9.4. Relational Operators . 59

9.5. Logical Operators . 61

9.6. The Length Operator . 62

9.7. Operator Precedence . 64

5

9.8. Conversions . 65

10. Anonymous Functions . 66

10.1. Function Definitions . 66

10.2. Method Syntax . 68

10.3. Function Parameters . 68

10.4. Function Calls . 69

10.5. Method Call Syntax . 70

11. Statements . 71

11.1. Empty Statements. 71

11.2. Multiple Assignments . 72

11.3. Label Statements . 73

11.4. Goto Statements . 73

11.5. Break Statements . 73

11.6. Return Statements . 74

11.7. If Statements . 74

11.8. For Statements. 75

11.9. While Statements . 76

11.10. Repeat Statements . 77

12. The Math Library . 78

12.1. Math Constants . 78

12.2. General Functions . 78

12.3. Basic Math Functions . 79

12.4. Rounding Functions. 80

12.5. Trigonometric Functions . 81

12.6. Min and Max Functions . 82

12.7. Random Functions . 82

13. Strings - Basics . 87

13.1. String Concatenation . 87

13.2. The string.len Function . 88

6

13.3. The string.lower Function . 89

13.4. The string.upper Function . 89

13.5. The string.rep Function . 89

13.6. The string.reverse Function . 90

13.7. The string.format Function . 90

14. String Manipulation . 91

14.1. The string.sub Function . 91

14.2. The string.find Function. 92

14.3. The string.match Function . 92

14.4. The string.gmatch Function . 93

14.5. The string.gsub Function. 94

15. Regular Expressions . 95

15.1. The Patterns. 95

15.2. The Captures . 98

16. Tables . 99

16.1. Table Constructors . 99

16.2. The table.pack Function . 101

16.3. The table.unpack Function . 102

16.4. The table.concat Function . 102

16.5. The table.insert Function . 103

16.6. The table.remove Function . 104

16.7. The table.move Function . 104

16.8. The table.sort Function . 105

17. Metatables . 107

17.1. The __index Metavalue . 107

17.2. The __newindex Metavalue . 108

17.3. The __metatable Metavalue . 108

17.4. The getmetatable Function . 109

17.5. The setmetatable Function . 109

7

18. Metamethods . 111

18.1. The __call Method. 111

18.2. The __len Method . 112

18.3. The __concat Method . 112

18.4. Arithmetic Operations. 112

18.5. Comparison Operations . 114

18.6. Bitwise Operations . 115

19. Iterators . 117

19.1. The pairs Function. 117

19.2. The ipairs Function . 117

19.3. The __pairs Metamethod . 118

19.4. The next Function . 120

19.5. The select Function . 122

20. Object Oriented Programming in Lua. 123

20.1. Factory Methods . 124

20.2. Classes and Constructors . 125

21. The OS Functions . 131

21.1. The os.date Function . 131

21.2. The os.time Function . 132

21.3. The os.clock Function . 133

21.4. The os.getenv Function . 133

21.5. The os.execute Function . 134

21.6. The os.exit Function . 135

21.7. The os.setlocale Function . 136

22. The I/O and File System Functions. 137

22.1. The os.rename Function . 137

22.2. The os.remove Function . 137

22.3. The io.read Function . 138

22.4. The io.write Function . 138

8

22.5. The io.input Function . 139

22.6. The io.output Function . 140

22.7. The io.open Function . 142

22.8. The io.lines Function . 143

22.9. The io.flush Function . 143

22.10. The io.close Function . 144

22.11. The io.type Function . 144

22.12. The file.read Function . 144

22.13. The file.write Function. 145

22.14. The file.lines Function. 147

22.15. The file.flush Function. 147

22.16. The file.close Function. 147

23. Error Handling . 148

23.1. The error Function. 148

23.2. The assert Function . 148

23.3. The warn Function . 149

23.4. Protected Calls (pcall and xpcall) . 150

24. Concurrency . 152

24.1. Coroutines . 152

24.2. Creating Coroutines . 152

24.3. Starting and Resuming Coroutines . 154

24.4. Suspending and Resuming. 156

24.5. Coroutine Termination . 158

24.6. Coroutine Example . 159

A. How to Use This Book . 162

Index . 164

About the Author . 192

About the Series . 193

Community Support . 194

9

Chapter 1. Introduction
Lua is a rather interesting language. It is one of the simplest general
purpose programming languages, and it is easy to learn and easy to use.
Lua is dynamically typed, and it supports automatic memory
management (e.g., garbage collection).

Lua is primarily used as an embedded language, often to interface with
the host programs written in C. Lua is also widely used as a standalone
scripting language, for the purposes of configuring, scripting, and rapid
prototyping, among other things.

Lua has many similarities with other dynamic languages like Python
and JavaScript, and yet it is even simpler. It is an ideal language for
beginning programmers to start learning programming with. If you
want to enable scripting in your own programs, e.g., written in C or C++,
or other similar languages, it is also the best language for your end
users, who may not necessarily be experienced programmers.

For example, many gaming engines provide scripting via Lua. One of
the most popular such gaming engines is Roblox. Many people learn
Lua for Roblox programming. More professional software like Redis
and Nmap also use Lua for scripting. In fact, the applications that use
Lua for scripting are too numerous to list here. There are hundreds, if
not thousands, of them.

If you like simplicity, efficiency, and convenience, then Lua is definitely
a programming language for you. You will also see a lot of similarities
between Lua and low-level, more rigorous, languages like Go (aka
Golang). These languages pursue the "minimalism" in programming.

In this book, we go through all essential features of the modern Lua (as
of 5.4) as a standalone programming language. Programming vs
scripting is not a clear, mutually exclusive distinction, but there are
some subtle differences. For example, when you write a Lua program

10

that runs on a terminal, the input/output of the program may be
associated with the stdin/stdout of the terminal. On the other hand,
when you write a Lua script in a host program environment, the
input/output may be controlled by the host program.

Furthermore, although it’s hard to make a generalization, the
standalone programs generally tend to be longer than scripts, which
can in turn require certain (subtly) different practices. For instance, an
entire Lua script can be written in one line, whereas longer programs
require better formatting, e.g., for readability, etc.


Note, however, that we will use the terms, programs
and scripts, mostly interchangeably in this book.

For the purposes of this book, we will use the Lua Interpreter as the
programming environment. It is the standard implementation of the
official Lua language specification (produced and maintained by the
creators of the language). You can skip the first chapter if you are
familiar with the lua command line tool. Another popular Lua runtime
is LuaJIT, which does a just-in-time compilation to machine code (like
Java) during program execution.

Although Lua specifies various aspects of the embedded usage,
including the C interface, there can be some variations from
implementation to implementation of the host programs. Roblox, for
example, uses a slight variation of the Lua language, called Luau. In this
book, however, we will mainly focus on the standard Lua and the
standard Lua interpreter implementation. Readers are encouraged to
consult the documentations of the specific host environments.

In the next chapter, we discuss the top-level structure of the Lua
programs and how they are executed, e.g., by the Lua interpreter. Lua
also includes a few standard library functions for loading and
executing external Lua code, which are included in this chapter for
reference purposes. You can skip them in your "reading".

11

Lua programs can be organized into modules, which are just Lua code
in separate files, following certain simple conventions.

As with any programs written in any programming languages, a Lua
program is essentially a sequence of characters. The Lua interpreter
first "tokenizes" it into various lexical elements such as identifiers and
operators, and "literals". The builtin type literals such as numbers are
discussed in the next chapter. Clearly, being able to recognize these
lexical elements is a basic requirement for a programmer to be able to
read and write Lua programs. All high-level programming languages
have similar lexical components, and it is only the details that are
different from language to language.

The Lua interpreter then parses this sequence of "tokens", according to
the grammar, into an internal data structure (e.g., in the form of
abstract syntax tree, or AST), and then it ultimately generates the
"bytecode", so that it can be executed. The rest of the book focuses on
the Lua language grammar.

Although Lua is a dynamically typed programming language, the type
system is still at the foundation of the Lua language. Therefore, we
begin our survey of the grammar from the Lua’s basic types, namely,
nil, boolean, number, string, function, userdata, thread, and
table. All values in Lua belong to one of these eight basic types.

It is hard to clearly and succinctly define what a computer program is,
in general. But, at the highest level, a program (in the imperative, or
procedural, programming paradigm) is a sequence of instructions that
processes an input and produces an output. In doing so, it maintains an
internal state. A variable in Lua is a name that references a value, and
they play a fundamental role in keeping the internal state during the
program execution.

Lua has most of the usual constructs commonly found in other
imperative programming languages such as expressions, functions, and
statements. There are fewer, and they are only simpler, which makes

12

Lua the best beginner’s programming language. This characteristic of
Lua, the simplicity, also makes it an ideal language for embedding in
other programs.

In the Expressions chapter, we go through all the essential types of Lua
expressions, including arithmetic, logical and comparison operations,
etc. One interesting thing about Lua is that it has a builtin length
operator (#).

In Lua, all functions are anonymous, often known as the "lambda
expressions" in other programming languages. A named function
definition is essentially a variable declaration with the initial value of a
function type. Lua also provides a more traditional syntax for defining
a function which is comparable to those found in other programming
languages. A function call in Lua is an expression, which can be used as
a statement.

In the following Statements chapter, we go through all major Lua
statements. Statements are primarily used for controlling program flow
in imperative programming, e.g., for iterations and conditional
executions, and so forth. Lua statements include

• The local variable declaration and assignment statements,

• The label and goto statements,

• The do block statement,

• The break statement,

• The return statement,

• The if statement,

• The for loop statement,

• The while and repeat loop statements,

• The (local and global) function definitions, and

• The function call statement.

13

The standard Lua comes with an absolutely minimal set of "standard
libraries". It is clearly a tradeoff. If you need a rich set of standard
library types and functions, then you will need to pick a different
language for your task. On the other hand, this small footprint makes
Lua ideal in many circumstances as stated earlier.

We first go through a few essential functions from the standard math
library. Then, we review various operations on strings, in the following
two chapters, string basics and advanced topics in strings.

If we can use terms like "silver bullets" in the context of Lua
programming, then they apply to Lua Tables. In Lua, tables are used for
basic data structures, as foundations of "objects", custom types,
modules, and for object-oriented programming, to name just a few.

Some of the table's power also come from the way that Lua allows the
behavior of the tables to be customized using other associated tables,
called the metatables. Lua uses a set of predefined methods in those
metatables, known as metamethods, to provide the hook for
customization, if you will. (They are rather similar to Python’s "magic
methods", for instance.) In the following chapter, we go through some
examples of the predefined metamethods.

It should be noted that although metatables and metamethods, and
tables in general, are covered (in detail) in the later part, they are used
all throughout the book because of their pervasiveness and the overall
importance in Lua programming. We introduce some essential concepts
earlier in the book whenever relevant, and hence by necessity, there
are some repetitions.

As is common in most modern programming languages, the iterations,
e.g., using the for statements, can be customized for tables. The default
implementations of the builtin pairs and ipairs functions can be
used to iterate over tables. This behavior can be customized by
overwriting the __pairs metamethod. This is described next in the
Iterators chapter.

14

Lua is fundamentally an "object-based" programming language just like
JavaScript and Python. The more traditional "class-based" object
oriented programming style can be emulated using Lua’s tables, if
necessary, or if desired. Although it is not part of the language
specification, we include a brief introduction to the object-oriented
programming style in Lua for completeness since it is commonly used.
Some platforms that provide the Lua API also use this OOP style (for
various reasons). Hence, it is important to understand this basic
concept even if you don’t plan to create your own "classes".

Then, we go through some more of Lua’s standard libraries, namely, the
operating systems library and the input/output and file systems library.
They are distributed over three tables, os, io, and file, and they
provide essential functions when you write the (command line
interface) programs in Lua. These "low-level" functions may not be too
relevant in some hosting environments. For completeness, we briefly
describe Lua’s builtin error handling support next. This chapter is not,
however, meant to provide a comprehensive coverage of error
handling in Lua, which is beyond the scope of this book.

Finally, we describe the Lua’s support for concurrency in the next
chapter. The thread type, in conjunction with various helper functions
from the standard library coroutine table, can be used for concurrent
programming in Lua. A simple example in the context of the producer-
consumer problem is provided as a final example, and as an exercise.
The readers are encouraged to go through this section to make sure that
they have a firm grasp of the Lua concurrency, one of the more difficult
subjects in Lua programming.

One thing to note is that since we describe Lua as a standalone
programming language, we do not include the C programming interface
defined in the official Lua language specification in this book. If you
plan to write a program (e.g., in a C-compatible language) that supports
Lua scripting, or if you plan to use C libraries in your Lua program,
then you may need to consult the relevant references on the C API.

15

Chapter 2. Lua Interpreter

2.1. Lua Scripts
Lua can be used as an embedded language, e.g., in a host program
written in C or C++. Or, it can also be used as a standalone general
purpose programming language. This book primarily focuses on the
standalone usage of Lua.

The standard distribution comes with a command line Lua interpreter,
called lua, which is built with Lua’s all standard libraries.

• Lua: Download [https://www.lua.org/download.html]

It prints out the basic usage information if we invoke the command
with an invalid syntax:

$ lua -h ①

usage: lua [options] [script [args]]

Available options are:
 -e stat execute string 'stat'
 -i enter interactive mode after executing 'script'
 -l mod require library 'mod' into global 'mod'
 -l g=mod require library 'mod' into global 'g'
 -v show version information
 -E ignore environment variables
 -W turn warnings on
 -- stop handling options
 - stop handling options and execute stdin

① The lua command does not recognize the -h option. The output is
slightly modified to reduce clutter. Here, and throughout this book, $
represents the shell prompt.

2.1. Lua Scripts

16

https://www.lua.org/download.html
https://www.lua.org/download.html

The options can be combined. If a Lua script name is provided at the
end (followed by any optional program arguments), and/or if the Lua
script, as a string, is provided as an argument to the -e flag, then the
interpreter executes those scripts. For example,

$ lua -e "print('Hello,World!')" ①
Hello, World!
$ ②

① The print function prints the function argument to the default
output device, which is the standard out (e.g., the terminal) when
using the Lua interpreter this way.

② The Lua interpreter automatically exits after executing the given
script, as indicated by the shell prompt $ in this line.

Invoking the lua command without an -e option or a script name
argument, or with an explicit -i, starts the interpreter in the interactive
mode (e.g., after executing the provided script, if any).

$ lua
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org, PUC-Rio
> ①

① The prompt of the lua interpreter (>). You can exit the interactive
mode using the EOF signal (e.g., Ctrl+D on Unix, Ctrl+Z on Windows).
Or, you can call Lua’s standard library function os.exit().

Command line arguments to a Lua script can be provided after the
script name. Lua collects all command line components in a global table
called arg. The script name goes to index 0, the first program argument
after the script name goes to index 1, and so forth. Any components
before the script name (e.g., the interpreter command plus its command
line options) are collected in the negative indices.

2.1. Lua Scripts

17

Like all chunks in Lua, the given script is compiled as a vararg function,
and the program arguments (after the script name), if any, are provided
as arguments to the function.

$ lua print-arg.lua a b c ①
1 a
2 b
3 c
-1 lua
0 print-arg.lua

① The print-arg.lua script includes the following code: for k, v in
pairs(arg) do print(k, v) end. The arg is a special predefined
global variable of the table type that holds the command line
arguments. The for loop is described later in the Statements
chapter. The builtin pairs function is used throughout this book,
but it is formally defined in the Iterators chapter.

2.2. Lua REPL
In the interactive mode, Lua processes the input one line at a time.

• If the given input line is an expression (or, an expression list) then
Lua evaluates it and prints its value.

• Otherwise, Lua interprets the line as a statement and, if it is a
complete statement, it is executed.

◦ If the input is an incomplete statement, Lua changes the prompt,
e.g., to >>, and it waits for its completion.

(Note that an expression that is not a statement by itself cannot be split
over multiple lines in Lua REPL.)

You can change the primary and secondary prompts by using the Lua-
defined global variables, _PROMPT and _PROMPT2, respectively.

2.2. Lua REPL

18

$ lua
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org, PUC-Rio
> ①
> _PROMPT = "lua> "
lua> _PROMPT2 = "...> " ②
lua> for k,v in pairs(arg) do
...> print(k, v) ③
...> end
0 lua ④
lua> ⑤

① Lua’s default prompt, `> `.

② `lua> ` is a new primary prompt in this session.

③ Since the for statement in the previous line has not ended, Lua
changes its prompt to the secondary prompt, `…> ` in this example,
to indicate that fact.

④ The output.

⑤ Back to the primary prompt.

2.3. LuaJIT
There is another widely used version of Lua language runtime, which is
implemented as a JIT (just in time) compiler:

• LuaJIT [https://luajit.org/luajit.html]

JIT generally means that the compilation is done at run time, not as a
separate build step, and it compiles only the portions that are
necessary, rather than the entire program. (The standard Java
distribution, for example, uses JIT compilation.)

For differences between the interpreters and compilers, refer to other
references, for instance, High-level programming language
[https://en.wikipedia.org/wiki/High-level_programming_language].

2.3. LuaJIT

19

https://luajit.org/luajit.html
https://en.wikipedia.org/wiki/High-level_programming_language

Chapter 3. Lua Program
Execution


If you are completely new to Lua, then you can skip, or
skim through, this chapter and come back to it later.

3.1. Chunks
A "program", which is executed as a unit, is called a chunk in Lua. A
chunk is a sequence of statements. A chunk is also syntactically a block,
and it can include local variables.

A chunk can be stored in a file or in a string inside a host program.
Chunks are implemented as anonymous functions in Lua. Chunks can
therefore receive arguments (as a vararg argument (...)) and they can
return values.

The example script used in the previous chapter with the -e flag,
print('Hello, World!') is a complete chunk since it was executed
as a unit. This one statement chunk is more or less equivalent to the
following, when Lua executes the chunk:

function(...) ①
 print('Hello, World!') ②
end() ③

① The arguments ... are ignored in this simple example.

② The "real" script.

③ Lua calls this implicitly defined function. (Note the trailing ().)

Here’s another example of a chunk, which has been saved as a file
(named hello.lua in this example) and executed with the lua command.

3.1. Chunks

20

hello.lua

local name = ... ①

if name then ②
 print("hello" .. name) ③
else
 print("hello, whoever you are")
end

return 0 ④

① The Lua code in a file runs as a chunk in the context of an implicitly
defined anonymous function. Hence it accepts arguments, a "
vararg". The vararg symbol ... denotes a list of function arguments.
See the later chapter on functions. The keyword local is used to
declare a local name.

② The if statement. All values in the if condition are effectively true
except for false and nil.

③ See below for more information on the print function.

④ The value, 0 in this example, is returned to the host program (or, the
Lua interpreter). The return statement can be used in any block,
not just in a function, unlike in many other programming languages
(since all Lua chunks are always wrapped in anonymous functions
before being executed).

3.2. Blocks
A block is a sequence of zero, one, or more statements, and they are
executed in the given order, one after another. Lua is a "lexically
scoped" programming language. Blocks can be nested, and they are
used for scoping purposes, among other things.

A block can end with an optional return statement.

3.2. Blocks

21

3.3. Block Defining Statements
A block is defined, in addition to a chunk,

• By the following statements:

◦ The do statement:

▪ do <block> end,

◦ The if statement:

▪ if <exp> then <block> elseif <exp> then <block>
else <block> end,

◦ The numerical for statement:

▪ for <name> = <exp list> do <block> end,

◦ The generic for statement:

▪ for <name list> in <exp list> do <block> end,

◦ The while statement:

▪ while <exp> do <block> end,

◦ The repeat statement:

▪ repeat <block> until <exp>, and

• By function definitions:

◦ The global function definition:

▪ function <func name> <func body>, and

◦ The local function definition:

▪ local function <func name> <func body>, where

◦ <func name> is optional, and

◦ <func body> is

▪ (<parameter list>) <block> end.

3.3. Block Defining Statements

22

3.4. The do Block Statement
A block can be explicitly delimited to produce a single statement, using
the do statement. For instance,

do ; end ①

① This do - end block is a statement, which in turn contains a single
empty statement (;) in this particular example.

The do - end block can include any number of statements, and it can
be used to control the scope of variable declarations.

3.5. Scoping
Lua is a lexically scoped language, meaning that the blocks are defined
through the static code text, and not at run time, for instance.

The scope of a local variable begins at the first statement after its
declaration and lasts until the last non-void statement of the innermost
block that includes the declaration. For example,

local x = 0 ①
print(x) ②
do ③
 local x = x + 1 ④
 print(x) ⑤
end ⑥
print(x) ⑦

① A local variable x is declared here, whose scope starts from the next
statement.

② The variable x is "in scope", and it has the value 0, when the print
function is called.

3.4. The do Block Statement

23

③ A new inner block begins here.

④ A new local variable x is declared within this inner block. At this
point, the variable x on the right hand side still refers to the outer
scope x. Hence the new x is initialized with 1 (= 0 + 1).

⑤ This print function will print out the value of the inner variable, 1.
The outer scope x is "shadowed" in the inner block.

⑥ The inner block ends here.

⑦ The variable x in this line refers to that of the outer scope, whose
value remains to be 0.

3.6. Environments
A Lua chunk is compiled in the scope of an external local variable
named _ENV. Any reference to a name that is not explicitly bound to a
declaration, a free name, is syntactically equivalent to referring to a
field with the same name defined in _ENV.

For instance,

x = 10 ①
print(_ENV[x]) ②

① This statement is equivalent to _ENV.x = 10.

② This will print the value 10.

Any table used as the value of _ENV is called an environment. Lua keeps
a global variable _G, whose value is called the global environment.

When Lua loads a chunk, the default value for its _ENV variable is the
global environment. Therefore, by default, free names in Lua code refer
to entries in the global environment, and they are called the global
variables.

3.6. Environments

24

3.7. Lua’s Global Variables
_G A global variable that holds the global environment.

_VERSION A global variable that references the Lua’s version
string.

> print(_VERSION)
Lua 5.4

3.8. The print Function
Lua’s "basic library" includes a number of core functions in Lua, which
are comparable to the "builtin functions" in other programming
languages. The print function is probably the most commonly used
function while developing Lua scripts.

print(···) ①

① This function signature indicates that print accepts a vararg
argument ... and returns no value.

The print function receives an arbitrary number of arguments and it
prints their values to stdout, separated by single spaces. It is primarily
used for debugging and diagnostic purposes. That is to say, Lua’s print
is more comparable to JavaScript’s console.log rather than Python’s
print or println, for instance.

3.9. The dofile Function
Lua’s standard library includes a number of functions to load (and,
execute) external Lua code. The (more commonly used) require
function is discussed in the next chapter on modules.

3.7. Lua’s Global Variables

25

The builtin dofile function is used to load and execute a Lua chunk
from a file,

dofile(filename = nil) -> ... ①

① An informal "function signature" notation.



We will use this somewhat non-standard notation to
represent Lua function signatures in this book. In this
example, the function dofile is defined with a single
optional parameter, filename. The equal sign =
followed by a value represents the default value, nil,
and hence this parameter is optional. Lua does not
allow optional parameters or overloading of the user-
defined functions. But, this kind of notation can still be
useful in many circumstances.

This particular "function signature" also indicates that
dofile returns (as indicated by ->) an arbitrary
number of values (as indicated by ...). This notation
is intended to augment what is described in the text,
and it should not be taken too literally. When there is
an ambiguity, refer to the surrounding text.

The dofile function takes one string argument filename, and it
attempts to open the named file. If the file is successfully loaded, it tries
to execute its content as a Lua chunk. When filename == nil, it uses
the standard input (stdin). If the Lua chuck was successfully loaded and
executed, then dofile() (or, dofile(nil)) returns all values returned
by the chunk. In case of errors, it propagates the error to its caller. For
example,

$ cat hullo.lua ①
print("h e l l o !")

3.9. The dofile Function

26

$ lua
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org, PUC-Rio
> dofile("hullo.lua") ②
h e l l o !
> dofile() ③
print("h e l l") ④
print("o o")
h e l l ⑤
o o

① A sample script file.

② Calling dofile with this script executes the script.

③ Calling dofile with nil accepts the input from the stdin.

④ A two-line lua script which is directly typed into the terminal.

⑤ At this point, we inputted the EOF signal (although not displayed).
The following two lines are the output from the script.

3.10. The load Function
The builtin load function belongs to two categories:

load(chunk: string, ①
 chunkname = "chunk",
 mode = "bt",
 env = nil)
 -> function | nil, error ②
load(chunk: function, ③
 chunkname = "=(load)",
 mode = "bt",
 env = nil)
 -> function | nil, error

① The chunk parameter should be a string in this function signature.
In this signature, the default value of the chunkname is "chunk".

3.10. The load Function

27

② The vertical bar | represents a choice, among alternative values.
This function can return a single value of type function or two
values, nil and a value that represents an "error".

