

Learn Coding with Lua
A Slow and Gentle Introduction
to Basic Programming for Non-

Programmers (REVIEW COPY)

Harry Yoon

Version 1.0.0, 2023-04-05

REVIEW COPY
This is review copy, not to be shared or distributed to
others. Please forward any feedback or comments to the
author.

• feedback@codingbookspress.com

The book is tentatively scheduled to be published on
March 22nd, 2023. We hope that when the release day
finally arrives, you would also consider writing an
honest review on Amazon.

• Learn Coding with Lua: A Slow and Gentle
Introduction to Basic Programming for Non-
Programmers [https://www.amazon.com/dp/B0BF19Q3DV/]

1

mailto:feedback@codingbookspress.com
https://www.amazon.com/dp/B0BF19Q3DV/
https://www.amazon.com/dp/B0BF19Q3DV/
https://www.amazon.com/dp/B0BF19Q3DV/

Copyright
Learn Coding with Lua

© 2023 Coding Books Press

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor its dealers and distributors will be
held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Published: March 2023

Harry Yoon
San Diego, California

ISBN: 1111

2

Preface
Starting from zero is really hard. For anything. Have
you tried to learn to play tennis? Play the piano? How
about chess? This is especially true for programming.
Computer programming is becoming more accessible to
more people these days. But, it is still rather difficult for
real beginners to get started, that is, without some help
from more experienced programmers.

Learn Coding with Lua: A Slow and Gentle Intro-
duction to Basic Programming is specifically written
for the people who have no or little experience with
programming, or for the people who may consider
themselves as "non-programmers".

The goal is to give the ordinary people like you a gentle
introduction to the practice of programming. For
example, What does a programmer do? A lot of books,
and other resources, that are written for the "laypeople"
tend to include a lot of stories like how the computers
were invented, what kinds of programming languages
exist, and who created which languages, etc. They may
be interesting, but they do not help much in way of
helping you learn coding. This book, however, focuses
on real programming, both theory and practice. After a
couple of brief introductory lessons, we go straight to
hands-on programming, and we cover a lot of ground in
a relatively small space.

3

Although it is a short book, and it uses rather simple
examples, you will get a taste of real programming by
going through this book. Note, however, that it is not a
textbook. This book is intended for quick reading, and
doing some hands-on exercises if desired, and it is not
meant to be "studied". Just remember, you do not have
to understand everything to get the benefits of reading
this book. It’s never all or none.

LUA is one of the most popular languages among the
people who are just starting to learn coding, including
children and young people of various ages.

Lua is easy to learn and use, and yet it provides enough
complexity and flexibility to be useful even for
professional software development. As a matter of fact,
Lua is one of the most versatile modern programming
languages. As a beginner, when you are just starting
out, the choice of a particular language is not that
significant. You will likely end up trying out a few
different programming languages before you eventually
settle with a language or two that you really like.
Regardless, you will be glad that you started with Lua.

After learning the basics of programming using Lua,
and this book, you will be ready to learn more difficult
topics in programming, now on a firmer foundation.
And, above all, you will most likely be eager to do more
coding. If so, then this book has done its job.

4

Throughout your journey of learning coding, the most
important thing is to have fun. If you don’t feel like you
are having fun while learning programming, then stop.
Take a break. Do something else for a little while and
come back to this later, if you feel like it. Learning
should be fun. Learning programming should be fun,
although it may be hard. Always keep that in mind.

Have fun! Always!

Author’s Note

It should be noted that the word "beginner" is not
a well-defined term, particularly in the context of
programming. This book is written for people with
no or little experience, say, from a few weeks to a
few months of "dabbling" with coding, or possibly
a bit longer, but, at the end of the day, you will
have to decide whether this book is suitable for
you and whether it can help you learn coding. We
suggest you browse the beginning of the book,
especially the table of content, before you
purchase a copy. If you have already purchased,
then go through the book quickly before you
commit. If you feel like this book is not for you, or
if you feel like you will end up getting very little
out of this book, then return the book, and try to
find a different resource.

5

Table of Contents
Copyright . 2

Preface . 3

1. A Journey of a Thousand Miles … 8

1.1. What is Programming?. 10

1.2. Two Big Words - Syntax and Semantics 12

2. … Begins with a Single Step . 14

2.1. Online Code Editor . 15

2.2. Hello World! . 15

2.3. Comments . 19

3. Anatomy of Hello World . 28

3.1. Hello World, Again! . 29

3.2. How to Create a Sentence . 32

3.3. What’s the Meaning of All These? 34

3.4. Do This? And Then Do That? 35

3.5. The Great Escape . 38

3.6. String Additions . 41

4. Is Programming Art? . 47

4.1. Values and Some Such . 48

4.2. What’s in a Name?. 52

4.3. ASCII Art . 55

4.4. Multiline Strings . 58

4.5. Back to the Ant! . 59

6

5. Hello, All the Moons in the World! 65

5.1. Tables as Arrays . 66

5.2. Tables as Maps . 77

5.3. Hello, the Moon!. 82

5.4. Hello, the Moons of Mars! . 82

5.5. Hello, the Moons of Both Planets! 83

6. Day of the Week. 90

6.1. Lua Standard Libraries . 91

6.2. Function Calls . 92

6.3. Function Definitions . 93

6.4. Date and Time Functions. 95

6.5. Today, and Today Only . 98

6.6. Are You a Wednesday Child? 102

7. What is Your Sign? . 108

7.1. Basic Input and Output . 109

7.2. Game Plan . 114

7.3. Horoscope Function . 117

7.4. Horoscope Teller - CLI App 122

Closing Remarks . 125

Credits . 127

About the Author. 128

Coding Lessons for Beginners . 129

Programming Language References 130

Community Support . 131

7

Lesson 1. A Journey of a
Thousand Miles …

Why are you interested in learning programming? Do
you want to build your own mobile apps? Do you want
to create websites? Do you plan to pursue a career in
the software industry? Is it out of curiosity? Or, you just
picked up this book by accident? 

Regardless of what your reasons are, this book will give
you a real taste of basic programming. It may, or may
not, provide you with what exactly you are looking for.
But, it goes without saying that the foundation is the
most important thing. Whether you have some coding
experience or not, learning, and practicing, coding is a
lifelong process. Having a solid foundation can help you
learn coding faster, and enjoy more, in the long run.

8

This book is written for complete beginners, from 10
year olds to 50 year olds, and to 100 year old grandpas
and grandmas, who are interested in learning.

Depending on your background, and the level of prior
exposure to programming, you may still find this book
difficult. No worries. Learning is a skill, which you can
also learn. You may have to take some winding road, or
take a break once in a while, but eventually, you will get
there. Remember, this book is written for you.

On the other hand, you may find this book too easy (that
is, if such a thing as "too easy" exists). That’s all right as
well. There must be something you can learn from this
book. (As suggested, you can quickly browse the book
and return it for a full refund. ) Otherwise, you can
always try some exercises, and see if you can graduate
from this level "zero" to the next level up, where
programming will be more fun.

One final remark. Although this book is written for
beginners, we emphasize both theory and practice
unlike the majority of beginner’s books. In fact, some
readers may find this book rather too theory-heavy. If
so, you can skip much of the theory parts, especially if
long explanation bores you. Theories will help you build
a solid foundation, primarily for your future learning,
and they may not be essential for following the
instructions and doing the exercises in this book.

9

1.1. What is Programming?
If you ask ten different programmers this same
question, what does programming mean to you?, then
you will get ten different answers. It’s like the
proverbial elephant with blind men.

First of all, what is a computer? A computer is a device
that does "computation". Modern computers can do so
much, and such complex tasks, that it may not always
be obvious, but ultimately computers do computation,
as in 1 + 2 is 3. A program accepts an input data (like 1
and 2) and produces an output data (like 3). This
example does a trivial operation, namely, addition of
two numbers. Nevertheless, this is the computation, or
the logic of the program. A program generally consists
of two components, logic/computation and data.

Programming is a process of creating a program, using a
computer programming language, which performs the
desired computation, and which accepts a (broad) range
of input. That is, we do not generally write a program
for one specific task, but for a range of related tasks, if
you will. This is an important concept to understand,
which is, if you think about it, sort of obvious. A
calculator that only adds 1 and 2 may not be that useful.
A calculator that can add arbitrary two numbers, or
even a calculator that can add an arbitrary number of
input numbers, will be generally more useful.

1.1. What is Programming?

10

Despite the recent advances in machine learning and AI
technologies, which now can create pretty advanced
chatbots and what not, computers are not that smart.
We still use special languages to really talk to them.
When you talk to a baby, you tend to use special "baby
talk" languages. It’s just like that.