③ This function takes a value of the function type as its function
argument. In this case, the optional parameter chunkname's default
value is "=(load)".

The load function loads the given argument chunk as a chunk. If chunk
is a string, this string is loaded as a Lua chunk. If chunk is a function,
then load calls it repeatedly to get the chunk pieces until it returns an
empty string or nil, or the EOF signal. The returned chunk pieces must
be strings, and they are concatenated in the calling/return order. The
chunkname argument is used as the name of the chunk for error
messages and debug information.

The chunk can be text or binary, e.g., a precompiled chunk. The mode
argument can be set to

• "t" for text chunks,

• "b" for binary chunks, or

• "bt" for both binary and text.

If there are no syntactic errors in the loaded (and combined) script, the
load function returns the compiled chunk as a function. Otherwise, it
returns nil and the error message. If the env argument is set, then the
first upvalue of the returned function is set to this value.

3.11. The loadfile Function

loadfile(filename = nil,
 mode = "bt",
 env = nil)
 -> function | nil, error ①

3.11. The loadfile Function

28

① This function signature indicates that loadfile can be called with
no arguments, for instance, since all parameters are optional.

The loadfile function works like load, but it loads the Lua code from
a file named filename, if specified, or from the standard input
otherwise. The difference between dofile and loadfile is that the
loadfile function returns the chunk as a function rather than
executing it.

For instance, using the same hullo.lua file as before,

> f = loadfile("hullo.lua") ①
> f() ②
h e l l o ! ③

① Refer to the comment earlier about the chunk. A loaded chunk is
implicitly wrapped in a function in Lua. That is, in this example, f is
a function.

② And hence, it is callable.

③ The output from the line, print("h e l l o !"), in the hullo.lua
script, as shown earlier.

Error-related system functions, including error, warn, and assert, are
described at the end of the book, Error Handling.



As a general recommendation, if you are going
through this book more or less from beginning to end,
then you can skip most of the details at your first
reading. These builtin and other library functions are
listed in this book mainly for reference purposes, and
they are not meant to be read and "learned" at once.

3.11. The loadfile Function

29

Chapter 4. Modules
Modules are a basic unit of code sharing and reuse in Lua. A Lua
module is, by convention, a Lua source code file that (implicitly) returns
a table containing other functions and variables. Modules provide
namespaces, and they are used to organize code.

A global function require, from the package library, is used to load
modules in Lua code.

4.1. The require Function

require(modname) -> ... ①

① As illustrates earlier, this function signature notation (informally)
indicates that the function require takes a single argument
modname and it returns (->) an arbitrary number of values (...).

The require function loads a module (a Lua chunk) named modname,
e.g., from a file named modname.lua. require() loads the same
module no more than once, within the context of the executing chunk,
even if it is specified multiple times, either directly or transitively.

Modules are searched from the Lua’s package.path global variable
(string), which holds all paths used by a Lua loader. In the standalone
Lua interpreter, an environment variable LUA_PATH, for example, can
be used to overwrite the value of package.path.

Likewise, C shared objects, e.g., DLLs, are searched from Lua’s global
package.cpath string variable, with the corresponding environment
variable, LUA_CPATH, for instance.

4.1. The require Function

30

4.2. Table-Based Modules
There are a few different ways to create a module in Lua. Here’s a
recommended way, e.g., using a Lua table. In the following example, we
create a module named arithmetic in a file named arithmetic.lua.

arithmetic.lua

local arith = {} ①

arith.factor = 10 ②

function arith.add(a, b) ③
 return a + b
end

return arith ④

① We create a single empty table and assign it to a local variable (local
to this "module").

② We add one variable, factor, to the table in this example. Note that
factor is a table field variable.

③ We add one function to the table, add, which is also a table field
variable. Functions are described in more detail later in the book. It
should be noted that this syntax is equivalent to arith.add =
function(a, b) return a + b end.

④ Returns this table. As indicated, the return statement can be used in
any Lua chunk, not just in (explicitly declared) functions.

As illustrated in this example, a module consists of roughly three
"parts". That is, to create a module,

• We start by creating a local table in a file named <modname>.lua, for
instance. ({} is a table initializer literal.) The local table name, e.g.,
arith in this example, is arbitrary.

4.2. Table-Based Modules

31

• Next, we add all functions and variables to be "exported" to this
table. Any local variables and function definitions that are not
added to this table are, on the other hand, local to this module. The
use of global variables in modules is not recommended.

• Finally, we return the table. A module, just like any other chunk in
Lua, is automatically wrapped in an implicitly defined anonymous
function. This return value is returned to the caller, the require
function, which in turn returns this value to its own caller (e.g.,
another module).

The modules can be loaded using the require function, as shown
above. In this module convention, the require function returns a
single table, which is to be understood as a "module".

require(modname) -> table ①

① In the table-based module convention, the module chunk should
return one table.

For example, using the same arithmetic module example above,
which returns a single table,

main.jua

local arith = require("arithmetic") ①

local f = arith.factor ②
print("f =", f) ③

local sum = arith.add(2, 4) ④
print("sum =", sum) ⑤

① We use the require function to "load a module" and give it a name
arith. The arith local variable points to the table returned by the
chunk from arithmetic.lua. In this example, main.lua and

4.2. Table-Based Modules

32

arithmetic.lua are in the same folder. (In general, one can use a
relative file path.) Otherwise, the arithmetic.lua file should be in a
path specified in package.path, e.g., either by explicitly setting the
path in the program or by using the environment variable,
LUA_PATH.

② We can access the table field, factor. from the module arithmetic.
But, since we assigned the returned table to a local variable arith,
we now reference it as arith.factor in this example.

③ The output will be f = 10.

④ add is also syntactically a field of the table referenced as arith.
Hence we call it as arith.add().

⑤ This will print out, sum = 6.

The package library also contains a number of other functions defined
in the package table, which can be used to load, or otherwise
manipulate, modules. These functions are not included in this book.



Lua modules can be shared via services like LuaRocks.
For more information, refer to their respective official
websites. As for luaRocks, it is the de-facto standard
package repository service for the Lua dev community:

LuaRocks

The Lua package manager [https://luarocks.org/]

4.2. Table-Based Modules

33

https://luarocks.org/
https://luarocks.org/

Chapter 5. Lexical Elements

5.1. White Spaces
Lua is a free-form language. Lua recognizes the standard ASCII
whitespace characters as spaces in source code:

• Space,

• Form feed,

• Newline,

• Carriage return,

• Horizontal tab, and

• Vertical tab.

Lua ignores spaces (and comments) between tokens, except as
delimiters. In general, newlines and indentations, and other particular
formatting of the source code, have no significance in Lua, unlike in
some other programming languages (e.g., most notably, Python).

5.2. Comments
There are two kinds of comments in Lua. A comment that starts with a
sequence of consecutive characters comprising two hyphens and an
opening long bracket (e.g., --[[[[with two or more opening square
brackets) is a long comment, and it continues until the matching closing
long bracket (e.g.,]]]]).

--[[①
 I'm a long comment.
]] ②

5.1. White Spaces

34

① The long comment starts here.

② And, it ends here.

On the other hand, if -- is not immediately followed by an opening long
bracket, then it starts a short comment. A short comment continues
until the end of the line.

-- This is a short comment ①

① The comment starts from -- and it ends at the newline.

Comments cannot start within a string literal.

5.3. Names
Names, or identifiers, in Lua are used to denote

• Variables (including function names),

• Table fields (which are also table-scoped variables), and

• Labels.

Names can be any string of one or more Latin letters, digits, or
underscores (_). They cannot start with a digit. The following are all
valid names:

apple2manzana ①
_amazon_forest ②
micro_office_360 ③
fakeFriendClub ④

① The name apple2manzana starts with an alphabet a and it contains
all valid characters, and hence it is a valid name.

② A name that starts with an underscore _.

5.3. Names

35

③ A name that follows the "snake name" convention.

④ A name that follows the "camel case" naming convention.

5.4. Keywords
A number of identifiers are reserved by Lua, and they cannot be used
for other purposes. They are called the "keywords". There are 22
keywords in Lua, as of 5.4.

and break do else elseif end
false for function goto if in
local nil not or repeat return
then true until while

5.5. Operators
The following strings denote other tokens:

+ - * / % ^ #
& ~ | << >> //
== ~= <= >= < > =
() { } [] ::
; : ,

These operators and other symbols are explained throughout this
reference, e.g., in the Expressions chapter, in particular. Another
important class of lexical elements, namely, the "literals", are described
in the next chapter.

5.4. Keywords

36

Chapter 6. Builtin Type Literals

6.1. Nil and Booleans
The tokens, nil, true, and false are constant literals. We go through
the number and string literals in this chapter. Another important (non-
constant) literal, the table constructor, is described later in the book.

6.2. Numerals
Numeric literals (or, numerals) are of the number type. There are two
kinds of numeric literals in Lua, integers and floats. A numeral can be
written with an optional fractional part with a radix point (.) and/or
with an optional decimal exponent, marked by a letter e or E.

• A numeral with a radix point and/or an exponent denotes a float.

• Otherwise,

◦ if its value fits in an integer of the Lua runtime (e.g., 32 or 64
bits), it denotes an integer.

◦ Otherwise, it denotes a floating point number.

666 ①
777. ②
888.888
999e-9
10000000000000000000 ③

① An integer numeral.

② These three tokens are all float numeral literals.

③ This will be treated as a float numeral by Lua (e.g., because it does
not fit into a 64 bit signed integer).

6.1. Nil and Booleans

37

Lua also accepts hexadecimal integer literals, which start with 0x or 0X.
Hexadecimal literals also accept an optional fractional part plus an
optional binary exponent, marked by a letter p or P. A hexadecimal
numeral with neither a radix point nor an exponent always denotes an
integer value.

0x10 ①
0X10. ②
0x1p10 ③

① An integer literal, 16.

② A floating number literal, 16.0.

③ A floating number literal, 1024.0.

6.3. String Literals
The type of string literals is string. String literals in Lua can be defined
using either a short format or long format.

6.3.1. Short string literals

A short literal string can be delimited by matching single or double
quotes (e.g., 'abc' or "xyz"). Lua does not support the character types.
Short strings can contain the following C-like escape sequences:

\" (double quote), \' (single quote), \\ (backslash), \a (bell), \b
(backspace), \f (form feed), \n (newline), \r (carriage return), \t
(horizontal tab), and \v (vertical tab).

In addition,

• A backslash followed by a line break results in a newline in the
string.

6.3. String Literals

38

• The escape sequence \z skips the following span of whitespace
characters, including line breaks.

We can specify any byte in a short literal string by its numeric value.
This can be done with

• The escape sequence \xXX, where XX is a sequence of two
hexadecimal digits, or

• The escape sequence \ddd, where ddd is a sequence of one, two, or
three decimal digits.

The null character \0, for instance, can be inserted this way.
Furthermore, the UTF-8 encoding of a Unicode character can be
inserted in a short literal string with

• The escape sequence \u{XXX}, where XXX is a sequence of one or
more hexadecimal digits representing Unicode character code point.

6.3.2. Long string literals

Literal strings can also be defined using a long format enclosed in long
brackets. We define an opening long bracket of level n as

• An opening square bracket ([), followed by

• n equal signs (=) with n >= 1, followed by

• Another opening square bracket ([).

A closing long bracket is defined similarly, with the opening brackets
replaced by the closing brackets (]).

A long string literal starts with an opening long bracket of any level and
ends at the first closing long bracket of the same level. Long string
literals can contain any text except a closing long bracket of the same
level. They can span several lines, and they are sometimes informally
called the multiline string literals.

6.3. String Literals

39

Long strings do not interpret any escape sequences in them. A long
string literal can include other long string literals of different levels.
Note that, despite what the term may imply, there is no hierarchical
relationship among the long strings of different levels.

For example,

[[Hello]] ①
[=[World?]=] ②
[====[!Hola, mundo!]====] ③
[==[
Roses are red, and
Violets are blue.]==] ④

① A long literal string of level 0.

② A long literal string of level 1.

③ A long literal string of level 4.

④ A multi-line string. The newline right after the opening long bracket
is ignored by Lua, and it is not part of the string.

Note that multiline long string literals cannot be evaluated directly in
the Lua REPL. For instance,

> [[I'm fine. Really]]
I'm fine. Really
> [[I'm
>> not :(
>>]]
stdin:3: unexpected symbol near '[[I'm
not :(
]]'

An expression, which is not part of a statement, cannot span multiple
lines in the REPL.

6.3. String Literals

40

Chapter 7. Types

7.1. Values and Types
Lua is a dynamically typed language. Values, or "objects" as they are
typically called in some other programming languages, are the
fundamental entities in Lua. Values are associated with types, and these
types are checked at run time.

The type of a value determines whether the value is valid and what
kind of operations are allowed on that value, etc. All values in Lua
belong to one of the following eight basic types:

• nil,

• boolean,

• number,

• string,

• function,

• userdata,

• thread, and

• table.

The values of the last 4 types, functions, userdata, threads, and
tables are "mutable", that is, their values can change during the
execution of the program. In contrast, the nil, boolean, and number
values as well as strings do not change once they are created.

Variables in Lua do not directly contain, or hold, the values of these
types. They are merely names of, or references to, these values.
Assignment, parameter passing, and function returns, for example,
always manipulate the references to such values. These operations do

7.1. Values and Types

41

not imply any kind of value copy or duplication. Only the variables, or
the references, are copied or otherwise manipulated.

In practice, for the values of the immutable types like nil, true, false,
strings, and integers and float numbers, however, there is little
difference whether we deal with the values themselves or their
references. Furthermore, functions generally do not keep states, and we
do not deal with userdata in this reference, and hence it is only the
tables and threads that we need to pay special attention to.

7.2. The type Function
A builtin function type can be used to query the type of a value. It has
the following signature:

type(v) -> string ①

① This notation indicates, as throughout this book, that the function
type takes one argument (arbitrarily named as v in this example),
and it returns a value of the string type.

Note that we do not generally indicate the types of the function
parameters in this notation. Many Lua functions can take values of
multiple types (or, the union types), and when the arguments of
improper types are given, they simply throw errors or return nil. This
particular function type, for example, accepts a value of any type.

The type function returns the type of its argument v, coded as a string.
The possible results of this function are

• "nil", "boolean", "number", "string", and

• "function", "userdata", "thread", "table",

corresponding to each of the 8 immutable/mutable types, respectively.

7.2. The type Function

42

For example,

$ lua ①
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org, PUC-Rio
> type("hello") ②
string ③
> type(3.5) ④
number
> type(function() end) ⑤
function
> type({}) ⑥
table

① We start a Lua interpreter by typing a command lua, or something
comparable (depending on your system and the Lua setup).

② The prompt > indicates that we are in the Lua REPL. We call the
type function with an argument "hello", a value of the string
type.

③ This function call returns the string string, as expected.

④ The type of a value 3.5 is number.

⑤ A function in Lua can be defined with the keyword function
followed by the function body. The type of this (empty) anonymous
function is function.

⑥ The literal {} is an expression that creates a new empty table, whose
type is table.

7.3. Nil
The type nil has a single unique value, nil. It is often used to
represent the absence of a (useful) value, or even an "invalid value". Or,
to indicate a failure condition. The nil value is distinguishable from
any other values in Lua, including false.

7.3. Nil

43

7.4. Boolean
The boolean type has two valid values, true and false, which
represent the logical states, true and false, respectively. In a boolean
condition, only nil and false evaluate to false in Lua. All other values
in the given expression correspond to the logical true in Lua. This
includes 0, 0.0, and an empty string "".

7.5. Number
The type number consists of two subtypes, integer and float,
representing integer numbers and real floating-point numbers,
respectively. The standard Lua generally uses 64-bit signed integers and
double-precision (64-bit) floats. This is, however, an implementation
detail.

Lua often treats the integer and float subtypes as same, and
automatically converts between them as necessary in many situations.
Hence, we can mostly ignore the differences and just handle any
numbers as the number type (e.g., regardless of their internal
representations).

In Lua, there are no "integer overflow errors". In cases where a value is
not representable by an integer, it may be automatically converted to
float. Or, in pure integer expressions such as bitwise operations, an
overflow of an integer result may wrap around, using the two’s
complement arithmetic.

For example,

> 2000000000000000000 ①
2000000000000000000
> 20000000000000000000 ②
2e+19

7.4. Boolean

44

① An integer.

② A number that cannot be represented with a 64-bit signed integer (in
the 64 bit build of the standard Lua) is evaluated to a float.

7.5.1. The tonumber function

tonumber(e, base = 10) -> number ①

① This notation indicates that tonumber takes one or two arguments,
named e and base, and it returns a number value. If the function is
called with one argument, the default value of 10 is used for the
second argument, base.

The builtin tonumber function converts its number or string argument
e to a number.

• If e is already a number, it returns the same number.

• If e is a string convertible to number, it returns this number. The
conversion of strings can result in integers or floats.

• In all other cases, it returns nil indicating a failure.

When e is a string value, an optional second argument base of an
integer type, between 2 and 36, can be provided. In that case, e is to be
interpreted as an integer numeral in that base. If the conversion fails, it
returns nil.

For example,

> tonumber(33) ①
33
> tonumber(true) ②
nil
> tonumber('33.33') ③
33.33

7.5. Number

45

> tonumber('33', 32) ④
99
> tonumber("1001001001", 2) ⑤
585
> tonumber('33', 2) ⑥
nil

① Calling tonumber with an integer or float number returns that
number.

② Calling tonumber with an argument other than a number or string
returns nil.

③ The string argument is converted to the corresponding integer or
float number.

④ When the second argument, an integer between 2 and 36, is
provided, the string argument is to be interpreted as an integer
number in the specified base. The letters a/A through z/Z are used to
represent the digits corresponding to 10 through 36.

⑤ The binary number 1001001001 is equivalent to 585 in the decimal
representation.

⑥ 33 is an invalid number representation in base 2, and hence it
returns nil.

7.6. String
The type string represents a sequence of bytes, each of which can
contain any 8-bit value from \0 to \255 similar to the C strings. Unlike
in the null-terminated C strings, however, the null byte \0 is a valid
element in Lua strings. Lua does not have a builtin concept of
characters. Nor does it understand Unicode. In fact, Lua strings are
encoding-agnostic.

Strings in Lua are immutable, as in many other programming
languages.

7.6. String

46

The length of a string can be computed using the length operator (#),
which is simply the number of bytes in the string, and it cannot be
bigger than the maximum integer representable in a given
implementation.

7.6.1. The tostring function

tostring(v) -> string

The tostring function converts an argument v, of any type, to a string.

• If an argument v is a string, it simply returns the same value.

• Otherwise,

◦ If the metatable of v has a __tostring metamethod, then
tostring() calls this metamethod with v as argument.

◦ Otherwise,

▪ If the metatable of v has a __name field with a string value,
tostring() uses this string.

▪ Otherwise, it returns an internal string representation of v.

> a = {} ①
> a = setmetatable(a, {__tostring = function() return "ha ha"
end})
> tostring(a) ②
ha ha
> b = {}
> b = setmetatable(b, {__name = "hoho"})
> tostring(b) ③
hoho: 0x5db5361980
> c = {}
> tostring(c) ④
table: 0x579bd78450

7.6. String

47

① The global variable a refers to a newly created empty table.

② a has __tostring, and hence tostring(a) calls this method.

③ b has a field __name in its metatable, and hence its value is used in
the table’s string representation.

④ tostring(c) simply returns c's internal string representation.

Metatables and various metamethods are further explained later.

7.7. Functions
Lua can call (and manipulate) functions written in Lua as well as those
written in C. Functions are represented by the type function. All lua
functions are anonymous, and they are described in more detail in a
later chapter, Anonymous Functions.

7.8. Userdata
Lua includes the type userdata to allow arbitrary C data to be stored in
Lua variables. A userdata value represents a block of raw memory.
Userdata values can only be created or modified through the C API.
There are two kinds of userdata:

Full userdata A value with block of memory managed by Lua.

Light userdata A C pointer value.

We do not discuss the C program interface, and hence we will not use
the userdata type in this book.

7.9. Thread
Objects of the type thread represent independent threads of execution
and they are used for managing coroutines in Lua. Threads will be

7.7. Functions

48

further discussed in the concurrency chapter. Note that Lua threads are
purely language constructs that are unrelated to the native threads that
may or may not be supported in the hosting environments, e.g., the
operating systems or the host programs running on those operating
systems.

7.10. Table
A table in Lua lets you create a "custom object", or even a "custom
type". An object is essentially a collection of zero, one, or more
properties, or fields. A field is a pair of a name and its value. The value
of a field can be of the function type, in which case the field is often
called the method.

A Lua table is also used to create data structures like arrays (or, lists,
sequences, etc.) and maps (or, dictionaries, hashtables, or associative
arrays, etc.). An array is a (one-dimensional) sequence of values. A map
is a collection of zero, one, or more fields, or key-value pairs.

In Lua, any values of any type, other than the two values nil and NaN (a
floating point number representing "not a number"), can be used as
keys, or field names, in a table. Any values other than nil can be used
as the values of the table fields. The nil value indicates the absence of a
value.

A table can also used to represent linear data structures like arrays or
lists, using the (implicitly defined) integer keys. Any item in a table
which does not have a key is given an integer key (or, index) starting
from 1 and sequentially increasing to the left (skipping the fields with
explicit names).

The values of field variables can be accessed using the so-called
subscription or "index notation". For instance, given a table t which
references {a = true, b = "hi"}, we can refer to the value of the
first element as t["a"] and the second element as t["b"].

7.10. Table

49

When the type of a key/name is a string value or a variable, the
property or "dot notation" can also be used for these field variables.
That is, t.a and t.b are syntactically equivalent to t["a"] and t["b"],
respectively, using the same example.

Using another example,

> a = {name = "apple", taste = "sweet"}
> b = {"orange", "sour"}
> c = {name = "pear", "pineapple", taste = "salty", "bitter"}

The field name of a, for instance, can be referenced as either a.name or
a["name"]. The two fields of b can be referenced with indexes, e.g.,
b[1] and b[2]. Likewise, the fields of c can be referenced with the
names or indexes.

> a.name, a["name"], a.taste, a["taste"]
apple apple sweet sweet
> b[1], b[2]
orange sour
> c.name, c[1], c["taste"], c[2]
pear pineapple salty bitter

Tables are the most versatile construct in Lua, and various uses of Lua
tables are described in more detail throughout this reference. We can
use tables as "classes" as well for object-oriented programming (OOP).

7.10. Table

50

Chapter 8. Variables
In Lua, variables are simply names that refer to values. Before the first
assignment to a variable, its value is nil. There are three kinds of
variables in Lua:

• Local variables,

• Table fields, and

• Global variables.

8.1. Local Variables
Local variables are declared with the keyword local. Local variables
can be declared anywhere, inside or outside an implicit of explicit
block. The declaration can include an initialization. If present, an initial
assignment has the same semantics of the multiple assignment
statement. Otherwise, all local variables are initialized with nil.

For example,

> do ①
>> local x ②
>> print(x) ③
>> end
nil
> do
>> local y = 100 ④
>> print(y) ⑤
>> end
100
> print(y) ⑥
nil

① The do statement in Lua creates a block.

8.1. Local Variables

51

② Declaring a variable x with no explicit initial value within this block.

③ Its initial value is nil by default.

④ A local variable declaration with an initial value.

⑤ The value of y at this point is 100.

⑥ The local variable y is no longer available outside the block.

Local variables are statically and lexically scoped. Local variables can
be freely accessed by functions defined inside their scope. Note that the
local variables are not generally useful in the global scope in the Lua
REPL since each statement, including the local declaration, is executed
in its own separate chunk.

Multiple variables can be declared in a single statement, with or
without initial values.

> local x, y, z print(x, y, z) ①
nil nil nil
> local x, y = 1, 2 x, y = y, x print(x, y) ②
2 1

① It declares three local variables, x, y, and z. Their initial values are
all nil. This line includes two statements, for illustration. They could
have been separated by a semicolon statement.

② It first declares two local variables, x and y, with initial values 1 and
2, respectively. Next, the values are swapped (x,y = y,x). We then
print out the result. This is all done in one line in REPL, as an
example.

8.2. Attributes
Each variable name in a local variable declaration may be postfixed by
an "attribute", e.g., a name between angular brackets <>. This is a new

8.2. Attributes

52

introduction to the language, as of 5.4.4. There are currently two
predefined attributes, <const> and <close>.

8.2.1. The <const> attribute

A local variable declared with <const> is a constant variable, that is, a
variable that cannot be re-assigned to after its initialization.

> do ①
>> local x <const>, y = 1, 2 ②
>> y = "hello" ③
>> x = 10 ④
stdin:4: attempt to assign to const variable 'x'

① Starting a new block in REPL, for illustration.

② x is a constant variable, whereas y is not.

③ y can be assigned a different value. y now refers to a string value,
"hello".

④ On the other hand, attempting to assign a new value to the constant
variable x throws an error.