There are many different programming languages. You
can use any of the widely used languages like Python,
JavaScript, C, etc. to learn programming.

When you are starting out, as stated earlier, a particular
choice of programming languages is not that important.
You will generally have to focus on learning the
fundamental programming concepts, rather than other
language-specific details.

Lua is one of the simplest and easiest-to-learn
programming languages. As a matter of fact, Lua is as
good a choice as any for beginning programmers, if not
better. The fact that Lua has a rather simple grammar,
and a smaller set of standard libraries, can be a big help
for beginning programmers.

Regardless, a lot of concepts you learn from this book
will be also applicable when you learn, or program in,
different languages, hopefully, in the near future. (All
programming languages are different, in some aspects,
and they are all fun.) Note that the title of this book is
Learn Coding, and not Learn Lua.

1.1. What is Programming?

11

1.2. Two Big Words - Syntax and
Semantics
Although this book is for total beginners, we will start
with two big words, syntax and semantics. Many of the
readers may have heard of these terms, possibly from
different contexts. Their exact definitions are not very
important for our purpose. But, roughly, syntax means
"form" and semantics means "meaning".

As a side note, programming languages are built based
on how the natural languages like English work. A
linguist, Noam Chomsky, created a formal theory of
languages in the mid 20th century, and all programming
languages are constructed on this foundation. An
English sentence, for example, "I fly", has a subject I,
which is a pronoun, and a verb fly. That is syntax. In
addition, this sentence has a meaning, as in "I fly to New
York", or something like that. That is semantics. Saying
"Arts fly" may not have much meanings although this
sentence is syntactically correct. Coding languages have
essentially the same corresponding structure, with a
similar grammar comprising syntax and semantics.

When you start learning programming, learning a
programming language is an important part (and, these
two are not the same). You cannot play Mozart without
learning how to play musical instruments like the piano
or the violin. Although, as indicated, the choice of Lua

1.2. Two Big Words - Syntax and Semantics

12

as the programming language in this book is somewhat
incidental, you will have to learn the essentials of the
Lua language grammar, its syntax and semantics, to
learn how to program.

All code examples in this book are written in Lua. All
coding concepts are explained in the context of Lua
programming, using the Lua syntax. But, more
importantly, just like the distinction between the form
and the meaning, the readers are encouraged to focus
more on the fundamental concepts of programming
rather than (possibly language-specific) details.

One thing to note is that although anyone of any age
who has a reasonably good command of English can
learn basic programming using this book, it is not
specifically written for children, and they may find
some languages used in this book rather difficult to
understand. (This book is more of PG-13 than G. )

All exercises are optional, and no solutions are included
in this book. This is primarily to encourage the readers
to try them out for themselves, without relying on
provided answers. Just remember that there is no single
"correct" answer for any given problem. Then, how do
you know that you have done right? Does your program
do what you intend it to do? That’s the only question that
matters. At least, for the time being.

Good luck!

1.2. Two Big Words - Syntax and Semantics

13

Lesson 2. … Begins with a
Single Step

As we suggested, a programming language is a tool. In
fact, it is one of the (many) tools for programming.
Other important tools are a code editor, in which you
write programs, and the code interpreter. Lua belongs to
a category of languages, along with Python and
JavaScript, which do not generate executable programs
(like EXE files on Windows). Lua code, or "script", is
directly run by a special program called the interpreter.

Setting up a development environment is an important
first step to be able to do programming. But, in this
book, we will skip most of it, and instead we will use an
"online IDE", which is essentially a combination of code
editor and interpreter. In particular, we will use one of
the most popular free services called Replit. If you
would like to follow along while reading this book, we
suggest you use the same, or similar, online service.

14

2.1. Online Code Editor
Let’s go ahead and create a new account on Replit, if
you have never used this service before. If you happen
to already have a command-line Lua interpreter on
your computer, or if you have other IDEs, like VSCode,
that support Lua software development, then you can
use that as well.

We are using Replit in this lesson, for concreteness, and
for simple illustration, e.g., mainly for people who have
no prior (Lua) programming experience.

2.1.1. Creating a Replit account

Visit their website,

• replit.com

And, press the big blue Sign Up button, and provide the
necessary information to create a new account. You
may have to verify your email, depending on how you
have signed up.

• replit.com/signup

2.2. Hello World!
Now, let’s try our new development environment,
Replit, using a simple Lua program.

2.1. Online Code Editor

15

https://replit.com
https://replit.com/signup

Customarily, we almost always use the so-called "Hello
World" program, a program that simply prints out a text
Hello World, for initial test purposes, for no other
reason than it is sort of a "tradition", which started over
40 years ago!

When a new baby is born, if the baby were able to
speak, he or she would probably say this greeting,
HELLO, WORLD! as their first words, to the world. So, it
is pretty natural to use "Hello World" as our first
program. 

2.2.1. Creating a Hello World program

Go to the Replit website, replit.com. Click on the big
(blueish) + Create button.



The screenshots are taken from Replit’s
mobile website. But, you will most likely
want to use desktop/laptop computers
for coding.

2.2. Hello World!

16

https://replit.com

Type "lua" in the template search box, and select the
purplish "Lua" template.

Enter any meaningful project name, such as HelloWorld
or MyFirstProgram, etc., in the Title box, and then press
the + Create Repl button.

Replit uses the word Repl to refer to a workspace, which
includes a set of Lua source files, among other things. In
this newly created Repl, you will see an editor with the
file name set to main.lua. Lua files usually end with the
.lua extension. The name main.lua is just a convention,
which is given to the "main" code file in a program.

2.2. Hello World!

17

Type the following code in the editor box.

print("Hello, World!")

Now, your Repl screen might look like this:

That’s it. We just created our first Lua program. We will
explain what this code means in the next lesson, but
this is indeed a hello-world program since, as we will
see next, it prints the text "Hello, World!".

2.2. Hello World!

18

2.2.2. Running a Lua program

Replit has this greenish "play" (or, run) button at the
bottom. Press the button. Replit will then execute your
code. The result is shown in the "Console" tab. Do you
also see the text, Hello, World!?

Congratulations! You just ran your first Lua program.



We will only use the most basic features
of Replit in this book, namely, code
editing and running, or "interpreting",
Lua code. Do not worry about other
things, for now.

2.3. Comments
Programs often contain text that is not directly used by
the computer. They are called the "comments". They are
primarily used as notes, to yourself and/or to other
fellow programmers.

2.3. Comments

19

In Lua, we use a sequence of two dashes, --, to start a
comment. The comment continues until the end of the
given line. (There are other ways to write comments in
Lua, but we will not discuss them in this book. As a
general rule, we will try to be as narrow and as specific
when it comes to Lua syntax. On the other hand, when
we discuss the "theories", we will try to explain them
more broadly so that the knowledge can be useful even
when you decide to learn and use a different
programming language.) For example,

-- I am a comment. ①
-- Lua ignores me.
print("Hello, World!") -- Huh? ②

① These two lines are comments.

② Comments can be placed after a valid program
statement. In this example, -- Huh? is a comment.
As we will discuss in the next chapter, white spaces
are mostly ignored by Lua. Hence, this program
really consists of one statement print("Hello,
World!"), as before. All others are insignificant as
far as the Lua interpreter (e.g., Replit) is concerned.

One thing to note is that the computers are not the only
audience of your programs. As stated, people also may,
possibly, read your programs. As you practice more
programming down the line, you will learn that it is

2.3. Comments

20

rather important to be able to write cleaner and more
readable code, in terms of code formatting and what
not, and not just the code that "works". This topic is,
however, beyond the scope of this book.

Exercises
We learned, in this pre-coding lesson, if you will, how to
print, or more accurately stated, how to tell the
computer to print, a text "Hello, World!". Although we
haven’t explained what this program means, other than
how it works, let’s try and do our first exercise. If you
are an absolute beginner, and if these exercises do not
make sense, then you can skip them, and maybe come
back later. See the author’s note below.

Our single line program contains a couple of dozen
characters, and it may look gibberish to you. But, you
may still be able to see some structures in this program.
Now, our first question is, what would you do if you
wanted to print !Hola, Mundo! instead of Hello, World!?

Ex 1. !Hola, Mundo!

Write a Lua program that prints a text !Hola, Mundo!.
Do this on Replit, by creating a new Repl with a name
"HolaMundo", using the Lua template. Try running your
program, e.g., using the green "play" button. Does it
print the desired text to the console?

2.3. Comments

21

Author’s Note

"Backtracking" - Or, How to
Use This Book
Last night, I noticed that a huge flying insect
somehow got into the bathroom, and it was trying
to get out through the bathroom window.
Obviously, it was not possible. I opened the
window a bit wider, thinking that this wasp-like
insect can find its way out more easily, and I
completely forgot about it.