Note that the variables in Lua do not have types, unlike in the statically
typed programming languages. (Only the values in Lua are associated
with types.) Hence, the same (non-constant) variable can be used to
reference the values of different types, as in the case of y in this
example.

8.2.2. The <close> attribute

The <close> attribute can only be used with the tables which have the
metamethod, __close. A local variable declared as <close> is a to-be-
closed variable. When the variable goes out of scope, Lua automatically
calls its __close metamethod. This metamethod can be used for local
block cleanup. For instance,

8.2. Attributes

53

> mt = { __close = function() print("Closing...") end }
> obj = setmetatable({}, mt) ①
> do ②
>> local o <close> = obj ③
>> end ④
Closing... ⑤

① The (global) variable obj references a table that has an associated
__close metamethod.

② The start of a local block.

③ The variable o is a to-be-closed variable referencing the same table
referred to by obj.

④ The end of the local block. All local variables, such as o, go out of
scope at this point.

⑤ The __close metamethods of all to-be-closed variables are
automatically called. The local variable o's __close metamethod in
this example simply prints out a string Closing…

A variable declaration can contain at most one to-be-closed variable.

8.3. Table Fields
Lua’s table is explained in the table chapter later in the book. The
names of the fields in the tables are also variables. The field variable
access syntax is discussed in the previous chapter on types.

8.4. Global Variables
A new variable name in a program is global by default unless it is first
declared as local. A global variable can be declared without using the
local keyword. Global variables can be also used before they are
explicitly declared. For example,

8.3. Table Fields

54

> f = function() return A end ①
> f() ②
nil
> A = 3 ③
> f() ④
3
> A = 5 ⑤
> f() ⑥
5

① The variable A is global.

② The default value of a global variable is nil.

③ We explicitly assign a value, 3, to this global variable A here.

④ This statement will print out 3.

⑤ We update the value of A to 5.

⑥ This will print out 5 now.

All global variables are also the table fields of Lua’s builtin global
variable _G, which is the default environment _ENV when a Lua chunk
is loaded. Hence, a global variable x can be referred to as _G.x or
_ENV.x. For example,

> a = "hello" ①
> a, _G.a, _ENV.a ②
hello hello hello

① A global variable declaration with an initial value, "hello".

② At this point, a, _G.a, and _ENV.a all reference the same string,
"hello".

8.4. Global Variables

55

Chapter 9. Expressions
An expression specifies how to compute a value from operands, e.g., by
applying functions or other operators. It returns the computed value.

9.1. Basic Expression Types
An expression in Lua comprises the following basic expressions. Some
of them are further explained in this chapter, and some of them later in
the book.

9.1.1. Parenthesis expressions

A parenthesis expression, e.g., with another expression enclosed in
parentheses (()), results in at most one value regardless of the value of
the enclosed expression. For example, (f(x,y,z)) is always a single
value, even if f returns more than one value. In this case, the value of
(f(x,y,z)) is the first value returned by f or nil if f does not return
any values.

Parenthesis expressions are often used, to increase the readability, or
when a given expression needs to be evaluated differently than using
the default operator precedence rules.

9.1.2. Literal expressions

The following literals are constant expressions:

nil The nil literal.

true and false Boolean literals.

Numbers Numeral literals are explained in �Numerals.

Strings String literals are explained in �String Literals.

9.1. Basic Expression Types

56

9.1.3. Variables

Variables are basic expressions. Variables are explained in the earlier
chapter, Variables.

9.1.4. Vararg expressions

Vararg expressions ... can only be used inside a vararg function.

9.1.5. Function calls

Function calls are explained in in the later chapter, Anonymous
Functions. Function calls can be used as both expressions and
statements. If a function call is used as a standalone statement, then it
discards all returned values after evaluating the function call. Both
function calls and vararg expressions can result in multiple values, in
general.

9.1.6. Function definitions

An anonymous function definition is an expression in Lua. Function
definitions are explained in the Functions chapter.

9.1.7. Table constructor literals

Table constructors {} are (non-constant) literal expressions. They are
explained later in the Tables chapter.

9.1.8. Operators

Lua also includes most of the operators that are commonly found in
other programming languages. An operator takes an expression or two
and returns another expression. Operators can be viewed as a special
kind of functions in Lua (e.g., with special syntax, etc.). All Lua
operators are described in this chapter.

9.1. Basic Expression Types

57

Unary operator expressions

Lua unary operators comprise the unary minus (-), the unary bitwise
NOT (NOT), the unary logical not (!), and the unary length operator (#).

Binary operator expressions

Lua binary operators comprise arithmetic operators, bitwise operators,
relational operators, logical operators, and the concatenation operator
(..).

9.2. Arithmetic Operators
Lua supports the following arithmetic operators:

+ Addition.

- Subtraction, Unary minus.

* Multiplication.

/ Float division.

// Floor division.

% Modulo.

^ Exponentiation.

For most binary operators, if both operands are integers, then the
operation is performed over integers and the result is an integer.
Otherwise, if both operands are numbers, then they are converted to
floats, and the result is a float following the standard floating point
arithmetic.

Exponentiation ^ and float division / work differently. They always
treat their operands as floating point numbers.

9.2. Arithmetic Operators

58

9.3. Bitwise Operators
Lua supports the following bitwise operators:

& Bitwise AND.

| Bitwise OR.

~ Bitwise exclusive OR.

>> Right shift.

<< Left shift.

~ Unary bitwise NOT.

All bitwise operations convert its operands to integers, and they operate
on all bits of those integers. Their results are always integers.

The left shift << operation removes the existing leftmost bit and fills it
with the next left bit, and so forth. Right shift >> zero-fills the leftmost
bit after the bit shift operation.

9.4. Relational Operators
Lua supports the usual relational operators, which return a boolean
value, true or false:

== Equality.

~= Inequality.

< Less than.

> Greater than.

9.3. Bitwise Operators

59

<= Less or equal.

>= Greater or equal.

9.4.1. Equality operator

Equality == first compares the type of its operands. If the types are
different, then the result is false. Otherwise, the values of the
operands are compared. Strings are equal if they have the same byte
content. Numbers are equal if they denote the same mathematical
value.

Tables, userdata, and threads are compared by reference. Two objects
are considered equal if and only if they are the same object.

A function is always equal to itself. Functions with any significant
difference (e.g., different behavior, different definition) are always
different. Two functions with the same behavior, created separately,
may or may not be equal to each other.

One can customize the way that Lua compares tables (and userdata)
by implementing a custom __eq metamethod.

9.4.2. Inequality operator

The operator ~= is exactly the negation of equality ==. Note that this
operator is different from the C-style !=.

9.4.3. Comparison operators

The order operators, < and <=, work as follows.

• If both arguments are numbers, then they are compared according
to their mathematical values, regardless of whether either or both
are integer or floating point number types.

9.4. Relational Operators

60

• Otherwise,

◦ If both arguments are strings, then their values are compared
according to the current locale.

◦ Otherwise, Lua attempts to call the __lt or __le metamethods,
if either metamethod defined in either of the operands.

Greater-than or greater-equal comparisons, a > b and a >= b, are
translated to b < a and b <= a, respectively.

9.5. Logical Operators
The logical operators in Lua are not (unary) and and and or (binary).
Logical operators consider

• Both false and nil as false, and

• Anything else as true.

The second operand in a binary and or binary or expression is
conditionally evaluated:

<exp1> and <exp2> ①
<exp1> or <exp2> ②

① <exp2> is evaluated only if <exp1> is true. Otherwise, it return the
value of <exp1> without evaluating <exp2>.

② <exp2> is evaluated only if <exp1> is false. Otherwise, it return
<exp1> without evaluating <exp2>.

This is known as the "short circuiting".

Note that the conjunction (and) and disjunction (or) operators do not
necessarily return boolean values, depending on the actual types of
<exp1> or <exp2>. On the other hand, the negation operator (not)

9.5. Logical Operators

61

always returns boolean false or true regardless of the type of its
operand.

9.6. The Length Operator
Lua supports a unary prefix operator #, which returns the length of the
given operand. Note that the length is defined only for the values of the
string and table types.

9.6.1. String length

When the operand is a string, it returns the number of bytes.

9.6.2. Table borders

A "border" in a table t is an integer satisfying the following condition:

• If a field at index 1 is absent in t, the border is 0.

• Otherwise,

◦ If there is a positive integer index followed by an absent next
index, then the border is this positive integer index.

◦ If an index with the maximum value for an integer is present,
then the border is the maximum integer.

Note that the borders are determined by positive integer indexes only.
Non-positive integer indexes and string keys do not play a role when
computing the borders.

9.6.3. Table length

When the operand is a table, the length operator # returns a border in
that table. Note that a table can have more than one border, and the
Lua language does not specify which one to return from the length
operator. It is implementation-dependent.

9.6. The Length Operator

62

For example,

> #{} ①
0
> a = { x = 3, y = 5 } ②
> #a ③
0
> b = {}
> b[3], b[4] = 'x', 'y'
> #b ④
0
> c = {}
> c[1], c[2], c[5] = 'p', 'q', 'r'
> #c ⑤
2

① The length of an empty table is 0.

② The table constructor literal syntax is described in the table
chapter.

③ The table a does not contain a field with index 1, and hence its
length is 0.

④ Ditto with b.

⑤ The table c has indices 1 and 2, but not 3. Likewise, there is 5 but
not 6. Hence there are two borders, 2 and 5. In this example, the
length expression #c happens to return 2.

9.6.4. Sequence length

A table with exactly one border is called a sequence. For example,

{} ①
{10, 20, 30, 40} ②
{'a', 'b', nil, 'd'} ③

9.6. The Length Operator

63

① An empty table is a sequence of border 0.

② This table is a sequence since it has one border, 4.

③ This is not a sequence since it has two borders, 2 and 4. The nil
value at index 3 is called a hole.

When a table t is a sequence, #t returns its only border, which
corresponds to the intuitive notion of the length of a sequence. For
instance, #{10, 20, 30, 40}, is 4 since this sequence has "4
elements".

9.6.5. Customizing the length operator

The behavior of the length operator # can be modified by implementing
a __len metamethod. Note, however, that the values of the string type
do not use this metamethod.

9.7. Operator Precedence
Operator precedence in Lua follows the table below, from lower to
higher priority:

or
and
< > <= >= ~= ==
|
~
&
<< >>
..
+ -
* / // %
unary operators (not # - ~)
^

9.7. Operator Precedence

64

As usual, you can use parentheses to change the precedences of
expressions.

The concatenation .. and exponentiation ^ operators are right
associative. All other binary operators are left associative. For example,

> 10 / 2 * 5 ①
25.0
> 2 ^ 3 ^ 2 ②
512.0

① This expression is equivalent to (10 / 2) * 5.

② This expression is equivalent to 2 ^ (3 ^ 2).

9.8. Conversions
Lua provides some implicit conversions between some builtin types at
run time.

• Bitwise operators always convert float operands to integers.

• Exponentiation and float division always convert integer operands
to floats.

• All other arithmetic operations applied to mixed numbers (integers
and floats) convert the integer operand to a float.

• String concatenation automatically converts numbers to strings.

9.8. Conversions

65

Chapter 10. Anonymous
Functions
Functions are an essential component of any procedural programming
languages, including Lua. A function in Lua is just a value that is
"callable". Lua functions can return multiple values.

10.1. Function Definitions
A function can be defined as follows:

function (<parameter list>) <block> end

It starts with the keyword function and ends with end. A comma-
separated list of zero, one, or more function parameters is included in
parentheses following function. The function body <block> can
comprise zero, one, or more statements. A function definition is a value,
or more generally, an expression. For example,

> function(a, b) return a + b end
function: 0x55b1dbd83010

A function defined this way has no name. That is, it is anonymous.
Functions are often assigned to variables, and we use the variables
throughout the program. For instance,

product = function(a, b) ①
 return a * b
end
p = product(2, 5) ②

10.1. Function Definitions

66

① The anonymous function (a value) is assigned to a (global) variable
product in this example.

② Then you can call this function using this name. The value of p is 10.

Lua has a syntactic shortcut for this kind of use cases. A function name
can be included after the function keyword and before the
parenthesized parameter list. For example,

function sum(a, b) return a + b end

This function definition is equivalent to

sum = function(a, b) return a + b end

Likewise, the following two statements are more or less equivalent as
far as the rest of the program is concerned:

local function product(a, b) return a * b end
local product = function(a, b) return a * b end

More precisely, the named local function definition, e.g., that on the
first line, is equivalent to the following two (or, three) statements:

local product; product = function(a, b) return a * b end

This distinction is not generally significant, however, unless the
function definition includes references to itself (e.g., as in recursive
functions). One thing to note is that, although a function is just a value
in Lua, the more traditional named function definition syntax is more
commonly used in Lua programs, likely because that is what many
programmers are used to.

10.1. Function Definitions

67

10.2. Method Syntax
When a function is assigned to a variable with at least one dot (.), the
last dot can be replaced with a colon (:) when using the named
function definition form, while adding an implicit extra parameter self
to the function, to emulate the method syntax. For example, the
following two function definitions are equivalent to each other.

function x:exlen(factor) return #self * factor end
x.exlen = function(self, factor) return #self * factor end

10.3. Function Parameters
The parameter list can be a vararg parameter (...), or a named
parameter list followed by an optional vararg parameter. For example,

function(...) end ①
function(a, b, c) end ②
function(x, y, ...) end ③

① A vararg parameter only.

② A list of named parameters only.

③ Named parameters followed by a trailing vararg parameter.

Parameters are local variables within the function body. Their scopes
are limited to this function body block. The matching arguments, if any,
are the initial values for the corresponding parameters.

10.3.1. Vararg parameter

A function that includes a vararg parameter is called the vararg
function. When a function is called, it matches the list of arguments to

10.2. Method Syntax

68

the list of parameters, from left to right.

• If there are more parameters than the provided arguments, then

◦ All remaining parameters are initialized with nil.

• Otherwise, if more arguments are provided than the parameters,
then

◦ If there is a vararg parameter, then All excess arguments are
collected into a list and it is assigned to the vararg parameter,

◦ Otherwise, The excess arguments are ignored.

10.4. Function Calls
A function call is an expression, which can also be used as a standalone
statement. When a function call is used as a statement, its value (e.g.,
the return values from the function) is discarded.

The function call expression in Lua consists of two parts, the prefix
expression, which can be simply an anonymous function value or a
function name, and the argument list.

• First, both the prefix expression and all arguments are evaluated.

• Next,

◦ If the prefix expression is of the function type, it is called with
the evaluated argument list.

◦ Otherwise, if the prefix expression has a __call metamethod,
then it is called with an augmented argument list with the value
of the prefix expression as the first argument.

10.4.1. Arguments

The function call argument, a list of zero, one, or more comma-
separated expressions, is enclosed in a pair of parentheses. In case the

10.4. Function Calls

69

argument is a single (short or long) string literal or a table constructor
literal, the parentheses can be omitted. For example,

prefexp1 (10, 20, "hello") ①
prefexp2 "universe" ②
prefexp3 [[wide universe]] ③
prefexp4 { key = 333 } ④

① The space between the function prefix expression and the argument
list is not significant, in general.

② This function call expression is equivalent to
prefexp2('universe').

③ This is equivalent to prefexp3('wide universe').

④ This is equivalent to prefexp4({ key = 333 }).

10.5. Method Call Syntax
When a colon : is used in place of the last dot . in a function call, the
function call prefix expression is implicitly provided as the first
argument. For example, the following two function call expressions are
more or less equivalent to each other.

obj1.obj2:exlen(factor)
obj1.obj2.exlen(obj1.obj2, factor)

Note that obj1.obj2 is evaluated only once in either syntax.

10.5. Method Call Syntax

70

Chapter 11. Statements
Lua supports most of the conventional set of statements, similar to
those found in other imperative languages.

• Empty statements (;),

• Multiple assignments,

• Label statements,

• goto statements,

• break statements,

• return statements,

• if statements,

• for statements,

• while statements, and

• repeat statements.

The do block statement was described earlier, in the context of the Lua
program structure. Local variable declarations are also statements.
They are syntactically similar to the assignment statements, but they
primarily introduce the (new) variables to the local scope, with optional
initial values. Function definitions (local or otherwise) and function call
expressions (including method calls) can also be used syntactically as
statements.

11.1. Empty Statements
The empty statement does nothing.

; ①

11.1. Empty Statements

71

① In Lua, the semicolon ; is a statement. In other C-style languages,
semicolons are typically used to terminate a statement.

Empty statements are primarily used as placeholders (e.g., similar to
pass in Python) or to separate other statements.

> print("hello"); print("world") ①
hello
world

① This line has three statements. In this particular example, the middle
empty statement is superfluous.

11.2. Multiple Assignments
The assignment statement specifies a list of one or more variables, on
the left hand side of the assignment operator =, and it assigns a value to
each variable by specifying a list of expressions, on the right hand side.
The elements in both lists are separated by commas.

a, b = 1, 10

The assignment proceeds as follows:

1. All expressions on the right hand side are evaluated first.

2. If any expression contains a function call, then all values returned
by that call is inserted into the expression list.

3. The list of values is adjusted to the length of the list of variables.

◦ If there are more variables than the values on the right hand
side, then the value list is extended with nil's.

◦ If there are fewer variables, then the excess values are
discarded.

11.2. Multiple Assignments

72

4. Each of the values on the right right hand side are assigned to the
corresponding variable, from left to right.

11.3. Label Statements
Labels in Lua are syntactically statements. Similar to the empty
statements, label statements perform no actions. These two types of
statements are called void statements. For example,

::name1:: ①

① This label statement introduces a new name, name1, to the scope.

A label is visible in the entire block where it is defined, except inside
nested functions.

11.4. Goto Statements
The goto <name> statement transfers the program control to the label
statement with the given <name>.

goto name1 ①

① This goto statement transfers control to the label with name1.

A goto may jump to any visible label as long as it does not enter into
the scope of a local variable.

11.5. Break Statements
The break statement terminates execution of the innermost enclosing
for, while, or repeat statement. It effectively transfers the program
control to the next statement after the loop.

11.3. Label Statements

73

11.6. Return Statements
The return statement is generally used to return values from a
function or a chunk (which is handled as an anonymous function). In
fact, any block in Lua (explicit or implicit) can end with a return
statement.

Lua functions can return more than one value, so the syntax for the
return statement is

return <expression list>

11.7. If Statements
The if statement consists of an if-then block, zero, one, or more
elseif-then block, and an optional else block. For instance,

if <exp> then ①
 <block>
elseif <exp> then ②
 <block>
elseif <exp> then
 <block>
else ③
 <block>
end ④

① The if statement starts with the if block. (Note that Lua is a free-
form language and this particular formatting style is just
conventional, as with any other example in this book.)

② Any number of elseif blocks can be included.

③ Zero or one else block.

11.6. Return Statements

74

④ The if statement ends with the keyword end.

The condition expressions (e.g., <exp> in the above pseudo-code) can
return any values of any types. In the if and elseif contexts, all
values are evaluated to true other than false and nil, which are
evaluated to false.

Note that the number 0 and the empty string "", for instance, test true.
This behavior is different from other programming languages that
support implicit boolean conversion, like (©) and Python.

11.8. For Statements
Lua’s for statement has two forms:

• Numerical for, and

• Generic for.

11.8.1. The numerical for loop

The numerical for loop repeats a block of code while a control variable
goes through an arithmetic progression in the specified numeric range.
It has the following syntax:

for <name> = <init>, <limit>, <step> do
 <block>
end

The three control expressions, <init>, <limit>, <step>, are evaluated
once at the beginning of the loop. The <step> is optional, and its default
value is 1 (integer).

The control variable, <name>, is a local variable to the for statement
block. This variable is initially assigned the value of <init>. While the

11.8. For Statements

75

value is not over that of <limit>, it executes the <block>, after
incrementing the value by <step> at each iteration.

11.8.2. The generic for loop

The generic for statement works over a list of values returned from
special type of functions, called iterators. On each iteration, the iterator
function is called, which returns the new "next value" on each call.
When the iterator returns nil, the loop terminates.

The generic for loop has the following syntax:

for <name list> in <exp list> do
 <block>
end

Note that the name list can contain one, two, or more variables. In other
programming languages, the control variables in (their corresponding)
for loops are often limited to only one or two. In Lua, an arbitrary
number of variables can be used. For instance, refer to an example for
the string.gmatch function, which can return an arbitrary number of
items at each iteration.

11.9. While Statements
The while statement has the following syntax:

while <exp> do
 <block>
end

As with if and repeat statements, any value of the <exp> expression
evaluates to true except for false and nil.

11.9. While Statements

76

The while statement repeatedly executes the <block> as long as <exp>
evaluates to true. Note that <exp> can be initially false, and in such a
case, <block> will never be executed, in contrast with the repeat
statement

11.10. Repeat Statements
The repeat statement has the following syntax:

repeat
 <block>
until <exp>

As with if and while statements, any value of the <exp> expression
evaluates to true except for false and nil.

The repeat statement block ends after the <exp> condition, not at the
until keyword, and hence the condition can refer to the local variables
declared inside <block>.

For example,

local a, b = 1, 1
repeat
 a, b = b, a + b
until b > 20
print(b)

This script will print out 21.

11.10. Repeat Statements

77

Chapter 12. The Math Library
The standard math library provides a number of mathematical
functions within a math table.

12.1. Math Constants
math.maxinteger The maximum value for an integer.

math.mininteger The minimum value for an integer.

math.huge The float value HUGE_VAL, which is greater
than any other numeric value in terms of the
comparison >.

math.pi The float value of π.

print("math.maxinteger: " .. math.maxinteger)
print("math.mininteger: " .. math.mininteger)
print("math.huge: " .. math.huge)
print("math.pi: " .. math.pi)

On the author’s computer, using the standard 64 bit Lua interpreter,
math.maxinteger, math.mininteger, math.huge, and math.pi are
9223372036854775807 (2^64 - 1), -9223372036854775808 (-2^64),
inf, and 3.1415926535898, respectively.

12.2. General Functions

math.type(x) -> string ①

① The math.type function returns string "integer" or "float"
depending on whether the argument x is an integer or float,

12.1. Math Constants

78

respectively. Otherwise, it returns nil.

math.tointeger(x) -> integer ①

① The math.tointeger function returns nil if x is not convertible to
an integer number. Otherwise, it returns x as an integer.

math.ult(m, n) -> boolean ①

① The math.ult function returns true if and only if integer m is below
integer n when they are compared as unsigned integers.

For example,

> math.ult(1, 10)
true
> math.ult(-10, -1)
true
> math.ult(1000000000, -1)
true
> math.ult(math.maxinteger, -1) ①
true

① A negative number, e.g., -1, is bigger than any other positive
number in the unsigned comparison.

12.3. Basic Math Functions

math.abs(x) -> number ①

① The math.abs function returns the absolute value of x. If x is an
integer, it returns an integer. Otherwise, it returns float.

12.3. Basic Math Functions

79

math.sqrt(x) -> float ①

① The math.sqrt function returns the square root of x. This is
equivalent to the expression x ^ 0.5.

math.exp(x) -> float ①

① The math.exp function returns the value e ^ x where e is the base
of natural logarithms.

math.log(x, base = e) -> float ①

① The math.log function returns the logarithm of x in the given base.

12.4. Rounding Functions

math.ceil(x) -> integer ①

① The math.ceil function returns the smallest integral value greater
than or equal to x.

math.floor(x) -> integer ①

① The math.floor function returns the largest integral value less than
or equal to x.

math.fmod(x, y) -> number ①

① The math.fmod function returns the remainder of the division of x
by y that rounds the quotient towards zero. If both x and y are
integers, it returns an integer. Otherwise, it returns float.

12.4. Rounding Functions

80

math.modf(x) -> integer, float ①

① The math.modf function returns two values, the integral part and
the fractional part of the given argument x.

12.5. Trigonometric Functions

math.deg(x) -> float ①

① The math.deg function converts the angle x given in radians to
degrees.

math.rad(x) -> float ①

① The math.rad function converts the angle x given in degrees to
radians.

math.cos(x) -> float ①

① The math.cos function returns the cosine of x given in radians.

math.sin(x) -> float ①

① The math.sin function returns the sine of x given in radians.

math.tan(x) -> float ①

① The math.tan function returns the tangent of x given in radians.

math.acos(x) -> float ①

12.5. Trigonometric Functions

81

① The math.acos function returns the arc cosine of x given in radians.

math.asin(x) -> float ①

① The math.asin function returns the arc sine of x given in radians.

math.atan(y, x = 1) -> float ①

① The math.atan function returns the arc tangent of y/x. The
math.atan(y) call returns the arc tangent of y.

12.6. Min and Max Functions

math.max(x, ...) -> number ①

① The math.max function returns the maximum value from the given
arguments, according to the Lua less-than operator <.

math.min(x, ...) -> number ①

① The math.min function returns the minimum value from the given
arguments, according to the Lua less-than operator <.