This morning, I noticed this guy or gal still on the
same side of the closed window, trying to fly out
by desperately flapping its wings. I could see that
it was rather exhausted after having tried for so
long, likely for all night. (I almost saw bulging
muscles in the bases of its wings, just like those
you see in the arms of body-builders. )

I had to intervene. I moved this guy a little bit
further away from the window, just an inch or
two. And, that was all it needed. Once it was away
from the closed window, it was immediately able
to find a better way out, that is, through the open
side of the window.

2.3. Comments

22

In computer science, we often deal with this
ubiquitous, and rather broad, category of
problems called search. They are everywhere, and
we are all familiar with one particular use case,
namely, Web search, for instance. Finding a way
out from a maze is another classic example of
search.

This wasp-like creature was trying to find a way
out. He was searching, but he was just too close to
the window. The outside world seemed so close to
it, and yet it was not able to reach it. In a sense,
moving away from the window, away from the
destination, the outside world, might seem
somewhat counter-intuitive, but that was what
ultimately led to his successful escape.

This is somewhat tantamount to a technique
called the "backtracking". Once you get stuck
along one search path, you will need to backtrack
through the currently taken path to eventually,
and hopefully, find a different, and better, path(s)
forward. Unfortunately, this wasp look-alike did
not know that, at least initially.

So, why are we telling you this long-winding, and
seemingly irrelevant, story? We have been writing
a few programming books for the last couple of
years. Unfortunately, some readers do not seem to
know how to really learn, e.g., using books like

2.3. Comments

23

this. They tend to expect too much, and they end
up blaming the books when they fail to meet their
unrealistic expectations.

First of all, books are just a tool. It is you who use
the books. Second, no books are perfect. They are
bound to have some (hopefully minor) errors and
typos and what not. Third, books like this one are
written for broad audience. Not just for people
with different experiences, but even with
different thought processes and personalities. And
hence, some readers may find this particular
book, for instance, too easy, or some may find it
too difficult. It is rather important to accept this
premise that all people are different and you are
possibly different from everyone else. In fact, no
readers will find this book perfectly tailored to
them. Learning, using an imperfect resource
(imperfect to you) due to various reasons, is a skill,
which you can get better at with some conscious
effort, as we emphasized in the beginning.

While going through this book, if, that is, if, you
find yourself frustrated because the book seems
too difficult for you to understand, or because the
book seems full of errors and typos which makes it
rather hard to learn anything in your mind, or for
whatever reason, then here’s a quick advice for
you, if you are inclined.

2.3. Comments

24

First, take five. Breathe. Don’t take it personally.
It’s not your fault. It’s not the book’s fault. And,
just remember, you are not alone. This is called
"learning". Everyone goes through this, more or
less. Learning is hard, by definition. (Otherwise,
everyone will know everything. ) There is no
magic pill that will teach you programming, or
anything for that matter, just by swallowing it.
Learning is a trial-and-error process, which you
have to keep trying, that is, if you are willing.

Now, you do not have to understand every word
or every sentence in any given lesson. If you get
the gist of the lesson, then you can move on to the
next lesson. There is no point of fixating on the
things that do not make sense to you, blaming
yourself or others, or dwelling on the half-empty
glass (or, the "bad book"), if that’s how you view
the world. Some explanations in the book may,
and will likely, make more sense as you gain more
experience, through learning and practice.

In fact, this is where the theme of this story,
"backtracking", comes in. Finally.  Although it is
hard to quantify the mental process, let’s suppose
hypothetically that you have understood 80% of
Lesson 5. Now, if you move on to the next chapter,
Lesson 6, you will likely end up learning even less,
for example, because some concepts may depend

2.3. Comments

25

on the previous lesson. That is perfectly all right.
Let’s suppose that you have understood 70% of
Lesson 6, and you move forward to Lesson 7. Now
you get 50% of what this lesson is teaching. And,
you keep going, until you reach the point where
you feel like you are getting less out of reading
than the effort you are putting in.

Then, it is time to BACKTRACK! You do not have to
go back to Lesson 1. Go back to the earliest lesson
where you felt like you understood most of it. In
this arbitrary example, that could be Lesson 5,
Lesson 6, or even Lesson 4 or earlier. This
criterion is really subjective, and it is really up to
you. Anyways, go through the book again starting
from this lesson. What’s the point of this?