12.7. Random Functions

12.7.1. The math.random function

The math.random function has the following 4 different forms:

math.random() -> float ①
math.random(m, n) -> integer ②

12.6. Min and Max Functions

82

math.random(n) -> integer ③
math.random(0) -> integer ④

① The math.random() call returns a pseudo-random number with
uniform distribution in the range [0.0, 1.0), that is, from 0.0
(inclusive) to 1.0 (exclusive).

② The math.random(m, n) call returns a pseudo-random integer with
uniform distribution in the range [m, n].

③ The math.random(n) call is equivalent to math.random(1, n).

④ The special call math.random(0) generates an integer with all bits
pseudo-random.

12.7.2. The math.randomseed function

math.randomseed(x, y = 0) -> integer, integer ①
math.randomseed() -> integer, integer ②

① The integer parameters x and y are joined into a 128-bit seed that is
used to reinitialize the pseudo-random generator.

② If math.randomseed() is called with no arguments, Lua generates a
seed with a weak attempt for randomness.

The math.randomseed function returns the two 64 bit seed
components that were effectively used so that the sequence can be
reproducible using the same pair of seeds.

As an illustration, here’s a simple module with a function that generates
random dice rolls:

diceroll.lua

local diceroll = {} ①

function diceroll.setSeed() ②

12.7. Random Functions

83

 local x, y = math.randomseed(os.time(), os.time() * 12345)
 return x, y ③
end

local DICE = 6 ④

function diceroll.rollDice(n) ⑤
 if n == nil or type(n) ~= "number" or n <= 1 then
 return math.random(DICE) ⑥
 else
 n = math.floor(n) ⑦
 end

 local index, tab = 1, {} ⑧
 while index <= n do ⑨
 tab[index] = math.random(DICE)
 index = index + 1
 end

 return tab ⑩
end

return diceroll

① The module table.

② This setSeed function uses the os.time function listed later in the
OS Functions chapter.

③ A Lua function can return multiple values.

④ This is a module local variable and hence it is not "exported".

⑤ The argument n of the rollDice function is effectively optional. If it
is not provided in the call, its value will be nil, and we handle this
case in the function implementation. This is a common idiom in Lua,
and in many dynamically typed programming languages.

⑥ In this case, we just return a single random integer value in the
range of [1, 6].

12.7. Random Functions

84

⑦ If the input argument is a floating number, we take its "floor" using
the math.floor function, which returns an integer value.

⑧ The local variable declaration.

⑨ This while loop could have been written as a numerical for or as a
repeat statement.

⑩ We return the table tab in this case. Note first that although tab is a
local variable, the caller will have access to the underlying table that
tab references. Note second that this function rollDice sometimes
returns a single value (an integer) and returns a table (more
specifically, a sequence). This is a common practice in Lua, and in
many other dynamically typed programming languages.

You can call diceroll.setSeed() first, (optionally) store the seed
values for later reproduction, if necessary, and then call the
diceroll.rollDice() function.

For example, here’s an example driver program:

main.lua

local x, y = diceroll.setSeed() ①
print("seed =", x, y)

local r = diceroll.rollDice() ②
print("dice =", r)

r = diceroll.rollDice("hey") ③
print("dice =", r)

local rolls = diceroll.rollDice(3.14) ④
print("rolls =", table.unpack(rolls)) ⑤

rolls = diceroll.rollDice(4) ⑥
print("rolls =", table.unpack(rolls))

① We set the random number generator seed before we start using any

12.7. Random Functions

85

random number functions.

② The rollDice() function can be called without an argument.

③ If it is called with an invalid argument like a function, it just returns
a single integer value.

④ The float number argument, e.g., 3.14, is truncated to an integer,
e.g., 3.

⑤ The table.unpack function is described later in the tables chapter.
It returns a list of elements from the given sequence.

⑥ It rolls the dice 4 times.

If you run this Lua script, e.g., via lua main.lua, it will output something
like this:

seed = 1666892182 20577783986790
dice = 5
dice = 6
rolls = 4 6 2
rolls = 1 1 2 3

12.7. Random Functions

86

Chapter 13. Strings - Basics
Lua strings are sequences of bytes, and they are immutable. String
indices, and table indices, in Lua are 1-based, and negative indices are
interpreted as indexing backwards, from the end of the string. String
literals were described earlier, including (multiline) long string literals.

Lua standard library provides a number of functions for string
manipulation in the table string. The string library assumes one-byte
character encodings (e.g., ASCII). The string functions can be used in the
(object-oriented) method style syntax when the argument is a variable.
For example, string.len(s) can be written as s:len(), using colon :.

13.1. String Concatenation
The builtin string concatenation operator is denoted by two dots (..), as
we see throughout this book. String concatenation is an expression.

• If both operands are strings or numbers, then the default string
concatenation operation is performed. The number type operands,
if any, are converted to strings first.

• Otherwise,

◦ If a __concat metamethod is defined in the first operand, this
method is called.

▪ If not, and if this metamethod is defined in the second
operand, then it is called.

▪ Otherwise, this expression throws an error.

The default string concatenation behavior:

> "hello" .. "world"
helloworld
> greeting, name = "hola", "juan"

13.1. String Concatenation

87

> greeting .. 2 .. name
hola2juan

Here’s a simple example of customizing string concatenation.
Metatables and metamethods are explained more thoroughly in the
later part of the book.

> mt = { ①
>> __concat = function(a, b) return a.val .. ":" .. b.val
end
>> }
> obj1 = setmetatable({}, mt) ②
> obj1.val = "[object 1]"
> obj2 = setmetatable({}, mt)
> obj2.val = "[object 2]"
> obj1 .. obj2 ③
[object 1]:[object 2]

① This table mt has a function/method with a key __concat.

② We create two tables, obj1 and obj2, using mt as their metatables.

13.2. The string.len Function
We will go through some of the more commonly used string functions
in this chapter.

string.len(s) -> integer

The s:len() function returns the length of the given string s. This is
the same as the length expression #s.

> string.len("abracadabra")
11

13.2. The string.len Function

88

> s = "hocus pocus"
> s:len()
11

13.3. The string.lower Function

string.lower(s) -> string

The s:lower() function returns a (new) string as a copy of s, but with
all uppercase letters changed to lowercase. Which are uppercase letters
vs lowercase letters is dependent on the current locale.

> string.lower("UNder Ground !!!")
under ground !!!

13.4. The string.upper Function

string.upper(s) -> string

The s:upper() function returns a copy of s with each of the lowercase
letters changed to uppercase.

> string.upper("UPPER Floor ??")
UPPER FLOOR ??

13.5. The string.rep Function

string.rep(s, n, sep = "") -> string

13.3. The string.lower Function

89

The s:rep(n, sep) function concatenates s for n times, separated by
sep, and returns its result. When n is a non-positive number, the
function returns an empty string "".

> string.rep("hocus", 4, " ")
hocus hocus hocus hocus

13.6. The string.reverse Function

string.reverse(s) -> string

The s:reverse() function returns a string that is the string s reversed.

> string.reverse("Rainbow? Or Snowbow?")
?wobwonS rO ?wobniaR

13.7. The string.format Function

string.format(s, ···) -> string

The s:format(···) function returns a "formatted" string version of
the format string s, which can include zero or more conversion
specifiers. The format string follows the same rules as the ISO C
function sprintf with some minor differences.

> month, day, holiday = "December", 25, "Christmas"
> string.format("%s %d is a %s day!", month, day, holiday)
December 25 is a Christmas day!

13.6. The string.reverse Function

90

Chapter 14. String Manipulation

14.1. The string.sub Function

string.sub(s, i, j = -1) -> string

The s:sub(i, j) function returns the substring of s from the start
index i to the end index j (both inclusive). Negative indices are
allowed. For instance,

> string.sub("Expecto Patronum", 1) ①
Expecto Patronum
> string.sub("Expecto Patronum", 1, 7) ②
Expecto
> string.sub("Expecto Patronum", -8) ③
Patronum
> string.sub("Expecto Patronum", 6, 13) ④
to Patro
> string.sub("Expecto Patronum", 1, -20) ⑤

> ⑥

① The s:sub(1) call returns the entire string.

② The s:sub(1, n) call returns a "prefix", e.g., the first n characters.

③ The s:sub(-n) call returns a "suffix", e.g., the last n characters.

④ A more general application of s:sub.

⑤ This particular call returns an empty string since the end index goes
to the left of the start index.

⑥ The following prompt is included to show the previous output, e.g.,
the empty string.

14.1. The string.sub Function

91

14.2. The string.find Function

string.find(s, pattern, init = 1, plain = false) -> integer,
integer, ...

The s:find(pattern, init, plain) function searches for the first
match of pattern in the string s, starting from index init, and if one
is found, then it returns its start and end indices. If no pattern is found
in s, it returns nil.

By default, string.find uses the "pattern match". When plain is set
to true, this function does a plain substring search.

If the pattern has captures, then in a successful match the captured
values are also returned, after the two indices.

> string.find("hello there, hello all!", "hell")
1 4
> string.find("hello there, hello all!", "hello", 3)
14 18
> string.find("hello there, hello all!", "(%w+)%W+(%w+)")
1 11 hello there

14.3. The string.match Function

string.match(s, pattern, init = 1) -> ...

The s:match(pattern, init) function works in a similar manner to
s:find. It searches for the first pattern in the string s, starting from
the index init. If a match is found, then it returns the captures from
the pattern. If pattern includes no captures, then the entire matched
string is returned. If it fails to find pattern, it returns nil.

14.2. The string.find Function

92

> string.match("My SSN is 123-45-6789.", "%d+-%d+-%d+")
123-45-6789 ①
> print(string.match([[②
>> Today is the 21st day of the 3rd month in 2023
>>]],
>> "(%d+)%D*(%d+)%D*(%d+)"))
21 3 2023 ③

① The pattern includes no capture. Hence, it returns the whole match.

② We need this print() call here to display the output of the multiline
expression in REPL.

③ The output has three captures.

14.4. The string.gmatch Function

string.gmatch(s, pattern, init = 1) -> iterator

The s:gmatch(pattern, init) function finds all matches of pattern
in the string s, starting from init. It returns an iterator function that
yields, in each iteration, the next list of captures from pattern, or the
whole match if there is no capture specified. The pattern should not
generally include a caret '^' at its start since it will prevent the iteration
more than once. For example,

> s = "sun=sol:sol, moon=lua:luna, star=estrela:estrella"
> for w1, w2, w3 in s:gmatch("(%w+)=(%w+):(%w+)") do
>> print(w1, w2, w3)
>> end
sun sol sol
moon lua luna
star estrela estrella

14.4. The string.gmatch Function

93

14.5. The string.gsub Function

string.gsub(s, pattern, repl, n = nil) -> string, integer

The s:gsub(pattern, repl, n) function performs a "global search
and replace" operation with repl on the string s, to the maximum of n
(>= 0), if provided. It returns two values:

1. A copy of s in which all (or the first n) occurrences of pattern have
been replaced by repl, and

2. The total number of matches that occurred.

The repl can be a string, a table, or a function:

• If repl is a string, then its value is used for replacement.

• If repl is a table, then the table is queried for every match, using
the first capture as the key.

• If repl is a function, then this function is called every time a match
occurs, with all captured substrings passed as arguments, in order.

For example,

> string.gsub("hello hell hell", "hel", "Jel")
Jello Jell Jell 3
> string.gsub("hello hell hell", "hel", "Jel", 1)
Jello hell hell 1

14.5. The string.gsub Function

94

Chapter 15. Regular Expressions
Lua’s pattern-matching functions take the regular expression patterns
as their first argument (after self), as described in the previous
chapter, e.g., string.match, string.gmatch, string.gsub, and
string.find (when plain is false).

Here’s a brief explanation of the regular expression syntax as used in
these string functions.

15.1. The Patterns
In Lua, a regular expression pattern is just a regular string. A pattern
comprises zero, one, or more pattern items, as explained below.

• A caret ^ at the beginning of a pattern anchors the match at the
beginning of the subject string.

• A dollar $ at the end of a pattern anchors the match at the end of
the subject string.

For example, "^$" matches an empty string (or, an empty line).

15.1.1. Character class

A pattern item is made of character classes. A character class represents
a set of characters.

• Any single character which is not one of the "magic characters"
^$()%.[]*+-? represents the character itself.

• A dot . represents any character.

• A character class %C, where C is a non-alphanumeric character,
represents the character C itself. This class can be used to escape the
magic characters, for instance.

15.1. The Patterns

95

• [set] represents the class which is the union of all characters in
the specified set. A range of characters can be specified by putting a
hyphen - between the two end characters of the range. (The -
character can be represented as %-.)

• [^set] represents the complement of the specified set. That is, all
characters that are not in the set.

The following single character classes depend on the current locale. In
particular, the definitions of letter, space, and other character groups
depend on the locale.

• %a: Any letter.

• %c: Any control character.

• %d: Any digit.

• %g: Any printable character except space.

• %l: Any lowercase letter. In an English locale, this is equivalent to
[a-z].

• %p: Any punctuation character.

• %s: Any space character.

• %u: Any uppercase letter. In an English locale, this is equivalent to
[A-Z].

• %w: Any alphanumeric character. In an English locale, this is
equivalent to [0-9A-Za-z].

• %x: Any hexadecimal digit.

For these classes, the corresponding uppercase letter represents the
complement of the class. For example, %W represents any non-
alphanumeric character since %w represents an alphanumeric
character.

15.1. The Patterns

96

15.1.2. Pattern item

A pattern is a sequence of the following pattern items:

A single character class

Matches any single character in the class.

A single character class followed by +

Matches the longest possible sequences of one or more characters in
the class.

A single character class followed by *

Matches the longest possible sequences of zero or more characters in
the class.

A single character class followed by -

Matches sequences of zero or more characters in the class. Unlike *,
it will match the shortest possible sequence.

A single character class followed by ?

Matches at most one occurrence of a character in the class.

%n, for n between 1 and 9

Matches a substring equal to the n-th captured string. Captures are
explained below.

%bxy, where x and y are two distinct characters

Matches strings that start with x, end with y, and x and y are
balanced. This means that, if one reads the string from left to right,
counting +1 for an x and -1 for a y, the ending y is the first y where
the count reaches 0.

The pattern item %b{}, for example, matches "{hello}", but not
"{{world}" in its entirety (although it still matches {world} or
{{{Hello World}}}", etc.).

15.1. The Patterns

97

%f[set], a frontier pattern

Matches a sequence of spaces whose subsequent character belongs
to the set and whose preceding character does not belong to the set.

15.2. The Captures
A pattern can contain sub-patterns enclosed in parentheses. They are
called captures.

When a match succeeds, the parts of the subject string that match any
captures are stored. Captures are numbered from left to right according
to their left parentheses.

For instance, in the pattern "(.(%d+)%s*(%w+))", the part of a subject
string that matches .(%d+)%s*(%w+) is stored as the first capture with
the number 1. The substring that matches %d+ is stored as the capture
number 2. Finally, the captured part that matches %w+ has the capture
number 3.

As a special case, the empty parentheses () captures the current string
position (an index). For example, when the pattern "()ll()" matches a
string "hello", it will end up with two captures, 3 and 5.

15.2. The Captures

98

Chapter 16. Tables
Lua’s table is comparable to JavaScript’s Object.

Tables can be used to create values and data structures like lists and
maps, to provide namespaces (e.g., modules), and even to create custom
types. In fact, in Lua, table is the primary, and essentially the only,
mechanism to support much of the language extension.

As a data structure, table has a dual nature. Some tables can be
viewed as arrays, and some can be viewed as maps. As we have seen
earlier in the context of the length operator, there is a special category
of tables, namely, sequences.

Although it is an implementation detail, the standard Lua interpreter
optimizes the memory allocation of (small) linear tables (e.g., with only
integer indices), including sequences, by utilizing consecutive memory
space. Hence, in such cases, Lua tables are more like the native array
types in many other programming languages, for example, with similar
performance characteristics.

16.1. Table Constructors
Table constructors are expressions that create tables. They are
syntactically literals, but they do not yield constant expressions. Every
time a constructor is evaluated, a new table is returned.

A constructor literal can be used to create an empty table or to create a
table with some of its fields initialized.

local t = {} ①

① The table constructor expression on the right hand side creates a
new empty table.

16.1. Table Constructors

99

The list of initial values can be provided in the constructor, as a series
of fields, separated by commas , or semicolons ;.

A table field is a pair of a key/name and its value. There are three
different ways to specify a field:

• [<exp1>] = <exp2>,

• <name> = <value>, and

• <value>.

Each field of the form [<exp1>] = <exp2> in a table constructor adds
an entry with key <exp1> and value <exp2>. A field of the second form
<name> = <value> is equivalent to ["<name>"] = <value>. Fields of
the third form <value> are equivalent to [i] = <value>, where i are
sequential integer indices starting from 1, skipping other forms.

For example,

local t1 = { a = 1, b = 2 } ①

local t2 = { ②
 ["apples"] = 10,
 ["oranges" .. "bananas"] = 20,
}

local t3 = { "hello"; k = "beautiful"; "world" } ③

local f = function(a, b) return a + b end
local t4 = { [f(1, 2)] = f } ④

① The table constructor creates a new table with two fields, ["a"] =
1 and ["b"] = 2.

② The constructor creates a new table with two fields, ["apples"] =
10 and ["orangesbananas"] = 20. The trailing comma or
semicolon is optional.

16.1. Table Constructors

100

③ The constructor creates a new table with three fields, [1] =
"hello", ["k"] = "beautiful", and [2] = "world".

④ The constructor creates a new table with one field, [3] = f, where
f is a function, as defined in the example.

The table Table
The table library provides generic functions for table manipulation. It
provides all its functions inside the namespace of the table table.

Computing the length of a table is described earlier in the book, in the
length operator chapter. When dealing with the table functions
requiring the length of a table, therefore, one need to be aware of how
the lengths are computed. In particular, it should be noted that all non-
numeric keys, and negative integer keys, are ignored when computing
the length of a table.

16.2. The table.pack Function

table.pack(···) -> table

The table.pack function returns a new table with all arguments
stored into positive integer keys 1, 2, 3, etc.

For example,

> function packDemo()
>> local list = table.pack(1, 3, 5)
>> for i, v in ipairs(list) do
>> print(i, v)
>> end
>> end
> packDemo()

16.2. The table.pack Function

101

1 1
2 3
3 5

16.3. The table.unpack Function

table.unpack(list, i = 1, j = #list) -> ...

The table.unpack function returns zero, one, or more elements from
the given list. This function is equivalent to

function(list, i, j)
 return list[i], list[i+1], ···, list[j]
end

For example,

> function unpackDemo()
>> local list = { "red", "green", "blue" }
>> local unpacked = table.unpack(list)
>> print(table.unpack(list))
>> end
> unpackDemo()
red green blue

16.4. The table.concat Function

table.concat(list, sep = "", i = 1, j = #list) -> string

The table.concat function concatenates elements of list, between i

16.3. The table.unpack Function

102

and j, and it returns the concatenated string. The elements of list
should be either strings or numbers. Effectively, table.concat returns
the string list[i]..sep..list[i+1] ··· sep..list[j].

Here’s an example:

> function concatDemo()
>> local list = { 1, 2, "apple" }
>> local s = table.concat(list, ",")
>> print("s =" .. s)
>> end
> concatDemo()
s = 1,2,apple

16.5. The table.insert Function

table.insert(list, pos, value)
table.insert(list, value)

The table.insert function inserts element value at position pos in
list. When pos is not specified, table.insert(t, v) inserts v at the
end of the list t.

For instance,

> function insertDemo()
>> local list = { 1, 3 }
>> print(table.unpack(list))
>> table.insert(list, 5)
>> print(table.unpack(list))
>> table.insert(list, 2, 20)
>> print(table.unpack(list))
>> end
> insertDemo()

16.5. The table.insert Function

103

1 3
1 3 5
1 20 3 5

16.6. The table.remove Function

table.remove(list, pos = #list) -> value

The table.remove function removes from list the element at position
pos and it returns the removed element. Calling table.remove(l)
without pos removes the last element in l.

Here’s a simple example:

> function removeDemo()
>> local list = { 1, 3, 5, 7, 9 }
>> print(table.unpack(list))
>> table.remove(list)
>> print(table.unpack(list))
>> table.remove(list, 2)
>> print(table.unpack(list))
>> end
> removeDemo()
1 3 5 7 9
1 3 5 7
1 5 7
>

16.7. The table.move Function

table.move(a1, f, e, t, a2 = a1) -> table

16.6. The table.remove Function

104

The table.move function moves elements from the table a1 to the
table a2, and it returns the destination table a2. When the a2 argument
is omitted, the same source table a1 is also used as the destination.

In effect, table.move(a1, f, e, t, a2) is equivalent to the
following multiple assignment:

a2[t], ··· = a1[f], ···, a1[e]

For example,

> function moveDemo()
>> local list = { 1, 3, 5, 7 }
>> print(table.unpack(list))
>> local moved = { 'a', 'b', 'c', 'd', 'e', 'f' }
>> moved = table.move(list, 1, 3, 2, moved)
>> print(table.unpack(moved))
>> moved = table.move(moved, 1, 3, 5)
>> print(table.unpack(moved))
>> end
> moveDemo()
1 3 5 7
a 1 3 5 e f
a 1 3 5 a 1 3

16.8. The table.sort Function

table.sort(list, comp = nil)

The table.sort function sorts the list elements in a given order, in-
place. The sort algorithm is not stable, that is, the relative positions
among the elements that are considered equal by the specified order
may change by the sort.

16.8. The table.sort Function

105

By default, the standard Lua operator < is used for sorting. If comp is
given, then it must be a function that receives two list elements and
returns true when the first element must come before the second in the
final order, so that, after the sort, i ⇐ j implies not comp(list[j],
list[i]).

Here’s a simple example using table.sort. The demo function is
included in a module sortdemo:

sortdemo.lua

local sortdemo = {}

function sortdemo.sort()
 local list = { 3, 2, 7, 1 }
 print("input list:", table.unpack(list))
 table.sort(list, function(i, j)
 -- return i < j ①
 return j < i ②
 end)
 print("sorted list:", table.unpack(list))
end

return sortdemo

① This will sort in the normal ascending order.

② This will sort in the reverse or descending order.

If we try calling this sortdemo.sort() function in the Lua REPL,

> s = require("sortdemo")
> s.sort()
input list: 3 2 7 1
sorted list: 7 3 2 1

16.8. The table.sort Function

106

Chapter 17. Metatables
Every value in Lua may be associated with a companion table called the
metatable. The value’s metatable defines its behavior, e.g., for certain
(well-defined) events. You can change various aspects of the value’s
behavior by setting specific fields in its metatable.

The key for each event in a metatable is a string with the event name
prefixed by two underscores __. The corresponding value is called a
metavalue. For most events, the metavalue must be a function, which is
then called a metamethod. We will discuss some predefined
metamethods in the Lua language in the next chapter.

It should be noted that multiple values can share the same metatable,
and hence it is a "many to one" relationship. As we will see in a later
chapter, shared metatables can be used as "protoptypes" for creating
other tables, e.g., with the similar behavior.

The values of all builtin types, other than tables and userdata, share
one single metatable per type. That is, there is one single metatable for
all numbers, one for all strings, etc.

17.1. The __index Metavalue

__index(obj, key) -> value

The indexing access operation, e.g., obj[key], can be delegated to the
object’s metatable’s __index field if one is found.

When obj is not a table or it does not have a field with the given key, it
looks up its key in its metatable’s __index. This metavalue can be a
function, or a table. Or any other table with its own __index field. If the
key is not found even in this metavalue, then it looks it up again in the

17.1. The __index Metavalue

107

__index field of this metavalue if it has one. And so forth, until the field
with the given key is found, or until there are no more __index fields.

If a field is found with a given key, and if this field is a table, it returns
the value of the table field for the given key. If the found field is a
function, then it calls the function with the argument key. Otherwise, it
returns nil.

17.2. The __newindex Metavalue

__newindex(tbl, key, value)

Similar to __index, the indexing assignment operation, e.g., obj[key]
= value, can be delegated to the object’s metatable’s __newindex field
if one is found.

When obj is not a table or the given key is not present in obj, it looks
up its key in its metatable’s __newindex metavalue. Like the __index
field, if this key is still not found, then it is looked up in this metavalue’s
__newindex field, and so on.

17.3. The __metatable Metavalue
The metatable relationship can be "chained", or more aptly,
"redirected". If a given table’s (direct) metatable happens to have a field
__metatable, then the value of this field is used as the given table’s
(real) metatable. This indirect metatable may have a field __metatable
as well. If so, then again this becomes the original table’s (real)
metatable. And so forth, until it reaches the (ultimate) metatable which
does not have the __metatable field set.

(Note that, by default, this metavalue is not set, and hence this kind of "
metatable chaining" is rather uncommon in practice.)

17.2. The __newindex Metavalue

108

17.4. The getmetatable Function
You can query the metatable of any value using the builtin
getmetatable function.

getmetatable(obj) -> table ①

① For a given value obj, it returns the value’s metatable.

Some objects, e.g., of the table or userdata types, may not be
associated with metatables. In such a case, the getmetatable function
returns nil.

As indicated, this function returns the "ultimate" metatable, through the
__metatable chaining.

17.5. The setmetatable Function
You cannot change the metatable of values of any builtin types other
than tables. For this, we can use the builtin setmetatable function to
set or replace exiting metatables of a table.

setmetatable(tbl, metatable) --> table ①
setmetatable(tbl) -> table ②

① It sets the second argument metatable as the metatable of tbl.

② It removes the metatable of the given table tbl.

If successful, the setmetatable function returns the original tbl after
updating/removing its metatable.

If the existing metatable of a given table has a __metatable metavalue,
then this metatable cannot be updated or removed, using this

17.4. The getmetatable Function

109

setmetatable function, e.g., until this metavalue is removed.
Attempting to do so will raise an error.

> m, t = {}, {}
> m, t
table: 0x55d4edf75270 table: 0x55d4edf7a8f0
> setmetatable(t, m)
table: 0x55d4edf7a8f0
> getmetatable(t)
table: 0x55d4edf75270

> t, m, mm = {}, {}, {}
> m.__metatable = mm
> t, m, mm
table: 0x55d4edf76250 table: 0x55d4edf75c50 table:
0x55d4edf75be0
> setmetatable(t, m)
table: 0x55d4edf76250
> getmetatable(t)
table: 0x55d4edf75be0

17.5. The setmetatable Function

110

Chapter 18. Metamethods
A number of metamethods are predefined in Lua, and they have special
meanings. These methods are used to customize the behavior of a table
(e.g., when used as an "object"). They are comparable to Python’s
"dunder methods".

By convention, all keys of the predefined metamethods start with two
underscores __ followed by lowercase alphabets, somewhat similar to
that of Python.



Metatables can have other fields besides these special
metamethods listed in this, and other, chapters. Some
functions in the standard library use other fields in
metatables for their own purposes, such as
__tostring or __gc, etc.

18.1. The __call Method

__call(f, ...) -> ...

A non-function value can be made callable by implementing this
__call metamethod.

When a function call expression is used on f, and f is not a function,
then __call is looked up in the metatable of f. If this metamethod is
found, it is called with f as its first argument, followed by the
arguments of the original call, if any.

The results of this metamethod call are returned as the results of the
original function call on f. The __call is the only one that allows
multiple results.

18.1. The __call Method

111

18.2. The __len Method

__len(tbl) -> integer

The __len metamethod is looked up in the length operation # when the
operand tbl is not a string. If one exists, Lua calls this metamethod
with tbl, and it returns the result as the value of the original length
operation.

If this metamethod is not found, but if tbl is of the table type, then it
falls back to calling the table length operation. Otherwise, it raises an
error.

18.3. The __concat Method

__concat(tbl, obj)

The __concat metamethod is described in the string basics chapter.
Lua will try this metamethod when the concatenation .. operation is
performed on non-string or non-number type values.

18.4. Arithmetic Operations
If any operand for an arithmetic operation is not a number, Lua will try
to call a metamethod of its type. It starts by checking the first operand.
If that operand does not define a metamethod corresponding to the
operation, then Lua will check the second operand. If Lua can find the
corresponding metamethod, it calls the metamethod with the two
operands as arguments, and the result of the call is the result of the
operation. Otherwise, if no metamethod is found, Lua raises an error.

18.2. The __len Method

112

18.4.1. The __add method

The addition + operation:

__add(tbl, rhs) -> value

18.4.2. The __sub method

The subtraction - operation:

__sub(tbl, rhs) -> value

18.4.3. The __mul method

The multiplication * operation:

__mul(tbl, rhs) -> value

18.4.4. The __div method

The division / operation:

__div(tbl, rhs) -> value

18.4.5. The __mod method

The modulo % operation:

__mod(tbl, rhs) -> value

18.4. Arithmetic Operations

113

18.4.6. The __pow method

The exponentiation ^ operation:

__pow(tbl, exponent) -> value

18.4.7. The __unm method

The unary negation - operation:

__unm(tbl) -> value

18.4.8. The __idiv method

The floor division // operation:

__idiv(tbl, rhs) -> value

18.5. Comparison Operations
The behavior is similar to that of arithmetic metamethods. But, the
comparison metamethods are checked only when both operands are
tables or both operands are full userdata (which we do not discuss in
this book).

When the operands are the same objects, the operations result in trivial
result. (They are identical.) Otherwise, the corresponding metamethod
is checked, again from the left operand first and then the right one.

If one is found, this (first found) metamethod is called, and its result is
returned as a boolean as its original comparison expression.
Otherwise, it raises an error.

18.5. Comparison Operations

114

18.5.1. The __eq method

The equal == operation:

__eq(tbl, rhs) -> boolean

18.5.2. The __lt method

The less than < operation:

__lt(tbl, rhs) -> boolean

18.5.3. The __le method

The less equal <= operation:

__le(tbl, rhs) -> boolean

18.6. Bitwise Operations
The behavior is similar to that of arithmetic metamethods except that
the relevant metamethod is checked only if either of the operand is not
an integer (or, not a float coercible to an integer).

18.6.1. The __band method

The bitwise AND & operation:

__band(tbl, rhs) -> integer

18.6. Bitwise Operations

115

18.6.2. The __bor method

The bitwise OR | operation:

__bor(tbl, rhs) -> integer

18.6.3. The __bxor method

The bitwise exclusive OR ~ operation:

__bxor(tbl, rhs) -> integer

18.6.4. The __bnot method

The bitwise unary NOT ~ operation:

__bnot(tbl, rhs) -> integer

18.6.5. The __shl method

The bitwise left shift << operation:

__shl(tbl, shift) -> integer

18.6.6. The __shr method

The bitwise right shift >> operation:

__shr(tbl, shift) -> integer

18.6. Bitwise Operations

116

Chapter 19. Iterators
A table can be iterated over, e.g., in the for loop, using the builtin
functions like pairs and ipairs, etc. These are often known as
iterators or iterator functions. The iteration behavior of a value can be
customized by implementing a __pairs metamethod.

19.1. The pairs Function

pairs(tbl) -> val1, val2, val3
pairs(tbl) -> function, table, nil

If the given value tbl has a metamethod __pairs defined, Lua calls it
with tbl as an argument. Then, it returns the first three results from
this metamethod call.

If tbl does not have a __pairs metamethod, then Lua returns three
values: the next function, the table tbl, and nil. This set of return
values allows an iteration over all key-value pairs of table tbl using the
generic for loop construction:

for k, v in pairs(tbl) do
 <body>
end

19.2. The ipairs Function

ipairs(tbl) -> function, table, 0

It works in a similar way as pairs. The ipairs function returns three

19.1. The pairs Function

117

values: an iterator function, the table tbl, and 0. This allows an
iteration over all key-value pairs of table tbl in the following way:

for i, v in ipairs(tbl) do
 <body>
end

This will iterate over the index-value pairs (1, tbl[1]), (2,
tbl[2]), …, up to the first absent index.

19.3. The __pairs Metamethod
A table's __pairs metamethod can be implemented to customize the
table’s iteration behavior. Here’s a simple example:

local mt = {} ①
function mt.__pairs(t) ②
 local function _p(t, k) ③
 if k == nil then
 return 1, "a"
 elseif k == 1 then
 return 2, "b"
 else
 return nil
 end
 end

 return _p, t, nil ④
end

local function new() ⑤
 local o = {} ⑥
 setmetatable(o, mt) ⑦
 return o
end

19.3. The __pairs Metamethod

118

local obj = new() ⑧
for k, v in pairs(obj) do ⑨
 print(k, v)
end

① We will use the table mt as an metatable for the tables we will create
below.

② The __pairs metamethod.

③ The _p(t, k) local function is to be used as a next function. It takes
two arguments, a table t and an index k, and it returns two values,
the next index and its value. The return value of nil indicates the
end of iterable items.

④ The __pairs metamethod returns three values, the next function,
the table, and nil.

⑤ The factory method is described in the next chapter, OOP in Lua.
This function returns a new table every time it is called.

⑥ We create a new table, referenced by a local variable o.

⑦ And, we then set mt as its metatable, using the setmetatable
function. This table is then return to the caller of the new() function.

⑧ We create a new table, obj, with the earlier defined __pairs
metamethod.

⑨ Now when this table obj is used, for instance, in the for iteration
with the pairs function, Lua will use its __pairs metamethod
implementation.

For example, if we run this script on the terminal, we will see the
following output:

1 a
2 b

19.3. The __pairs Metamethod

119

19.4. The next Function

next(tbl, idx = nil) -> integer, value

One can iterate over all fields of a table using the builtin next function.

Its first argument is a table tbl and its second argument is an index
idx in this table. A call to next returns the next index of the table and
its associated value, for instance, something like idx + 1, tbl[idx +
1].

When the next() function is called only with the first argument, it
returns the first index and its associated value. The return value of nil
in this case means that the given table tbl is empty. When the
argument idx happens to be the last valid index in the table, the
next() call also returns nil.

Here’s an example code that uses the next function:

local t0 = {} ①
local t1 = { 1, 2, 3 }
local t2 = { a = 2, b = 4, c = 6 }

local function isEmpty(t) ②
 return next(t) == nil
end

for _, t in ipairs { t0, t1, t2 } do ③
 print(isEmpty(t))
end

local function iterate(t) ④
 local i, v = next(t) ⑤
 while i ~= nil do
 print(v)

19.4. The next Function

120

 i, v = next(t, i) ⑥
 end
end

for _, t in ipairs { t0, t1, t2 } do ⑦
 iterate(t)
 print("------------")
end

① We define three tables for illustration.

② The implementation of the isEmpty function relies on the fact that
next(t) returns nil if and only if t is an empty table.

③ A test. The output will be true false false (in three separate lines).

④ The iterate function iterates over a given table t. In this example,
we merely print out the value of each item.

⑤ The first next(t) call.

⑥ Given the current index for table t, next(t, i) returns the next
index and its value. If there is no more item, it returns nil, and
hence the while loop will terminate when next runs out of items.

⑦ A test. Output will be something like the following:

1
2
3

2
6
4

19.4. The next Function

121

19.5. The select Function

select (idx, ···) -> ...

The select function can be used for two different purposes.

• If idx is a string "#", then it returns the total number of extra
arguments after "#".

• If idx is an integer, then select() returns all arguments after idx
from the trailing list of arguments. A negative number indexes from
the end (-1 is the last argument)

For example,

local y = select("#", "a", "b", "c")
print(y, type(y))

for i, v in ipairs {select(2, "a", "b", "c", "d")} do
 print(i, v)
end

This script will output something like this:

3 number
2 b
3 c
4 d

19.5. The select Function

122

Chapter 20. Object Oriented
Programming in Lua
A table is an "object" as the term is commonly used in programming
languages like JavaScript and Python. Tables in Lua have invariant
identities, separate from their values. Structurally, a table contains
other variables (table fields) which reference other values including
other tables.

In class-based OOP programming languages like Java and C#, you create
a class and then you create (one or more structurally identical) objects
of the given class. In contrast, in object-based languages like Lua, you
just create objects, which are all one of a kind, so to speak. Languages
like JavaScript and Python, and Lua, use the prototype pattern for
"mass production" of the structurally similar objects, metaphorically
speaking. Unlike classes-objects, prototypes are just objects, or just
tables in case of Lua. An object can be a prototype of another object. In
Lua, a metatable (just another table) and its __index field act as a
prototype of the given table. In fact, it is a common pattern that one
table is used for both metatable and its __index.

Tables sharing the same metatable are all behaviorally and structurally
similar, and they can even share the same variables (or, "state"). The
structural similarity largely comes from their shared metatable’s
__index field. On the other hand, the behavioral similarity comes from
their shared metamethods as well as other methods defined in the
metatable’s __index field (and, the __newindex field).

Using the prototypes, object-based languages can "emulate" the more
traditional OOP syntax of the class-based languages. Modern JavaScript
(ES2015 and later) and Python have builtin support for "classes" (which
are essentially based on prototypes). Lua does not. But, there are some
commonly used patterns in Lua that are rather similar to the OOP
syntax of JavaScript and Python. We will discuss some of them in this

123

chapter. (Note that it is not a primer to the OOP, and rather the OOP
specifically applied to Lua. You will need some prior knowledge of the
OOP style. Otherwise you can skip this chapter.)

20.1. Factory Methods
In class-based OOP programming languages, objects are created using
special functions of a given class, called the constructors. In non-object
oriented programming languages like, for example, Go and Rust, the
common pattern is using the "factory methods".

Here’s an example, as applied to Lua.

local mt = {} ①
mt.__index = mt ②

mt.sharedSecret = "Huh?" ③

local function new(name) ④
 local o = {} ⑤
 o.name = name ⑥
 o.greeting = function()
 print("hello " .. o.name)
 end
 setmetatable(o, mt) ⑦
 return o
end

local obj1 = new("joe") ⑧
local obj2 = new("jill")

print(obj1.sharedSecret) ⑨
print(obj2.sharedSecret)

obj1.greeting() ⑩
obj2.greeting()

20.1. Factory Methods

124

① This is the table that we are going to use as a common metatable for
our objects.

② It is conventional to use the same table for both the metatable and
its __index table unless there is a specific reason why two separate
tables are required.

③ The sharedSecret belongs to the metatable, and hence it is shared
across all objects with this same metatable.

④ This is a factory method that creates and returns an object.

⑤ A new object is created every time we call this new function.

⑥ Any field that belongs to this object is an "instance variable".

⑦ Every object that is created by new share the same metatable mt.

⑧ These two calls will create two (similar) objects with the common
metatable.

⑨ Each of these two lines will print out Huh? since the sharedSecret
field belongs to mt.

⑩ The first and second lines will print out hello joe and hello jill,
respectively. Each object has a different value for the field name.

Although it is not explicitly included in this sample code, if we want to
share this new function, we can make the function either global (not
recommended) or we can put the whole code in a table-based module.

20.2. Classes and Constructors
As just illustrated in this example, the factory method consists of two
components, if you will: The shared part, e.g., the metatable mt, and the
individual part, the object o.

The object o, in this example, contains the metatable, and hence o is the
overall "template" for the objects we are creating.

20.2. Classes and Constructors

125

We can call this object a "class". Using classes may be a bit easier on
eyes to some people, especially those who are used to the OOP-style
syntax. (Note that a class object does not really create a new type in
Lua.) Here’s an updated code using the above example:

monkey.lua

local mod = {} ①

mod.Monkey = {} ②
mod.Monkey.__index = mod.Monkey ③
mod.Monkey.__newindex = mod.Monkey ④

mod.Monkey.tribe = "Dance Monkey" ⑤
mod.Monkey.dance = function(cls) ⑥
 print("Dance, dance, dance. We are " .. cls.tribe)
end

local metaMonkey = {} ⑦
metaMonkey.__call = function(cls, name) ⑧
 local o = {} ⑨
 o.name = name or "" ⑩
 o.__tostring = function(self) ⑪
 return "We are " .. self.tribe
 end

 o.greeting = function(self) ⑫
 print("hello, I'm monkey " .. self.name)
 end

 o = setmetatable(o, mod.Monkey) ⑬
 return o ⑭
end

mod.Monkey = setmetatable(mod.Monkey, metaMonkey) ⑮

return mod

20.2. Classes and Constructors

126

① We define our class in a module.

② The module variable Monkey is the "class" that we are going to
create.

③ This __index metamethod handles the getter parts of the class
variables and methods.

④ Likewise, this __newindex metamethod handles their setter parts.

⑤ Monkey.tribe corresponds to a "class variable".

⑥ Monkey.dance corresponds to a "class method". Note the first
parameter to the function, cls, which is used to access the class
variables.

⑦ The metaMonkey table is used to define a "constructor". It will be
used as the metatable of Monkey.

⑧ This __call metamethod makes the associated table, Monkey in this
example, callable. We use this function as a constructor for the
Monkey instances.

⑨ We return a new table (object) every time the constructor is called.
The object o is used to store "instance variables" and "instance
methods".

⑩ The table field, o.name, corresponds to an instance variable.

⑪ The o.__tostring, metamethod corresponds to an instance
method. Note the first parameter to the function, self, which is
used to access, in this particular example, the class variable, tribe.
The parameter names, cls and self, are arbitrary in this example.
What matter is that they are the first parameter, and they represent
an instance of Monkey.

⑫ The table field, o.greeting, corresponds to another instance
method. The first parameter to the function, self, is used to access
the self.name instance variable in this example.

⑬ This is what makes Monkey and o behave like a class and an
instance, respectively, through the metatable relationship.

20.2. Classes and Constructors

127

⑭ As stated, we return a new table/instance every time.

⑮ Now, Monkey is tied to the __call metamethod.

Here’s a simple unit test program using the assert function.

monkey_test.lua

local monkey = require("monkey") ①

local monk1 = monkey.Monkey("joe") ②
local monk2 = monkey.Monkey("jill")

assert(monk1.tribe == "Dance Monkey", ③
 "The monkey's tribe is Dance Monkey.")
assert(monk2.tribe == "Dance Monkey",
 "The monkey's tribe is Dance Monkey.")

assert(monk1.name == "joe", ④
 "The monkey 1's name is joe.")
assert(monk2.name == "jill",
 "The monkey 2's name is jill.")

monk1.name = "bond" ⑤
monk2.name = "moneypenny"

assert(monk1.name == "bond", ⑥
 "The monkey 1's name is now bond.")
assert(monk2.name == "moneypenny",
 "The monkey 2's name is now moneypenny.")

monkey.Monkey.tribe = "Party Monkey" ⑦

assert(monk1.tribe == "Party Monkey", ⑧
 "The monkey's tribe is Party Monkey.")
assert(monk2.tribe == "Party Monkey",
 "The monkey's tribe is Party Monkey.")

① We import the monkey module first. The variable monkey is a table,

20.2. Classes and Constructors

128

and it is primarily used as a namespace.

② We call Monkey's constructor with two different names for testing.
They return instances (tables) of the Monkey class.

③ We can access the class variable tribe as the field of a class table,
e.g., Monkey.tribe, or as the field of an instance table, e.g.,
monk1.tribe or monk2.tribe.

④ We verify that the instance variable name has been correctly set for
each instance/table.

⑤ We can update the instance variables, independently of other
instance/tables.

⑥ We then verify that their name fields are correctly updated.

⑦ We can also update the class variable, e.g., tribe, thanks to the trick,
Monkey.__newindex = Monkey. We could have also used an
instance-based syntax, e.g., monk1.tribe = "Party Monkey".

⑧ We verify that the class variable tribe is correctly updated in both
instances (since it is just one table field shared across of all instances
of Monkey).

If you run this unit test script, and if there is no failure (e.g., no assert
output), then that means that the unit test succeeded.

Here’s another Lua program, which essentially tests the same things as
the above test script.

main.lua

local monkey = require("monkey")

local monk1 = monkey.Monkey("joe")
local monk2 = monkey.Monkey("jill")

monk1:dance()
monk2:dance()

20.2. Classes and Constructors

129

monk1:greeting()
monk2:greeting()

monk1.name = "bond"
monk2.name = "moneypenny"

monk1:greeting()
monk2:greeting()

monkey.Monkey.tribe = "Party Monkey"

monk1:dance()
monk2:dance()

If we run this program, then it will generate an output similar to the
following:

Dance, dance, dance. We are Dance Monkey
Dance, dance, dance. We are Dance Monkey
hello, I'm monkey joe
hello, I'm monkey jill
hello, I'm monkey bond
hello, I'm monkey moneypenny
Dance, dance, dance. We are Party Monkey
Dance, dance, dance. We are Party Monkey



One can also easily emulate the "class inheritance" as
well, e.g., using essentially the same techniques. We
will leave it as an exercise to the readers. One thing to
note, however, is that the simplicity always has a
premium, especially when you program in the
minimalistic languages like Lua.

20.2. Classes and Constructors

130

Chapter 21. The OS Functions
A number of os library functions from the table os are included in this
chapter. The os.rename and os.remove functions are described in the
next chapter.

21.1. The os.date Function

os.date("*t", time = nil) -> table
os.date(format = "%c", time = nil) -> string

The os.date function returns a formatted string, or a table containing
date and time, corresponding to the given time. When time is not
provided, the current time is used. If format starts with !, then the date
is formatted in Coordinated Universal Time.

If format is the string "*t", then date returns a table with the
following fields: year, month (1-12), day (1-31), hour (0-23), min (0-59),
sec (0-61), wday (weekday, 1-7, Sunday through Saturday), yday (day of
the year, 1-366), and an optional boolean isdst (daylight saving time
flag).

If format is not "*t", then date returns the date as a string, formatted
according to the same rules as the ISO C function strftime. (Refer to
the strftime documentation, e.g., on the Web, for the list of the
supported format strings.) The default format "%c" gives a human-
readable date and time representation using the current locale.

> os.date()
Mon Oct 24 20:24:03 2022

> os.date("%c", 1665891677)

21.1. The os.date Function

131

Sat Oct 15 22:41:17 2022
> os.date("%D", 1665891677)
10/15/22

> t = os.date("*t")
> for k, v in pairs(t) do
>> print(k, v)
>> end
year 2022
isdst false
min 24
sec 54
hour 20
day 24
yday 297
month 10
wday 2

21.2. The os.time Function

os.time(tbl = nil) -> number

The os.time function returns a Unix epoch time, e.g., on POSIX-
compliant systems or on Windows, representing the local date and time
specified by the given table tbl. When tbl is not specified, the current
time is used.

The meaning of the return value of os.time, a number, is generally
implementation- and system- dependent. An epoch time is the number
of seconds since the given start of the time. (The Unix epoch time is
based on the epoch, 00:00 AM on January 1st, 1970, UTC.)

> os.time()

21.2. The os.time Function

132

1665891677
> os.time{year=2023, month=1, day=1}
1672596000

21.3. The os.clock Function

os.clock() -> number

The os.clock function returns an approximation of the amount in
seconds of CPU time used by the program, as returned by the
underlying ISO C function clock.

$ lua
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org, PUC-Rio
> os.clock()
0.033748
> os.clock()
0.035476
> os.clock()
0.042967
>

21.4. The os.getenv Function

os.getenv(varname) -> string

The os.getenv function returns the value of the process environment
variable varname. If such a variable is not found, then it returns nil.

> os.getenv("HOME") ①
/home/harry

21.3. The os.clock Function

133

> os.getenv("WORK") ②
nil

① An environment variable HOME is set on the current shell (as is
common on a Unix/Linux shell). Hence it returns its value.

② An environment variable WORK is not set, and its value is nil.

21.5. The os.execute Function

os.execute() -> boolean
os.execute(command) -> boolean, string, integer

The os.execute function passes the command to an operating system
shell, if provided, so that it can be executed by the shell. It returns three
values.

• The first value indicates whether the command terminated
successfully:

◦ true, if the command terminated successfully,

◦ false, otherwise.

• The second and third values indicate whether the command ended
due to a signal or not:

◦ A string "exit" and a number representing the exit status of the
command if the command exited normally,

◦ A string "signal" and the signal that terminated the command.

When the os.execute function is called without an argument, it
returns a boolean that is true if a shell is available.

> os.execute()

21.5. The os.execute Function

134

true

> os.execute('pwd')
/home/harry/projects/codeandtips/lua/sundry
true exit 0
> os.execute('ls')
concatdemo.lua sortdemo.lua ...
true exit 0
> os.execute('ls -l')
total 36
-rw-r--r-- 1 harry harry 136 Oct 15 17:32 concatdemo.lua
-rw-r--r-- 1 harry harry 284 Oct 15 16:19 sortdemo.lua
...
true exit 0

21.6. The os.exit Function

os.exit(code = true, close = false)

The os.exit function calls the corresponding ISO C function exit to
terminate the host program.

When the argument code is true, the host program returns the status
EXIT_SUCCESS upon termination. If is called with code = false, then
the return code is EXIT_FAILURE. Otherwise, if the os.exit is called
with a numeric code, then the exit status is this same number.

If the optional second argument close is true, it closes the Lua state
before exiting.

21.6. The os.exit Function

135

21.7. The os.setlocale Function

os.setlocale(locale = nil, category = "all") -> string

The os.setlocale function sets the current locale of the program with
a given locale, if provided.

• If locale is "", the current locale is set to an implementation-
defined native locale.

• If locale is "C", the current locale is set to the standard C locale.

• Otherwise, locale is a system-dependent string.

If the locale cannot be set according to request, it return nil. If
successful, then it returns the name of the new locale.

If os.setlocale is called with locale = nil, then it returns the
name of the current locale for the given category.

The category is an optional string describing which category to
change. The valid values are "all", "collate", "ctype", "monetary",
"numeric", and "time".

> os.setlocale()
LC_CTYPE=en_US.UTF-
8;LC_NUMERIC=C;LC_TIME=C;LC_COLLATE=C;LC_MONETARY=C;LC_MESSAGE
S=C;LC_PAPER=C;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUR
EMENT=C;LC_IDENTIFICATION=C
> os.setlocale("fake")
nil
> os.setlocale("")
C.UTF-8
> os.setlocale("en_US.UTF-8")
en_US.UTF-8

21.7. The os.setlocale Function

136

Chapter 22. The I/O and File
System Functions
Lua’s input/output and file system related functions are distributed
over three tables, os, io, and file.

The functions in the io table use implicit or default file handles, such as
io.stdin, io.stdout, and io.stderr, whereas the functions in the
file table use explicit file handles, e.g., those returned by io.open.

22.1. The os.rename Function

os.rename(oldname, newname) -> true | nil, string, integer

The os.rename function renames the file or directory named oldname
to newname.

• The os.rename() call returns true if the rename operation was
successful.

• Otherwise, it returns nil, and a string describing the error and the
error code.

22.2. The os.remove Function

os.remove(filename) -> true | nil, string, integer

The os.remove function deletes the file with the given filename. On a
POSIX system, it can be used with empty directories as well.

• The os.remove() call returns true if the system successfully

22.1. The os.rename Function

137

deleted the given file.

• Otherwise, it returns nil, and a string describing the error and the
error code.

22.3. The io.read Function

io.read(···) -> string | integer

The io.read function is equivalent to io.input():read(···) using
the current default input file.

22.4. The io.write Function

io.write(···) -> file

The io.write function is equivalent to io.output():write(···)
using the current default output file.

Basic I/O Example
As indicated, Lua’s builtin print function is primarily used for
debugging during the development, just like JavaScript’s console.log.
The io.read and io.write functions, and other io functions, should
be normally used for input and output.

Here’s an example:

basicio.lua

local basicio = {}

function basicio.ioDemo()

22.3. The io.read Function

138

 local name

 repeat
 io.write("Hi, what is your name? ")
 name = io.read()
 if name ~= "" then
 io.write("Welcome, " .. name .. "!\n")
 else
 io.write("Bye, whoever you are~~\n")
 end
 until name == ""
end

return basicio

If we run this in the Lua REPL,

> b = require("basicio")
> b.ioDemo()
Hi, what is your name? harry
Welcome, harry!
Hi, what is your name? sally
Welcome, sally!
Hi, what is your name?
Bye, whoever you are~~

22.5. The io.input Function
The io.input function has three forms.

io.input() -> file
io.input(filename)
io.input(file)

22.5. The io.input Function

139

• When io.input() is called without arguments, it returns the
current default input file.

• When it is called with a file name filename, it opens the named file
(in text mode). If successful, it sets the file handle as the default
input file.

• When it is called with a file handle file, it simply sets this file
handle as the default input file.

In case of an error, io.input raises the error.

22.6. The io.output Function
The io.output function works similar to io.input, and it likewise has
three forms.

io.output() -> file
io.output(filename)
io.output(file)

• When io.output() is called without arguments, it returns the
current default output file.

• When it is called with a file name filename, it opens the named file
(in text mode). If successful, it sets the file handle as the default
output file.

• When it is called with a file handle file, it simply sets this file
handle as the default output file.

In case of an error, io.output() raises the error instead of returning
an error code.

22.6. The io.output Function

140

File I/O Example I
Here’s a simple example that does a "file copy". That is, the
fileio.fileDemo function reads the content of the given input file
(hardcoded to hello.txt, in this demo) and writes it to the given output
file (hardcoded to byebye.txt).

It is written as a table-based module, in a file fileio.lua.

fileio.lua

local fileio = {}

function fileio.fileDemo()
 local ifile = "hello.txt"
 local ofile = "byebye.txt"
 io.input(ifile)
 io.output(ofile)

 local text = io.read()
 repeat
 io.write(text, "\n")
 text = io.read()
 until text == nil
end

return fileio

Note that the io.read function returns nil when it reaches the end of
file (EOF). The repeat loop can also be written as the following while
loop. They are equivalent in this particular context.

while text ~= nil do
 io.write(text, "\n")
 text = io.read()
end

22.6. The io.output Function

141

If we call this fileio.fileDemo function in REPL,

> f = require("fileio")
> os.execute("cat hello.txt")
Hello, everyone!
You too~~~~~~~~~
true exit 0
> f.fileDemo()
> io.flush()
true
> os.execute("cat byebye.txt")
Hello, everyone!
You too~~~~~~~~~
true exit 0

22.7. The io.open Function

io.open(filename, mode = "r") -> file

The io.open function attempts to open a file with the given filename,
in the file mode specified in the mode argument (a string). If the file is
successfully opened, then it return a new file handle.

The mode argument can be any of the following:

"r" Read mode.

"w" Write mode.

"a" Append mode.

"r+" Read update mode. All existing data is preserved.

"w+" Write update mode. All existing data is erased.

22.7. The io.open Function

142

"a+" Append update mode. All data is preserved, and writing is
only allowed at the end of the file.

The mode string can also have a suffix b at the end, which is needed in
some systems to open the file in binary mode.

22.8. The io.lines Function

io.lines() -> iterator
io.lines(filename, ···) -> iterator

The io.lines function attempts to open a file with the given filename
in the read mode, if provided. If the given file is successfully opened, it
returns an iterator function. The io.lines(filename, …) call works
like file:lines(···) over the opened file, file. When the iterator
function fails to read any value, it automatically closes the file.

The call io.lines() with no argument is equivalent to
io.input():lines("l"). That is, it iterates over the lines of the
default input file. In this case, the iterator does not close the file when
the loop ends.

In case of an error opening the file, io.lines raises the error.

22.9. The io.flush Function

io.flush()

The io.flush function is equivalent to io.output():flush().

22.8. The io.lines Function

143

22.10. The io.close Function

io.close()
io.close(file)

The io.close(file) call is equivalent to file:close(). When it is
called with no file argument, it closes the current default output file.
That is, io.close() is equivalent to io.output().close().

22.11. The io.type Function

io.type(obj) -> string

The io.type function checks whether obj is a valid file handle. It
returns

• A string "file" if obj is an open file handle,

• A string "closed file" if obj is a closed file handle, or

• nil if obj is not a file handle.

22.12. The file.read Function

file:read(... = "l") -> string | integer

The file:read function, or method, reads the file, according to the
given formats. For each format, the function returns a string or a
number with the characters read.

If the file:read() call fails to read data with the specified format, it
returns nil.

22.10. The io.close Function

144

The available formats are

"l" Reads the next line skipping the end of line, returning
fail on end of file.

"L" Reads the next line keeping the end-of-line character
(if present), returning nil on end of file. The formats
"l" and "L" can be used only with text files.

"n" Reads a number and returns it as a float or integer,
following the lexical conventions of Lua. (The numeral
may have leading whitespaces and a sign.) This format
always reads the longest input sequence that is a valid
prefix for a numeral literal.

"a" Reads the whole file, starting at the current position.
On end of file, it returns the empty string (""). This
format never fails.

Number Reads a string with up to this number of bytes,
returning nil on end of file. If number is zero, it reads
nothing and returns an empty string, or nil on end of
file.

22.13. The file.write Function

file:write(···) -> file

The file:write function writes the given arguments to the file. The
arguments must be strings or numbers. In case of success, this function
returns the same file.

22.13. The file.write Function

145

File I/O Example II
The earlier "file copy" example module can be rewritten as follows,
using the file:read and file:write functions.

filedemo.lua

local filedemo = {}

function filedemo.fileDemo()
 local filei, fileo = "hello.txt", "byebye.txt"

 local fi = io.open(filei, "r")
 if fi == nil or io.type(fi) ~= "file" then
 print("Failed to open input file", filei)
 return
 end
 local fo = io.open(fileo, "w+")
 if fo == nil or io.type(fo) ~= "file" then
 print("Failed to open output file", fileo)
 return
 end
 fo:setvbuf("full")

 local text = fi:read()
 while text ~= nil do
 fo:write(text, "\n")
 text = fi:read()
 end
 fo:flush()

 local si = fi:close()
 print("Input file closed", si)
 local so = fo:close()
 print("Output file closed", so)
end

return filedemo

22.13. The file.write Function

146

22.14. The file.lines Function

file:lines(··· = "l") -> iterator

The file:lines function returns an iterator function that, each time it
is called, reads the file according to the given formats. Here’s a simple
example:

> f = io.open("hello.txt")
> for l in f:lines() do
>> print(l)
>> end
Hello, everyone!
You too~~~~~~~~~
> f:close()
true

22.15. The file.flush Function

file:flush()

The file:flush saves any written, and buffered, data to file.

22.16. The file.close Function

file:close()

The file:close function closes the file.

22.14. The file.lines Function

147

Chapter 23. Error Handling
Lua supports both errors and warnings. Errors interrupt the normal
flow of the program unless they are caught. Warnings, on the other
hand, do not interfere with the program execution, and they are
generally used to generate messages to the user.

23.1. The error Function
Lua code can explicitly raise an error by calling the error function.

error(message, level = 1)

The error function raises an error with the given message as the error
object. This function does not return. Calling error passes control to
the host program, or the Lua interpreter.

The level argument specifies the "error position". For example, the
"level 1" indicates that the error occurred in a function where this error
function was called. The "level 2" indicates that the error occurred in a
caller of this function where the error() function was called, etc.
Specifying 0 for level removes this error position information from
the error message.

23.2. The assert Function

assert(v, message = "assertion failed!", ...) -> ... | error

The assert function raises an error if the given expression v
evaluates to false at run time (i.e., nil or false). Otherwise, it returns all
its arguments. (Note the type of the first argument need not be

23.1. The error Function

148

boolean.) In case of error, the second message argument is the error
object, and the rest of the arguments are ignored.

The assert function is often used when the program execution cannot
continue unless a certain condition is met. In Lua, the assert
statement is also used in the unit testing. For example,

$ lua
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org, PUC-Rio
> assert(1 == 1)
true
> assert("hi" == "hola")
stdin:1: assertion failed!
stack traceback:
 [C]: in function 'assert'
 stdin:1: in main chunk
 [C]: in ?

23.3. The warn Function
Lua also offers a system of warnings, which can be used to generate a
message to the user. Warnings are not errors and they do not interfere
with program execution.

warn(msg1, ···)

The warn function works in a similar way to print. It concatenates all
string arguments to create a warning message, but using an empty
string separator instead of a single white space.

One can enable/disable the propagation of the warning message by
calling warn with @on and @off control messages, respectively. For
example,

23.3. The warn Function

149

> warn("@off") ①
> warn("warning warning") ②
> warn("@on") ③
> warn("real warning")
Lua warning: real warning ④

① This disables the warning system.

② It generates no warning message since the warning system is
currently disabled.

③ Re-enabling the warning system by sending the @on control message.

④ An example warning message from the Lua interpreter now that
warning has been enabled.

23.4. Protected Calls (pcall and
xpcall)
Lua does not have an exception handling mechanism, such as the try
- catch statement, commonly found in other programming languages.
Instead, to catch errors in Lua, we make protected calls using pcall
and xpcall functions.

The function pcall, or xpcall, calls a supplied function in the
protected mode. In the protected mode, an error raised by the given
function stops its execution, control returns immediately to pcall (or,
xpcall). The pcall/xpcall function then returns a status code (a
boolean value).

23.4.1. The pcall function

pcall(f, arg1, ···) -> true, ...
pcall(f, arg1, ···) -> false, error

23.4. Protected Calls (pcall and xpcall)

150

The pcall function calls the given argument function f with the given
arguments (arg1, ...) in protected mode. It catches any error from f
and returns a status code. If the f call succeeds without errors, then
pcall returns true as its first result. It also returns all results from the
f call after the status code. In case of any error, pcall returns false
followed by the error object.

For example,

local f = function(msg) ①
 error(msg)
end

-- f("Unusual error") ②

local s = pcall(f, "Usual error") ③
print("Status:", s) ④

① This test function just raises an error with the given msg.

② This unprotected call will crash the program.

③ On the other hand, pcall will catch any errors.

④ The return value of false indicates that the call f raised an error.

23.4.2. The xpcall Function

xpcall(f, msgh, arg1, ...) -> true, ...
xpcall(f, msgh, arg1, ...) -> false, error

The xpcall function works the same way as pcall, except that it sets a
new message handler msgh.

23.4. Protected Calls (pcall and xpcall)

151

Chapter 24. Concurrency
Lua supports concurrent programming via thread objects and what is
generally known as the coroutine in programming.

Lua’s threads are slightly different from the threads commonly used in
other programming languages. Lua’s concurrency model is often called
"collaborative multithreading".

The standard library provides a few functions in the coroutine table
to support the coroutine management, e.g., to create new coroutines,
suspend running coroutines, and resume suspended coroutines, etc.

24.1. Coroutines
A coroutine is similar to a subroutine or procedure, which is commonly
called the "function" in imperative programming languages including
Lua (although they are not real functions, in the mathematical sense).

Unlike a function, which is called and returned at most once after
performing a given task (e.g., until it is called again), a coroutine can be
entered, at different points of execution, and it can be suspended and
resumed, e.g., from the last suspended points. It maintains its internal
state throughout its lifetime, that is, until it is terminated, explicitly or
otherwise. This is sometimes called the "multiple entry".

24.2. Creating Coroutines
A coroutine is created using the coroutine.create function. The main
function of the coroutine is provided as an argument to
coroutine.create. It returns a thread object, in the suspended state.

> t = coroutine.create(function() end) ①
> type(t) ②

24.1. Coroutines

152

thread
> coroutine.status(t) ③
suspended

① The coroutine.create function returns a thread object. In Lua, the
terms, coroutines and threads, are pretty much synonymously used
(although one may argue that thread is a type and coroutine is a
threaded flow of control).

② The type of the returned object is thread.

③ We can check the status of the thread using the coroutine.status
function. A newly created thread’s initial status is "suspended".

24.2.1. The coroutine.create function

coroutine.create(f) -> thread

The coroutine.create function creates a new coroutine with the
given function, f. It returns a coroutine object of the thread type, with
the status suspended. It does not start the coroutine.

24.2.2. The coroutine.status function

coroutine.status(co) -> string

The coroutine.status function returns the current status of the
given coroutine co, as a string:

running If the coroutine is running.

suspended If the coroutine is waiting for the next resume.

normal If the coroutine is active but not running, and

24.2. Creating Coroutines

153

dead If the body function is terminated.

24.2.3. The coroutine.isyieldable function

coroutine.isyieldable(co = nil) -> boolean

The coroutine.isyieldable function returns true when the
coroutine co can yield, regardless of its current status. All Lua
coroutines are yieldable, except the main thread that started the
current chunk. When it is called without an argument, or co == nil, it
uses the current running coroutine.

24.3. Starting and Resuming Coroutines
You can start, or resume, a coroutine/thread by calling the
coroutine.resume function with the given thread object as its first
argument. The rest of the arguments, if any, are passed to the main or
body function of the coroutine. After the coroutine starts running, it
runs until it terminates or yields.

> t = coroutine.create(function() end) ①
> coroutine.resume(t) ②
true
> coroutine.status(t) ③
dead

① The coroutine.create function call creates a new thread object
in the suspended state.

② The first call of coroutine.resume(t) starts the given coroutine. It
returns true if successful. The coroutine runs until the first
coroutine.yield function call statement or until the function
terminates (naturally or due to an error).

24.3. Starting and Resuming Coroutines

154

③ This particular body function of t did not do much and just
returned. Hence the coroutine status of t is "dead". A dead
coroutine cannot be resumed again.

24.3.1. The coroutine.resume function

coroutine.resume(co, val1, ···) -> boolean, ...

The coroutine.resume function starts or resumes the given coroutine
co in the suspended state.

When it is called the first time on a newly created coroutine object, it
calls the body function, with the arguments, val1, etc., if any. When
coroutine.resume restarts a previously yielded coroutine, they are
returned as the return value of that yield function call.

The coroutine.resume call returns a boolean value to indicate the
success or failure status. If it has succeeded, it returns true and, in
addition, any return values from the body function. If it has failed, then
it returns false and any error message.

24.3.2. The coroutine.running function

coroutine.running() -> co, boolean

The coroutine.running function returns the currently running
coroutine object (in which this function is called). In addition, it returns
true if it is the main coroutine (which is not-yieldable). Otherwise, it
returns false.

24.3. Starting and Resuming Coroutines

155

24.4. Suspending and Resuming
A running coroutine "yields" by calling coroutine.yield, which
makes the previous coroutine.resume to immediately return. The
coroutine remains in the suspended state until coroutine.resume is
called again with the corresponding thread object or until the coroutine
is explicitly terminated.

The next time the suspended coroutine is resumed, it continues its
execution from right after where it previously yielded. Here’s a sample
program that calls coroutine.resume multiple times.

local function f(a)
 print("Inside f:\tStarted with " .. tostring(a))
 coroutine.yield("huh?", "huhhuh?")
 print("Inside f:\tResumed with " .. tostring(a))
end

local t = coroutine.create(f)

print("Status: ", coroutine.status(t))
print("Resumed:", coroutine.resume(t, 10))
print("Status: ", coroutine.status(t))
print("Resumed:", coroutine.resume(t, 20))
print("Status: ", coroutine.status(t))

print("Resumed:", coroutine.resume(t, 30))
print("Status: ", coroutine.status(t))

If you run this as a script, you will get an output like this:

Status: suspended
Inside f: Started with 10
Resumed: true huh? huhhuh?
Status: suspended
Inside f: Resumed with 10

24.4. Suspending and Resuming

156

Resumed: true
Status: dead

24.4.1. The coroutine.yield function

coroutine.yield(···) -> ...

The coroutine.yield function suspends the current coroutine’s
execution (in which this yield() is called). Any arguments provided to
this call are passed as additional return values to the following
resume() function call.

Likewise, any extra arguments provided to resume() are returned as
the result of this yield() call.

24.4.2. The coroutine.wrap function

coroutine.wrap(f) -> function

The coroutine.wrap function creates a new coroutine, with the given
function f as its body. It returns an iterator-like function that resumes
the coroutine each time it is called.

returned_function(...) -> ...

Any arguments passed to this function are used as the extra arguments
to the (implicit) coroutine.resume() call. In case of error, it closes the
coroutine and throws an error. If the call is successful, it returns the
same values returned by coroutine.resume, excluding the first result
true.

24.4. Suspending and Resuming

157

24.5. Coroutine Termination
A coroutine can terminate unexpectedly if there is an unprotected
error. In such as case, the last coroutine.resume() call returns false
with an error object. Otherwise, it terminates its execution when its
body function returns. In the normal termination,
coroutine.resume() returns true, plus any values returned by the
coroutine’s body function. Here’s a sample script and its output:

local function f(a)
 print("Inside f:\tStarted with " .. tostring(a))
 coroutine.yield("uh?")
 print("Inside f:\tResumed with " .. tostring(a))
end

local t1 = coroutine.create(f)

print("Status: ", coroutine.status(t1))
print("Resumed:", coroutine.resume(t1, 10))
print("Status: ", coroutine.status(t1))

print("Closing:", coroutine.close(t1))
print("Status: ", coroutine.status(t1))

print("Resumed:", coroutine.resume(t1, 20))
print("Status: ", coroutine.status(t1))

Status: suspended
Inside f: Started with 10
Resumed: true uh?
Status: suspended
Closing: true
Status: dead
Resumed: false cannot resume dead coroutine
Status: dead

24.5. Coroutine Termination

158

24.5.1. The coroutine.close function

coroutine.close(co) -> boolean, error

The coroutine.close function closes the coroutine co in the
suspended state. It first closes all pending to-be-closed variables, and
then updates the coroutine’s status to dead. Calling it on a dead
coroutine is a no-op. If successful, it returns true. Otherwise, it returns
false and any error object.

24.6. Coroutine Example
As an example, here’s a simple one-producer - one-consumer version of
the classic producer-consumer problem [https://en.wikipedia.org/wiki/

Producer%E2%80%93consumer_problem]. (Note that we do not add much
comments or annotations in this final example in the book.)

Here’s the producer module.

producer.lua

local producer = {}

local produce_count = 5

function producer.produce()
 return coroutine.create(function()
 for i = 1, produce_count do
 print("Produced:", i)
 coroutine.yield(i)
 end
 end)
end

return producer

24.6. Coroutine Example

159

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

The producer.produce() function creates and returns a coroutine,
which is supposed to print 5 lines of output. Next, the consumer module:

consumer.lua

local consumer = {}

local consume_count = 3

function consumer.consume(f)
 local count = 0;
 for i = 1, consume_count do
 local status, value = coroutine.resume(f)
 print("status:", status, "received:", value)
 if status then
 count = count + 1
 end
 end
 return count
end

return consumer

The consumer.consume() function does 3 iterations of waking up the
producer thread and printing out its status and the value produced by
the producer.

For convenience, the interaction between the producer and consumer
is encapsulated in the driver module:

driver.lua

local driver = {}

local producer = require("producer")
local consumer = require("consumer")

function driver.drive()

24.6. Coroutine Example

160

 local res = consumer.consume(producer.produce())
 return res
end

return driver

Now, the "main" program:

main.lua

local driver = require("driver")

local res = driver.drive()
print("Final result =", res)

Here’s a sample output:

Produced: 1
status: true received: 1
Produced: 2
status: true received: 2
Produced: 3
status: true received: 3
Final result = 3



This is a very basic use of Lua’s coroutine APIs, and a
lot more can be done using these APIs. In this
particular example, we merely demonstrate that the
two separate routines, e.g., the coroutines produced by
producer.produce() and consumer.consume(), can
run "concurrently", as illustrated by the above output.

24.6. Coroutine Example

161

A. How to Use This Book
Tell me and I forget. Teach me and I remember.
Involve me and I learn.

— Benjamin Franklin

The books in this "Mini Reference" series are written for a wide
audience. It means that some readers will find this particular book "too
easy" and some readers will find this book "too difficult", depending on
their prior experience related to programming. That’s quite all right.
Different readers will get different things out of this book. At the end of
the day, learning is a skill, which we all can learn to get better at. Here
are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some
typos. We go through multiple revisions, and every time we do that
there is a finite chance to introduce new errors. We know that some
people have strong opinions on this, but you should get over it. Even
after spending millions of dollars, a rocket launch can go wrong. All
non-trivial software have some amount of bugs.

Although it’s a cliche, there are two kinds of people in this world. Some
see a "glass half full". Some see a "glass half empty". This book has a lot
to offer. As a general note, we encourage the readers to view the world
as "half full" rather than to focus too much on negative things. Despite
some (small) possible errors, and formatting issues, you will get a lot
out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several
years ago, and it became an instant best seller. There are now many
similar books, copycats, published since then. The book is written for
"laypeople", and illustrate how computer science concepts like specific
algorithms can be useful in everyday life.

162

Inspired by this, we have some concrete suggestions on how to best
read this book. This is one suggestion which you can take into account
while using this book. As stated, ultimately, whatever works for you is
the best way for you.

Most of the readers reading this book should be familiar with some
basic algorithm concepts. When you do a graph search, there are two
major ways to traverse all the nodes in a graph. One is called the "depth
first search", and the other is called the "breadth first search". At the
risk of oversimplifying, when you read a tutorial style book, you go
through the book from beginning to end. Note that the book content is
generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially
often corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are
written to cover broad and wide range of topics, and which have many
interdependencies among the topics, it is often best to adopt the breadth
first traversal.

This advice should be especially useful to new-comers to the language.
The core concepts of any (non-trivial) programming language are all
interconnected. That’s the way it is. When you read an earlier part of
the book, which may depend on the concepts explained later in the
book, you can either ignore the things you don’t understand and move
on, or you can flip through the book to go back and forth. It’s up to you.
One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

The best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get
the high-level concepts. At each iteration, you try to get more and more
details. It is really up to you, and only you can tell, as to how many
passes would be required to get much of what this book has to offer.

Again, good luck!

163

Index
@

"%c", 131
"*t", 131
"=(load)", 28
"^$", 95
"b", 28
"boolean", 42
"bt", 28
"chunk", 27
"function", 42
"nil", 42
"number", 42
"string", 42
"t", 28
"table", 42
"thread", 42
"userdata", 42
#s, 88
$, 16
%, 58, 113
%-, 96
%a, 96
%c, 96
%d, 96
%g, 96
%l, 96
%p, 96
%s, 96
%u, 96
%W, 96
%w, 96

%x, 96
&, 59, 115
*, 58, 113
+, 58, 113
-, 58, 113-114
- character, 96
--, 35
--[[[[, 34
->, 26
-e flag, 17
-e flag, 20
-e option, 17
-i, 17
..., 26
/, 58, 113
//, 58, 114
1-based, 87
128-bit seed, 83
64 bit Lua interpreter, 78
64 bit seed, 83
64 bit signed integer, 37
64-bit signed integer, 45
64-bit signed integers, 44
8-bit value, 46
<, 59, 115
< and <=, 60
<<, 59, 116
<=, 60, 115
<close>, 53
<close> attribute, 53
<const>, 53

164

<const> attribute, 53
==, 59, 115
>, 59
>=, 60
>>, 59, 116
@off, 149
@on, 149-150
[0-9A-Za-z], 96
[^set], 96
[A-Z], 96
[a-z], 96
[set], 96
]]]], 34
^, 58, 114
__, 107, 111
__add method, 113
__band method, 115
__bnot method, 116
__bor method, 116
__bxor method, 116
__call, 111
__call metamethod, 69, 111, 127-128
__call Method, 111
__close, 53
__close metamethod, 53-54
__close metamethods, 54
__concat, 88
__concat metamethod, 87, 112
__concat Method, 112
__div method, 113
__eq metamethod, 60
__eq method, 115
__gc, 111
__idiv method, 114

__index, 108, 123
__index field, 107-108, 123
__index fields, 108
__index metamethod, 127
__index Metavalue, 107
__index table, 125
__le method, 115
__len metamethod, 64, 112
__len Method, 112
__lt method, 115
__lt or __le metamethods, 61
__metatable, 108
__metatable chaining, 109
__metatable field, 108
__metatable Metavalue, 108
__metatable metavalue, 109
__mod method, 113
__mul method, 113
__name, 48
__name field, 47
__newindex field, 123
__newindex metamethod, 127
__newindex Metavalue, 108
__pairs Metamethod, 118
__pairs metamethod, 117-119
__pow method, 114
__shl method, 116
__shr method, 116
__sub method, 113
__tostring, 48, 111
__tostring metamethod, 47
__unm method, 114
_ENV, 24
_ENV variable, 24

165

_ENV.a, 55
_ENV.x, 55
_G.a, 55
_G.x, 55
_PROMPT, 18
_PROMPT2, 18
|, 28, 59, 116
~, 59, 116
~=, 59

A

a complete chunk, 20
absence of a value, 49
absolute value, 79
active, 153
Addition, 58
addition, 113
additional return values, 157
all matches, 93
alphabet, 35
alphanumeric character, 96
and, 61
angle, 81
angular brackets <>, 52
anonymous, 48, 66
anonymous function, 21, 32, 43, 67,

74
anonymous function definition, 57
anonymous function value, 69
Anonymous Functions, 48, 66
anonymous functions, 20-21
APIs, 161
Append mode, 142
Append update mode, 143

arbitrary number of values, 30
arc cosine, 82
arc sine, 82
arc tangent, 82
arg, 17-18
argument, 43, 69
argument list, 69-70
Arguments, 69
arguments, 18, 20-21, 69, 155
arguments ..., 20
arithmetic metamethods, 114-115
arithmetic operation, 112
Arithmetic Operations, 112
arithmetic operations, 65
Arithmetic Operators, 58
arithmetic operators, 58
arithmetic progression, 75
array, 49
arrays, 49, 99
arrays or lists, 49
ascending order, 106
ASCII, 87
ASCII whitespace characters, 34
assert Function, 148
assert function, 128, 148-149
assert statement, 149
Assignment, 41
assignment, 72
assignment operator =, 72
assignment statement, 72
assignment statements, 71
associative arrays, 49
attribute, 52
Attributes, 52

166

augmented argument list, 69
available formats, 145

B

backslash, 38
balanced, 97
base, 45, 80
base, 46, 80
base 2, 46
Basic Expression Types, 56
basic expressions, 56-57
Basic I/O, 138
basic library, 25
Basic Math Functions, 79
basic types, 41
basic usage information, 16
behavior of a table, 111
behavioral similarity, 123
binary and, 61
binary and text, 28
binary chunks, 28
binary exponent, 38
binary mode, 143
binary number, 46
Binary operator expressions, 58
binary operators, 58, 65
binary or, 61
bits, 59
Bitwise AND, 59
bitwise AND, 115
Bitwise exclusive OR, 59
bitwise exclusive OR, 116
bitwise left shift, 116
Bitwise Operations, 115

bitwise operations, 44, 59
Bitwise Operators, 59
Bitwise operators, 65
bitwise operators, 58-59
Bitwise OR, 59
bitwise OR, 116
bitwise right shift, 116
bitwise unary NOT, 116
block, 20
block, 21-23, 51
Block Defining Statements, 22
block in Lua, 74
block of code, 75
Blocks, 21
blocks, 23
body function, 154-155, 158
Boolean, 44
boolean, 41
boolean, 134
boolean condition, 44
boolean conversion, 75
boolean false or true, 62
boolean type, 44
boolean value, 59, 155
boolean values, 61
border, 62, 64
borders, 62, 64
break statement, 73
Break Statements, 73
break statements, 71
build step, 19
builtin dofile function, 26
builtin function type, 42
builtin functions, 25, 117

167

builtin load function, 27
builtin pairs function, 18
builtin tonumber function, 45
builtin types, 65, 107
byte, 39
byte content, 60

C

C API, 48
C data, 48
C program interface, 48
C shared objects, 30
C strings, 46
C#, 123
C-style !=, 60
C-style languages, 72
callable, 111, 127
caller, 26, 148
camel case, 36
captured part, 98
captured string, 97
captured substrings, 94
captured values, 92
Captures, 98
captures, 92-93, 98
caret ^, 95
Carriage return, 34
catch errors, 150
Character class, 95
character class, 95
character classes, 95
character encodings, 87
character types, 38
characters, 34, 46

chunk, 20
chunk, 20-22, 24, 28, 30, 32, 52
chunk parameter, 27
chunk pieces, 28
chunkname, 27-28
Chunks, 20
chunks, 18
class, 123, 126-127, 129
class, 127
class inheritance, 130
class method, 127
class object, 126
class table, 129
class variable, 127, 129
class variable, 127
class variables, 127
class variables and methods, 127
class-based languages, 123
class-based OOP programming

languages, 123-124
classes, 50, 123
classes, 126
Classes and Constructors, 125
classes-objects, 123
closed file handle, 144
closing brackets, 39
closing long bracket, 34, 39
code text, 23
collaborative multithreading, 152
colon, 68
colon :, 70, 87
comma-separated expressions, 69
comma-separated list, 66
command, 16

168

Command line arguments, 17
command line arguments, 18
command line components, 17
command line Lua interpreter, 16
command line options, 17
command lua, 43
commas, 72
comment, 34-35
Comments, 34-35
comments, 34
common metatable, 125
comparison expression, 114
comparison metamethods, 114
Comparison Operations, 114
Comparison operators, 60
compilation, 19
compiled chunk, 28
compilers, 19
complement, 96
complete statement, 18
computed value, 56
concatenated string, 103
concatenation .., 65
concatenation .. operation, 112
concatenation operator, 58
Concurrency, 152
concurrency, 49
concurrent programming, 152
concurrently, 161
condition expressions, 75
conditionally evaluated, 61
conjunction, 61
constant expressions, 56, 99
constant literals, 37

constant variable, 53
constructor, 99-101, 127, 129
constructor literal, 99
constructors, 124
consumer module, 160
consumer.consume(), 160-161
control character, 96
control expressions, 75
control message, 150
control messages, 149
control variable, 75
control variables, 76
conversion, 45
conversion specifiers, 90
Conversions, 65
core functions, 25
coroutine, 152-160
coroutine, 153
Coroutine Example, 159
coroutine in programming, 152
coroutine management, 152
coroutine object, 153, 155
coroutine status, 155
coroutine table, 152
Coroutine Termination, 158
coroutine.close, 159
coroutine.create, 152-154
coroutine.isyieldable, 154
coroutine.resume, 154-157
coroutine.resume(), 157-158
coroutine.resume(t), 154
coroutine.running, 155
coroutine.status, 153
coroutine.wrap, 157

169

coroutine.yield, 154, 156-157
coroutine/thread, 154
Coroutines, 152
coroutines, 161
coroutines and threads, 153
coroutines in Lua, 48
coroutine’s body function, 158
coroutine’s status, 159
cosine, 81
CPU time, 133
create new coroutines, 152
Creating Coroutines, 152
Ctrl+D on Unix, 17
Ctrl+Z on Windows, 17
current chunk, 154
current coroutine’s execution, 157
current locale, 61, 89, 96, 131, 136
current position, 145
current running coroutine, 154
current status, 154
current time, 131-132
custom object, 49
custom type, 49
custom types, 99

D

data structure, 99
data structures, 49, 99
date and time, 131
dead, 159
dead coroutine, 155
dead coroutine, 159
debug information, 28
debugging, 25, 138

decimal digits, 39
decimal exponent, 37
decimal representation, 46
declaration, 23, 51
default format, 131
default input file, 138, 140, 143
default output device, 17
default output file, 138, 140, 144
default prompt, 19
default value, 26-28, 45
degrees to radians, 81
delimiters, 34
descending order, 106
destination table, 105
development, 138
diagnostic, 25
dictionaries, 49
different levels, 40
digit, 35, 96
digits, 35
disjunction, 61
division, 113
do, 23
do - end block, 23
do Block Statement, 23
do block statement, 71
do statement, 22, 51
dofile, 26
dofile Function, 25
dofile function, 26
dollar $, 95
dot, 68
dot ., 95
dot notation, 50

170

double-precision (64-bit) floats, 44
Download, 16
driver module, 160
dynamically typed, 84-85
dynamically typed language, 41

E

each call, 76
each iteration, 76
else block, 74
elseif blocks, 74
elseif-then block, 74
embedded language, 16
empty directories, 137
empty line, 95
empty statement, 23, 71-72
Empty Statements, 71
Empty statements, 71-72
empty statements, 73
empty string, 91, 95, 145
empty string "", 44, 75, 90
empty string or nil, 28
empty string separator, 149
empty table, 31, 48, 63-64, 99
enclosed expression, 56
encoding-agnostic, 46
end, 66
end characters, 96
end index, 91
end of file, 141, 145
end of the line, 35
English locale, 96
entire program, 19
env argument, 28

environment, 24
environment _ENV, 55
environment variable, 30, 33, 134
Environments, 24
EOF signal, 17, 28
epoch, 132
epoch time, 132
equal, 115
equal sign =, 26
equal signs, 39
Equality, 59
Equality ==, 60
equality ==, 60
Equality operator, 60
error, 28
error, 148
error code, 137-138, 140
error Function, 148
error function, 148
error message, 28, 148, 155
error messages, 28
error object, 148-149, 158-159
error object, 151
error position, 148
error() function, 148
errors, 26
escape sequence \ddd, 39
escape sequence \u{XXX}, 39
escape sequence \xXX, 39
escape sequence \z, 39
escape sequences, 38, 40
evaluated argument list, 69
event, 107
event name, 107

171

execution, 156
execution of the program, 41
exit status, 134-135
EXIT_FAILURE, 135
EXIT_SUCCESS, 135
explicit initial value, 52
exponent, 37-38
Exponentiation, 58, 65
exponentiation, 114
Exponentiation ^, 58
exponentiation ^, 65
expression, 18, 43, 56-57, 65-66, 69, 87
expression in Lua, 56-57
expression list, 18
expressions, 99
expressions and statements, 57
external local variable, 24
extra arguments, 157

F

factory method, 119, 125
Factory Methods, 124
factory methods, 124
failure condition, 43
false, 37, 43-44
false in Lua, 44
field, 49-50, 62, 100, 108
field names, 49
field variable access syntax, 54
field variables, 49-50
fields, 49-50, 54, 111
file, 26, 29
file, 137
file copy, 141, 146

file handle, 140, 144
file handles, 137
File I/O, 141, 146
file mode, 142
file or directory, 137
file system, 137
File System Functions, 137
file table, 137
file.close Function, 147
file.flush Function, 147
file.lines Function, 147
file.read Function, 144
file.write Function, 145
file:close function, 147
file:flush, 147
file:lines function, 147
file:read, 146
file:read function, 144
file:read() call, 144
file:write, 146
file:write function, 145
filename, 26, 29
first argument, 70, 95, 111, 148, 154
first assignment, 51
first capture, 94, 98
first closing long bracket, 39
first match, 92
first operand, 87
first pattern, 92
first value, 56
float, 37, 45, 58, 65
Float division, 58
float division, 65
float division /, 58

172

float number argument, 86
float numeral, 37
float numeral literals, 37
float operands, 65
float or integer, 145
float value, 78
floating number, 85
floating number literal, 38
floating point arithmetic, 58
floating point number, 37, 49, 60
floating point numbers, 58
floats, 58, 65
Floor division, 58
floor division, 114
flow of control, 153
for loop, 18, 117
for loops, 76
for statement, 19, 75
for statement block, 75
For Statements, 75
for statements, 71
Form feed, 34
format string, 90
format strings, 131
formats, 144
formatted string, 131
formatting, 34
fractional part, 37-38, 81
free name, 24
free names, 24
free-form language, 34
Full userdata, 48
full userdata, 114
function, 18, 60, 66-68, 74, 152

function, 41, 43, 66
function argument, 17, 28
function arguments, 21
function body, 43, 68
function body <block>, 66
function body block, 68
function call, 57, 69-70, 111, 154
function call argument, 69
function call expression, 69-70, 111
function call expressions, 70-71
function call prefix expression, 70
Function Calls, 69
Function calls, 57
function calls, 57
function definition, 66-67
Function Definitions, 66
Function definitions, 57, 71
function definitions, 32, 68
function dofile, 26
function implementation, 84
function in Lua, 43, 66
function keyword, 67
function name, 67, 69
function names, 35
function os.exit(), 17
Function Parameters, 68
function parameters, 42, 66
function prefix expression, 70
function require, 30
function returns, 41
function signature, 25-27, 29
function signature notation, 30
function signatures, 26
function type, 28, 49, 69

173

function type, 42
Functions, 31, 48, 66
functions, 31, 42, 48, 56-57
functions, 41
functions and variables, 32

G

general purpose, 16
Generic for, 75
generic for loop, 76, 117
generic for statement, 22, 76
getmetatable Function, 109
getmetatable function, 109
getter parts, 127
global, 54-55, 125
global environment, 24
global environment, 24-25
global function, 22
global function require, 30
global scope, 52
global search and replace, 94
global table, 17
global variable, 18, 25, 48, 54-55
global variable _G, 24, 55
global variable declaration, 55
Global Variables, 25, 54
Global variables, 51, 54
global variables, 18, 32, 55
global variables, 24
Go, 124
goto, 73
goto statement, 73
Goto Statements, 73
goto statements, 71

Greater or equal, 60
Greater than, 59
greater-equal, 61
Greater-than, 61

H

hashtables, 49
hexadecimal digit, 96
hexadecimal digits, 39
hexadecimal integer literals, 38
Hexadecimal literals, 38
hexadecimal numeral, 38
hierarchical relationship, 40
High-level programming, 19
hole, 64
Horizontal tab, 34
host program, 16, 20-21, 135, 148
host programs, 49
hosting environments, 49
HUGE_VAL, 78
hyphen -, 96

I

I/O, 137
identifiers, 35-36
identities, 123
if, 76-77
if block, 74
if statement, 21-22, 74-75
If Statements, 74
if statements, 71
if-then block, 74
immutable, 46, 87
immutable types, 42

174

immutable/mutable, 42
imperative languages, 71
imperative programming, 152
implementation detail, 44
implicit conversions, 65
implicit of explicit block, 51
implicitly defined function, 20
incomplete statement, 18
indentations, 34
index, 62, 64
index 0, 17
index 1, 17
index init, 92
index notation, 49
index-value pairs, 118
indexing access operation, 107
indexing assignment operation, 108
indexing backwards, 87
Inequality, 59
Inequality operator, 60
initial assignment, 51
initial value, 52, 55
initial values, 52, 68, 71, 100
initialization, 51, 53
inner block, 24
innermost block, 23
input and output, 138
input argument, 85
input file, 141
input line, 18
input sequence, 145
input/output, 137
instance, 127
instance method, 127

instance methods, 127
instance table, 129
instance variable, 125, 127, 129
instance variables, 127, 129
instance-based syntax, 129
instances, 127, 129
integer, 37, 45, 58, 60, 62, 115
integer and float, 44
integer and float subtypes, 44
integer between 2 and 36, 46
integer indices, 99-100
integer key, 49
integer keys, 49
integer literal, 38
integer number, 46, 79
integer numbers, 44
integer numeral, 37, 45
integer operand, 65
integer operands, 65
integer or float, 78
integer or float number, 46
integer overflow errors, 44
integer result, 44
integer type, 45
integer value, 38, 85
integers, 58-59, 65
integers and float numbers, 42
integers or floats, 45
integral part, 81
integral value, 80
interactive mode, 17-18
internal state, 152
internal string, 47
interpreter, 17

175

interpreter command, 17
interpreters, 19
invalid argument, 86
invalid number representation, 46
invalid syntax, 16
io, 137
io functions, 138
io table, 137
io.close Function, 144
io.close(), 144
io.close(file) call, 144
io.flush Function, 143
io.flush function, 143
io.input, 140
io.input Function, 139
io.input function, 139
io.input(), 140
io.lines, 143
io.lines Function, 143
io.lines function, 143
io.lines(), 143
io.open, 137
io.open Function, 142
io.open function, 142
io.output Function, 140
io.output function, 140
io.output(), 140
io.read, 138
io.read Function, 138
io.read function, 138, 141
io.stderr, 137
io.stdin, 137
io.stdout, 137
io.type Function, 144

io.type function, 144
io.write, 138
io.write Function, 138
io.write function, 138
ipairs, 117
ipairs Function, 117
ipairs function, 117
ISO C function clock, 133
ISO C function exit, 135
ISO C function sprintf, 90
ISO C function strftime, 131
iteration, 76, 93, 117
iteration behavior, 117-118
iterator, 76, 143
iterator function, 76, 93, 118, 143, 147
iterator functions, 117
iterator-like function, 157
iterators, 76, 117

J

Java, 123
JavaScript, 123
JavaScript’s console.log, 138
JavaScript’s Object, 99
JIT, 19
JIT (just in time) compiler, 19
JIT compilation, 19

K

key-value pairs, 49, 117-118
keys, 49
keyword function, 43, 66
keyword local, 21, 51
Keywords, 36

176

keywords, 36

L

label, 73
label statement, 73
Label Statements, 73
Label statements, 71
label statements, 73
Labels, 35, 73
language extension, 99
last dot ., 70
Latin letters, 35
left associative, 65
left operand, 114
left parentheses, 98
Left shift, 59
left shift <<, 59
length, 62-63
length expression, 63, 88
length of a sequence, 64
length of a string, 47
length of a table, 101
length operation, 112
length operation #, 112
Length Operator, 62
length operator, 47, 62, 64, 99
length operator #, 62, 64
length operator chapter, 101
less equal, 115
Less or equal, 60
Less than, 59
less than, 115
less-than operator, 82
letter, 96

levels, 40
lexical conventions, 145
lexical elements, 36
lexically scoped, 21, 52
lexically scoped language, 23
lifetime, 152
Light userdata, 48
line break, 38
line breaks, 39
linear data structures, 49
linear tables, 99
list of arguments, 68
list of captures, 93
list of expressions, 72
list of parameters, 69
lists, 99
literal, 37
Literal expressions, 56
literal expressions, 57
Literal strings, 39
literal {}, 43
literals, 36, 56, 99
load, 28-29
load Function, 27
load function, 28
loadfile, 29
loadfile Function, 28
loadfile function, 29
local, 32
local, 54
local block, 54
local block cleanup, 53
local date and time, 132
local declaration, 52

177

local function, 22
local keyword, 54
local name, 21
local scope, 71
local table, 31
local table name, 31
local variable, 23, 31-33, 52-54, 73, 75,

119
local variable, 85
local variable declaration, 52, 85
Local variable declarations, 71
Local Variables, 51
Local variables, 51-52
local variables, 20, 32, 51-52, 54, 68,

77
locale, 96
locale, 136
logarithm, 80
Logical Operators, 61
Logical operators, 61
logical operators, 58, 61
logical states, 44
long brackets, 39
long comment, 34
long comment, 35
long format, 38-39
long literal string, 40
long string literal, 39-40
Long string literals, 39
long string literals, 40, 87
Long strings, 40
loop terminates, 76
lowercase, 89
lowercase alphabets, 111

lowercase letter, 96
lowercase letters, 89
Lua chuck, 26
Lua chunk, 24, 26, 28, 30-31, 55
Lua chunks, 21
Lua code, 24-25, 29, 148
Lua code in a file, 21
lua command, 16-17
lua command, 20
Lua coroutines, 154
Lua dev community, 33
Lua function, 84
Lua functions, 42, 74
lua functions, 48
Lua interpreter, 17, 21, 43, 148, 150
lua interpreter, 17
Lua language runtime, 19
Lua loader, 30
Lua module, 30
Lua modules, 33
Lua operators, 57
Lua package manager, 33
Lua program structure, 71
Lua programs, 67
Lua REPL, 18, 40, 43, 52, 106, 139
Lua runtime, 37
Lua script, 17, 86
Lua script name, 17
Lua Scripts, 16
Lua scripts, 25
Lua setup, 43
Lua standard library, 87
Lua state, 135
Lua strings, 46, 87

178

Lua table, 31
Lua tables, 50, 99
Lua threads, 49
Lua variables, 48
LUA_CPATH, 30
LUA_PATH, 30, 33
LuaJIT, 19
LuaRocks, 33
luaRocks, 33
Lua’s concurrency model, 152
Lua’s coroutine APIs, 161
Lua’s print, 25
Lua’s table, 54, 99
Lua’s threads, 152

M

magic characters, 95
main coroutine, 155
main thread, 154
map, 49
maps, 49, 99
match, 92
matched string, 92
matching arguments, 68
matching single or double quotes, 38
Math Constants, 78
math library, 78
math table, 78
math.abs function, 79
math.acos function, 82
math.asin function, 82
math.atan function, 82
math.atan(y) call, 82
math.ceil function, 80

math.cos function, 81
math.deg function, 81
math.exp function, 80
math.floor function, 80, 85
math.fmod function, 80
math.huge, 78
math.log function, 80
math.max function, 82
math.maxinteger, 78
math.min function, 82
math.mininteger, 78
math.modf function, 81
math.pi, 78
math.rad function, 81
math.random function, 82
math.random() call, 83
math.random(0), 83
math.random(1, n), 83
math.random(m, n) call, 83
math.random(n) call, 83
math.randomseed function, 83
math.randomseed(), 83
math.sin function, 81
math.sqrt function, 80
math.tan function, 81
math.tointeger function, 79
math.type function, 78
math.ult function, 79
mathematical functions, 78
mathematical value, 60
mathematical values, 60
maximum integer, 47, 62
maximum value, 62, 78, 82
memory allocation, 99

179

memory space, 99
message handler, 151
metamethod, 47, 53, 61, 64, 87, 107,

111-112, 114-115, 127
metamethod __pairs, 117
metamethod call, 111, 117
metamethods, 48, 88, 111
metatable, 47, 107-109, 111, 119, 123,

125, 127
metatable, 107
metatable chaining, 108
metatable relationship, 108, 127
Metatables, 48, 88, 111
metatables, 88, 109, 111
metatable’s __index, 107
metatable’s __index field, 107, 123
metatable’s __newindex, 108
metatable’s __newindex field, 108
metavalue, 107-108, 110
metavalue’s __newindex field, 108
method, 49
Method Call Syntax, 70
method calls, 71
method style syntax, 87
Method Syntax, 68
method syntax, 68
Min and Max Functions, 82
minimum value, 78, 82
mode argument, 28, 142
mode string, 143
Modern JavaScript, 123
module, 31-33
module, 127
module chunk, 32

module convention, 32
module example, 32
module local variable, 84
module table, 84
module variable, 127
Modules, 30
modules, 25, 30, 32-33
Modulo, 58
modulo, 113
multi-line string, 40
multiline expression, 93
multiline long string literals, 40
multiline string literals, 39
multiple assignment, 105
multiple assignment statement, 51
Multiple Assignments, 72
Multiple assignments, 71
multiple entry, 152
multiple lines, 18
multiple results, 111
multiple values, 84, 107
Multiple variables, 52
Multiplication, 58
multiplication, 113
mutable, 41

N

name, 32, 35
name list, 76
named file, 26
named function definition, 67-68
named local function, 67
named parameter list, 68
Named parameters, 68

180

named parameters, 68
Names, 35
names, 51
names of, 41
names or indexes, 50
namespace, 101, 129
namespaces, 30, 99
naming convention, 36
native array types, 99
native locale, 136
native threads, 49
natural logarithms, 80
negation, 60
negation operator, 61
Negative indices, 91
negative indices, 17, 87
negative integer keys, 101
negative number, 79
nested functions, 73
new block, 53
new coroutine, 153, 157
new empty table, 43, 99
new file handle, 142
new function, 125
new locale, 136
new name, 73
new object, 125
new table, 99
new table, 100-101, 119, 127
new thread object, 154
new type, 126
new value, 53
new variable name, 54
Newline, 34

newline, 35, 38, 40
newlines, 34
newly created coroutine object, 155
next, 120
next Function, 120
next function, 117, 120
next function, 119
next index, 62, 120
next resume, 153
next value, 76
next() call, 120
next() function, 120
Nil, 43
nil, 26, 28, 37, 41, 43-46, 49, 51-52, 64,

76, 79, 92, 133
Nil and Booleans, 37
nil value, 43, 49
no capture, 93
non-alphanumeric character, 95-96
non-function value, 111
non-number type values, 112
non-numeric keys, 101
non-object oriented programming

languages, 124
Non-positive integer indexes, 62
non-positive number, 90
non-string, 112
non-void statement, 23
normal termination, 158
not, 61
not running, 153
not-yieldable, 155
notation, 26
null byte \0, 46

181

null character \0, 39
null-terminated C strings, 46
Number, 44
number, 41, 43
number, 45-46, 145
number and string literals, 37
number of bytes, 47, 62
number or string, 45-46
number type, 37
number type, 44
number type operands, 87
number value, 45
Numbers, 60
numbers, 44, 58, 60, 65
numeral, 37
Numeral literals, 56
Numerals, 37
numerals, 37
numeric code, 135
Numeric literals, 37
numeric literals, 37
numeric value, 39
Numerical for, 75
numerical for, 85
numerical for loop, 75
numerical for statement, 22

O

object, 49, 123
object, 125
object-based languages, 123
object-oriented programming, 50
objects, 123-125
objects, 125

one border, 62-63
one statement chunk, 20
one table, 32
OOP in Lua, 119
OOP syntax, 123
OOP-style syntax, 126
open file handle, 144
opening brackets, 39
opening long bracket, 34-35, 39-40
opening square bracket, 39
opening square brackets, 34
operand, 62, 115
operands, 56, 58-61, 87
operating system shell, 134
operating systems, 49
operation, 58
operations, 41
operator, 57, 60
Operator precedence, 64
operator precedence rules, 56
operator ~=, 60
Operators, 36, 57
operators, 36, 56-57
optional, 29
optional parameter, 26
optional parameter, 28
optional parameters, 26
optional vararg parameter, 68
options, 17
or, 61
order operators, 60
os, 137
OS Functions, 84
os library functions, 131

182

os.clock Function, 133
os.clock function, 133
os.date Function, 131
os.date function, 131
os.execute Function, 134
os.execute function, 134
os.exit, 135
os.exit Function, 135
os.exit function, 135
os.getenv Function, 133
os.getenv function, 133
os.remove, 131
os.remove Function, 137
os.remove function, 137
os.remove() call, 137
os.rename, 131
os.rename Function, 137
os.rename function, 137
os.rename() call, 137
os.setlocale, 136
os.setlocale Function, 136
os.setlocale function, 136
os.time, 132
os.time Function, 132
os.time function, 84, 132
outer scope, 24
output file, 141
overflow, 44
overloading, 26

P

package library, 30, 33
package repository, 33
package table, 33

package.cpath string variable, 30
package.path, 30, 33
package.path global variable, 30
pair of parentheses, 69
pair of seeds, 83
pairs, 117
pairs Function, 117
parameter list, 67-68
parameter passing, 41
parameter self, 68
Parameters, 68
parameters, 68-69
parentheses, 56, 65, 70, 98
parenthesis expression, 56
Parenthesis expressions, 56
pattern, 92-93
pattern, 92-93, 95, 97
Pattern item, 97
pattern item, 95, 97
pattern items, 95, 97
pattern match, 92
pattern-matching functions, 95
Patterns, 95
pcall, 150-151
pcall function, 150-151
points of execution, 152
positive integer index, 62
positive integer indexes, 62
positive integer keys, 101
positive number, 79
POSIX system, 137
precedences of expressions, 65
preceding character, 98
precompiled chunk, 28

183

predefined attributes, 53
predefined metamethods, 107, 111
prefix expression, 69
previously yielded coroutine, 155
primary and secondary prompts, 18
primary prompt, 19
print Function, 25
print function, 17, 21, 23-25, 138
print(), 93
printable character, 96
procedural programming, 66
procedure, 152
process environment variable, 133
producer and consumer, 160
producer module, 159
producer thread, 160
producer-consumer problem, 159
producer.produce(), 160-161
program, 20
program argument, 17
program arguments, 17-18
program control, 73
program execution, 149
programming language, 16
programming languages, 34, 46, 76,

152
prompt, 17-19
prompt >, 43
properties, 49
property, 50
Protected Calls, 150
protected calls, 150
protected mode, 150
protected mode, 150-151

protoptypes, 107
prototype, 123
prototype pattern, 123
prototypes, 123
pseudo-random, 83
pseudo-random generator, 83
pseudo-random integer, 83
pseudo-random number, 83
punctuation character, 96
pure integer expressions, 44
Python, 75, 123

R

radians, 81-82
radians to degrees, 81
radix point, 37-38
raise an error, 148
raises an error, 112, 114, 148
raises an error, 148
random dice rolls, 83
Random Functions, 82
random integer, 84
random number functions, 86
random number generator seed, 85
range, 83-84, 96
range of characters, 96
Read mode, 142
read mode, 143
Read update mode, 142
readability, 56
real floating-point numbers, 44
recursive functions, 67
reference, 60
references, 41-42

184

references to, 41
regular expression, 95
regular expression patterns, 95
regular expression syntax, 95
Regular Expressions, 95
Relational Operators, 59
relational operators, 58-59
relative file path, 33
remainder, 80
removed element, 104
rename operation, 137
repeat, 76
repeat loop, 141
repeat statement, 22, 77, 85
repeat statement block, 77
Repeat Statements, 77
repeat statements, 71
REPL, 52, 142
replacement, 94
require Function, 30
require function, 25, 30, 32
require(), 30
resume suspended coroutines, 152
resume(), 157
resume() function, 157
Resuming Coroutines, 154
return code, 135
return statement, 21, 31, 74
Return Statements, 74
return statements, 71
return value, 32, 132, 155
return values, 20, 69, 117, 155
returned values, 57
right associative, 65

Right shift, 59
Right shift >>, 59
Rounding Functions, 80
run time, 19, 41, 148
running, 153
running coroutine, 156
Rust, 124

S

s:find, 92
s:find(pattern, init, plain),

92
s:format(···) function, 90
s:gmatch(pattern, init), 93
s:gsub(pattern, repl, n), 94
s:len(), 87
s:len() function, 88
s:lower() function, 89
s:match(pattern, init), 92
s:rep(n, sep) function, 90
s:reverse() function, 90
s:sub, 91
s:sub(i, j) function, 91
s:upper() function, 89
same metatable, 123, 125
same object, 60
same objects, 114
sample program, 156
scope, 23, 52
scope of variable, 23
scopes, 68
Scoping, 23
scoping, 21
script, 17-18, 28, 156

185

script name, 17
script name argument, 17
scripts, 17
second argument, 45
second operand, 87
secondary prompt, 19
seed values, 85
select Function, 122
select function, 122
self, 127
semicolon ;, 72
semicolon statement, 52
semicolons, 72
sequence, 63-64, 86
Sequence length, 63
sequence of bytes, 46
sequence of spaces, 98
sequence of statements, 20
sequence of values, 49
sequences, 99
sequences of bytes, 87
set, 96, 98
set of characters, 95
setmetatable Function, 109
setmetatable function, 109
setmetatable function, 119
setter parts, 127
shadowed, 24
shared metamethods, 123
shared metatables, 107
shell, 134
shell prompt, 16
shell prompt $, 17
short circuiting, 61

short comment, 35
short comment, 35
short format, 38
short literal string, 38-39
Short string literals, 38
Short strings, 38
sine, 81
single character classes, 96
single integer value, 86
single statement, 23
single table, 32
single table, 32
single value, 56, 85
single white space, 149
snake name, 36
sort algorithm, 105
sortdemo.sort() function, 106
sorting, 106
source code, 34
source code file, 30
source table, 105
Space, 34
space, 70
space character, 96
spaces, 34
specified numeric range, 75
specified set, 96
square root, 80
stable, 105
standalone Lua interpreter, 30
standalone statement, 57, 69
standalone usage of Lua, 16
standard C locale, 136
standard distribution, 16

186

standard input, 26, 29
standard Java, 19
standard libraries, 16
standard library, 17, 25, 111, 152
standard Lua, 44-45
standard Lua interpreter, 99
standard out, 17
start and end indices, 92
start index, 91
start the coroutine, 153
Starting, 154
statement, 18, 55, 69, 72-73
statements, 66, 71, 73
states, 42
statically, 52
statically typed, 53
status code, 150-151
status of the thread, 153
status suspended, 153
stdout, 25
strftime, 131
String, 46
string, 17, 45, 47
string, 38, 41, 43, 62
string argument, 26, 46
string arguments, 149
string basics chapter, 112
String Concatenation, 87
String concatenation, 65, 87
string concatenation, 87-88
string concatenation operation, 87
string concatenation operator, 87
string functions, 87-88, 95
String indices, 87

string keys, 62
String length, 62
string library, 87
string literal, 35, 70
String Literals, 38
String literals, 38, 56, 87
string literals, 38
string manipulation, 87
string representation, 48
string type, 42-43, 64
string value, 45, 47, 53
string.find, 92, 95
string.find Function, 92
string.format Function, 90
string.gmatch, 76, 95
string.gmatch Function, 93
string.gsub, 95
string.gsub Function, 94
string.len Function, 88
string.len(s), 87
string.lower Function, 89
string.match, 95
string.match Function, 92
string.rep Function, 89
string.reverse Function, 90
string.sub Function, 91
string.upper Function, 89
Strings, 60
strings, 41
strings, 45, 61, 65
Strings in Lua, 46
strings or numbers, 87, 103, 145
structural similarity, 123
structurally similar, 123

187

structurally similar objects, 123
subject string, 95, 98
subroutine, 152
subscription, 49
subsequent character, 98
substring, 91, 98
substring search, 92
Subtraction, 58
subtraction, 113
subtypes, 44
success or failure status, 155
successful match, 92
successfully loaded, 26
suffix b, 143
suspend running coroutines, 152
suspended and resumed, 152
suspended coroutine, 156
suspended points, 152
suspended state, 152, 154-155
suspended state, 156
suspended state, 159
Suspending and Resuming, 156
symbols, 36
syntactic errors, 28
syntactic shortcut, 67
syntax, 67

T

Table, 49
table, 30, 41, 43, 49, 62, 99, 117, 123
table, 31-33, 62-64, 123, 125
Table borders, 62
table chapter, 63
table constructor, 37, 100

table constructor, 100
table constructor expression, 99
table constructor literal, 63, 70
Table constructor literals, 57
Table Constructors, 99
Table constructors, 99
Table constructors {}, 57
table field, 33, 100, 108, 127
table field variable, 31
Table Fields, 54
Table fields, 35, 51
table fields, 49, 55, 123
table functions, 101
table in Lua, 49
table indices, 87
table initializer literal, 31
Table length, 62
table length operation, 112
table library, 101
table manipulation, 101
table os, 131
table string, 87
table Table, 101
table table, 101
table type, 112
table-based module, 125, 141
table-based module convention, 32
Table-Based Modules, 31
table-scoped variables, 35
table.concat, 103
table.concat Function, 102
table.concat function, 102
table.insert Function, 103
table.insert function, 103

188

table.insert(t, v), 103
table.move Function, 104
table.move function, 105
table.pack Function, 101
table.pack function, 101
table.remove Function, 104
table.remove function, 104
table.remove(l), 104
table.sort, 106
table.sort Function, 105
table.sort function, 105
table.unpack Function, 102
table.unpack function, 86, 102
Tables, 50, 60, 99, 123
tables, 41, 60
tables, 50, 53-54, 123
tables and threads, 42
tangent, 81
terminal, 17
terminated, 152, 154
terminates or yields, 154
text chunks, 28
text files, 145
text mode, 140
text or binary, 28
Thread, 48
thread, 41, 153
thread object, 152
thread object, 153-154, 156
thread objects, 152
thread type, 153
Threads, 48
threads, 41
threads, 60

threads of execution, 48
throws an error, 87
time, 131
to-be-closed variable, 53-54
to-be-closed variables, 54, 159
tokens, 34, 36-37
tonumber, 45-46
tonumber function, 45
tostring function, 47
tostring(), 47
tostring(a), 48
tostring(c), 48
total number of matches, 94
trailing vararg parameter, 68
Trigonometric Functions, 81
true, 37
true and false, 44
true and false, 44
true in Lua, 44
true or false, 59
two dots, 87
two fields, 100
two hyphens, 34
two underscores, 107, 111
two’s complement arithmetic, 44
type, 62
type Function, 42
type function, 28, 48
type function, 42-43
type nil, 43
type number, 44
type of a value, 41-43
type string, 46
type thread, 48

189

type userdata, 48
types, 41
types, 41

U

Unary bitwise NOT, 59
unary bitwise NOT, 58
unary length operator, 58
unary logical not, 58
Unary minus, 58
unary minus, 58
unary negation, 114
Unary operator expressions, 58
unary operators, 58
unary prefix operator #, 62
underscore _, 35
underscores, 35
Unicode, 46
Unicode character, 39
Unicode character code point, 39
uniform distribution, 83
union types, 42
unit test, 129
unit test script, 129
unit testing, 149
Unix epoch time, 132
unprotected error, 158
unsigned comparison, 79
unsigned integers, 79
until keyword, 77
uppercase, 89
uppercase letter, 96
uppercase letters, 89
upvalue, 28

use cases, 67
user-defined functions, 26
Userdata, 48
userdata, 41-42, 48, 60
userdata, 60
userdata type, 48
userdata value, 48
Userdata values, 48
UTF-8 encoding, 39

V

valid, 145
valid characters, 35
valid name, 35
valid names, 35
value, 52, 56, 67
value copy, 42
value of a field, 49
Values, 41
Values, 41
values, 41-42, 51
Values and Types, 41
values in Lua, 53
value’s behavior, 107
value’s metatable, 107, 109
vararg, 21
vararg argument, 20
Vararg expressions, 57
vararg expressions, 57
Vararg expressions ..., 57
vararg function, 18, 57, 68
Vararg parameter, 68
vararg parameter, 68-69
vararg symbol ..., 21

190

variable, 23-24, 31, 51, 54-55, 68, 75,
87

variable declaration, 54
variable name, 52
Variables, 35, 57
variables, 42, 51, 54, 66, 76, 123
Variables in Lua, 41
variables in Lua, 53
vertical bar, 28
Vertical tab, 34
visible label, 73
void statements, 73

W

warn, 149
warn Function, 149
warn function, 149
warning, 150
warning message, 149-150
warning system, 150
Warnings, 149
warnings, 149
while, 77
while loop, 85, 141
while statement, 22, 76-77
While Statements, 76
while statements, 71
White Spaces, 34
whitespace characters, 39
whole match, 93
Write mode, 142
Write update mode, 142

X

xpcall, 150
xpcall Function, 151
xpcall function, 151

Y

yield function call, 155
yield() call, 157
yieldable, 154

191

About the Author
Harry Yoon has been programming for over three decades. He has
used over 20 different programming languages in his academic and
professional career. His experience spans broad areas from scientific
programming and machine learning to enterprise software and Web
and mobile app development.

He occasionally hangs out on social media:

• Instagram: @codeandtips [https://www.instagram.com/codeandtips/]

• TikTok: @codeandtips [https://tiktok.com/@codeandtips]

• Twitter: @codeandtips [https://twitter.com/codeandtips]

• YouTube: @codeandtips [https://www.youtube.com/@codeandtips]

• Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

Other Lua Books by the Author
• Learn Coding with Lua: A Slow and Gentle Introduction to Basic

Programming for Total Beginners with Step-by-Step Instructions
[https://www.amazon.com/dp/B0BF19Q3DV/]

192

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/
https://www.amazon.com/dp/B0BF19Q3DV/
https://www.amazon.com/dp/B0BF19Q3DV/

About the Series
We are creating a number of books under the series title, A Hitchhiker’s
Guide to the Modern Programming Languages. We cover essential
syntax of the 12 select languages in 100 pages or so, Go, C#, Python,
Typescript, Rust, C++, Java, Julia, JavaScript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach
you different ways of programming, and more importantly, different
ways of thinking.

All Books in the Series
• Go Mini Reference [https://www.amazon.com/dp/B09V5QXTCC/]

• Modern C# Mini Reference [https://www.amazon.com/dp/B0B57PXLFC/]

• Python Mini Reference [https://www.amazon.com/dp/B0B2QJD6P8/]

• Typescript Mini Reference [https://www.amazon.com/dp/B0B54537JK/]

• Rust Mini Reference [https://www.amazon.com/dp/B09Y74PH2B/]

• C++20 Mini Reference [https://www.amazon.com/dp/B0B5YLXLB3/]

• Modern Java Mini Reference [https://www.amazon.com/dp/B0B75PCHW2/]

• Julia Mini Reference [https://www.amazon.com/dp/B0B6PZ2BCJ/]

• JavaScript Mini Reference [https://www.amazon.com/dp/B0B75RZLRB/]

• Haskell Mini Reference [https://www.amazon.com/dp/B09X8PLG9P/]

• Scala 3 Mini Reference [https://www.amazon.com/dp/B0B95Y6584/]

• Lua Mini Reference [https://www.amazon.com/dp/B09V95T452/]

193

https://www.amazon.com/dp/B09V5QXTCC/
https://www.amazon.com/dp/B0B57PXLFC/
https://www.amazon.com/dp/B0B2QJD6P8/
https://www.amazon.com/dp/B0B54537JK/
https://www.amazon.com/dp/B09Y74PH2B/
https://www.amazon.com/dp/B0B5YLXLB3/
https://www.amazon.com/dp/B0B75PCHW2/
https://www.amazon.com/dp/B0B6PZ2BCJ/
https://www.amazon.com/dp/B0B75RZLRB/
https://www.amazon.com/dp/B09X8PLG9P/
https://www.amazon.com/dp/B0B95Y6584/
https://www.amazon.com/dp/B09V95T452/

Community Support
We are building a website for programmers, from beginners to more
experienced. It covers various coding-related topics from algorithms to
machine learning, and from design patterns to cybersecurity, and more.
You can also find some sample code in the GitLab repositories.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Please join our mailing list, join@codingbookspress.com, to receive
coding tips and other news from Coding Books Press, including free, or
discounted, book promotions. If we find any significant errors in the
book, then we will send you an updated version of the book (in PDF).
Advance review copies will be made available to select members on the
list before new books are published.

Request for Feedback
If you find any errors or typos, or if any part of the book is not very
clear to you, or if you have any general suggestions or comments
regarding the book, then please let us know. Although we cannot
answer all the questions and emails, we will try our best to address the
issues that are brought to our attention.

• feedback@codingbookspress.com

Please note that creating and publishing quality books takes a great
deal of time and effort, and we really appreciate the readers' feedback.

Revision 1.1.3, 2023-05-14

194

https://www.codeandtips.com
https://gitlab.com/codeandtips
mailto:join@codingbookspress.com
mailto:feedback@codingbookspress.com

	Lua Mini Reference 2023: A Quick Guide to the Lua Scripting Language for Busy Coders
	Copyright
	Preface
	Chapter 1. Introduction
	Chapter 2. Lua Interpreter
	2.1. �Lua Scripts
	2.2. �Lua REPL
	2.3. �LuaJIT

	Chapter 3. Lua Program Execution
	3.1. �Chunks
	3.2. �Blocks
	3.3. �Block Defining Statements
	3.4. The �do Block Statement
	3.5. �Scoping
	3.6. �Environments
	3.7. Lua’s �Global Variables
	3.8. The �print Function
	3.9. The �dofile Function
	3.10. The �load Function
	3.11. The �loadfile Function

	Chapter 4. Modules
	4.1. The �require Function
	4.2. �Table-Based Modules

	Chapter 5. Lexical Elements
	5.1. �White Spaces
	5.2. �Comments
	5.3. �Names
	5.4. �Keywords
	5.5. �Operators

	Chapter 6. Builtin Type Literals
	6.1. �Nil and Booleans
	6.2. �Numerals
	6.3. �String Literals

	Chapter 7. Types
	7.1. �Values and Types
	7.2. The �type Function
	7.3. �Nil
	7.4. �Boolean
	7.5. �Number
	7.6. �String
	7.7. �Functions
	7.8. �Userdata
	7.9. �Thread
	7.10. �Table

	Chapter 8. Variables
	8.1. �Local Variables
	8.2. �Attributes
	8.3. �Table Fields
	8.4. �Global Variables

	Chapter 9. Expressions
	9.1. �Basic Expression Types
	9.2. �Arithmetic Operators
	9.3. �Bitwise Operators
	9.4. �Relational Operators
	9.5. �Logical Operators
	9.6. The �Length Operator
	9.7. Operator Precedence
	9.8. �Conversions

	Chapter 10. �Anonymous Functions
	10.1. �Function Definitions
	10.2. �Method Syntax
	10.3. �Function Parameters
	10.4. �Function Calls
	10.5. �Method Call Syntax

	Chapter 11. Statements
	11.1. �Empty Statements
	11.2. �Multiple Assignments
	11.3. �Label Statements
	11.4. �Goto Statements
	11.5. �Break Statements
	11.6. �Return Statements
	11.7. �If Statements
	11.8. �For Statements
	11.9. �While Statements
	11.10. �Repeat Statements

	Chapter 12. The Math Library
	12.1. �Math Constants
	12.2. General Functions
	12.3. �Basic Math Functions
	12.4. �Rounding Functions
	12.5. �Trigonometric Functions
	12.6. �Min and Max Functions
	12.7. �Random Functions

	Chapter 13. Strings - Basics
	13.1. �String Concatenation
	13.2. The �string.len Function
	13.3. The �string.lower Function
	13.4. The �string.upper Function
	13.5. The �string.rep Function
	13.6. The �string.reverse Function
	13.7. The �string.format Function

	Chapter 14. String Manipulation
	14.1. The �string.sub Function
	14.2. The �string.find Function
	14.3. The �string.match Function
	14.4. The �string.gmatch Function
	14.5. The �string.gsub Function

	Chapter 15. �Regular Expressions
	15.1. The �Patterns
	15.2. The �Captures

	Chapter 16. Tables
	16.1. �Table Constructors
	16.2. The �table.pack Function
	16.3. The �table.unpack Function
	16.4. The �table.concat Function
	16.5. The �table.insert Function
	16.6. The �table.remove Function
	16.7. The �table.move Function
	16.8. The �table.sort Function

	Chapter 17. Metatables
	17.1. The �__index Metavalue
	17.2. The �__newindex Metavalue
	17.3. The �__metatable Metavalue
	17.4. The �getmetatable Function
	17.5. The �setmetatable Function

	Chapter 18. Metamethods
	18.1. The �__call Method
	18.2. The �__len Method
	18.3. The �__concat Method
	18.4. �Arithmetic Operations
	18.5. �Comparison Operations
	18.6. �Bitwise Operations

	Chapter 19. Iterators
	19.1. The �pairs Function
	19.2. The �ipairs Function
	19.3. The �__pairs Metamethod
	19.4. The �next Function
	19.5. The �select Function

	Chapter 20. Object Oriented Programming in Lua
	20.1. �Factory Methods
	20.2. �Classes and Constructors

	Chapter 21. The OS Functions
	21.1. The �os.date Function
	21.2. The �os.time Function
	21.3. The �os.clock Function
	21.4. The �os.getenv Function
	21.5. The �os.execute Function
	21.6. The �os.exit Function
	21.7. The �os.setlocale Function

	Chapter 22. The �I/O and �File System Functions
	22.1. The �os.rename Function
	22.2. The �os.remove Function
	22.3. The �io.read Function
	22.4. The �io.write Function
	22.5. The �io.input Function
	22.6. The �io.output Function
	22.7. The �io.open Function
	22.8. The �io.lines Function
	22.9. The �io.flush Function
	22.10. The �io.close Function
	22.11. The �io.type Function
	22.12. The �file.read Function
	22.13. The �file.write Function
	22.14. The �file.lines Function
	22.15. The �file.flush Function
	22.16. The �file.close Function

	Chapter 23. Error Handling
	23.1. The �error Function
	23.2. The �assert Function
	23.3. The �warn Function
	23.4. �Protected Calls (pcall and xpcall)

	Chapter 24. �Concurrency
	24.1. �Coroutines
	24.2. �Creating Coroutines
	24.3. �Starting and �Resuming Coroutines
	24.4. �Suspending and Resuming
	24.5. �Coroutine Termination
	24.6. �Coroutine Example

	A. How to Use This Book
	Index
	About the Author
	About the Series
	Community Support