Let’s suppose that you start your second reading
from Lesson 5. Now, you will realize that this
lesson is a bit easier to follow. This is clearly
because you have understood 80% of its content
already. But, more importantly, you will most
likely end up understanding more of Lesson 5 this
second time around. How is that possible? That is
because, from the time you first went through
Lesson 5, you have learned more, e.g., by going
through the later lessons, even though you may
have felt like you understood and remembered
very little of these lessons.

2.3. Comments

26

Now, suppose that you have understood 85% of
Lesson 5. You keep moving forward, 75% of
Lesson 6, 60% of Lesson 7, etc. At some point,
again you may reach the point of negative return,
in terms of your time and effort invested vs. the
benefits you are getting. Then, again you do
backtracking, say to Lesson 6 or Lesson 7, or any
later lesson. You repeat this metaphorical two-step
forward and one-step backtracking process until
you finish the book, or until you feel like you have
learned enough from this book.

Here’s one example of how you might end up
reading this book. It is important to note that it is
what you might end up doing, in hindsight, and it
is not a plan or recommendation.

L1 -> L2 -> L3 -> L4
 -> L2 -> L3 -> L4 -> L5
 -> L4 -> L5 -> L6 -> L7
 -> L5 -> L6 -> L7

This is a general advice, not necessarily specific to
learning programming using this book. You will
obviously have to take it with a grain of salt.

2.3. Comments

27

Lesson 3. Anatomy of
Hello World

Although this is not a biology class, we will look at the
"anatomy" of the hello world program in this chapter. A
more appropriate term would have been "analysis".
This is one of the commonly-used techniques in
learning, and in any other studies.

When you try to understand a system that consists of
multiple parts, it is often helpful to do what is known as
analysis and synthesis. That is, roughly speaking, you
break the system into smaller components, try and see
if you can understand each component, and then put
them together again to understand the whole system.

28

As we have emphasized a few times already, learning is
a skill, an important skill, which you can learn and get
better at. You are currently teaching yourself how to
program. This book is just a tool, a helper, and it is
ultimately you who have to teach programming to
yourself.

It will be beneficial to you, in the long run, if you
consciously think about how to learn better, rather than
just focusing on the particular subject matter at hand,
and details (that you may end up easily forgetting
anyways).

3.1. Hello World, Again!
Here’s our hello world program from the previous
lesson, which consists of one line.

print("Hello, World!")

First of all, if you have never seen any program before,
it is just a text. The code includes characters, that is,
letters and punctuation symbols. And, it can also
include numbers and what not, as we will see
throughout this book. But, ultimately, a program is just a
sequence of characters.

If you haven’t seen a program like this, however, you

3.1. Hello World, Again!

29

cannot easily tell what these characters mean or what
they indicate. Without explaining exactly why or how,
this one line program consists of the following four
components:

• print,

• (,

• "Hello, World!", and

•).

This is the lowest-level "anatomy" of our hello world
program. Can you see it? More or less? This is called the
"lexical analysis" in programming, using another big,
technical, word, but the terminology is not that
important, at this point. These components are
comparable to atoms and molecules, if you will. As you
know, all things in this world are made of atoms and
molecules. Likewise, all programs are made of these
small components.

One thing to note is that white spaces like space, tab, or
newline characters are not part of these components,
and they can be (in general) freely mixed with these
components without changing the meaning of the
program. For example,

print ("Hello, World!")

3.1. Hello World, Again!

30

This is exactly the same program as our original hello
world program. They do exactly the same thing.

To state differently, the white spaces are ignored
between these small components. (These components or
atoms are often called "tokens", or lexical tokens, in
programming.) Note, however, that that is not the case
inside a component. For instance, p r int is not the
same as print. In fact, white spaces, along with some
punctuation symbols, are generally used as "separators"
between these components. Hence, p r int would
have been three separate components, p, r, and int
(although they may not have been valid tokens of Lua,
as we will discuss in the next section on syntax).

The third component, "Hello, World!", is somewhat
special. Although it contains a space in the middle as
well as two double quotes "" in the beginning and end,
it is still considered one component. This is generally
called a string in programming. The opening and closing
double quotes, as a pair, indicate that this is just one
component, a string. Spaces in strings are significant.
"Hello, World ! ", for instance, would have been a
different string.

Now, can you see how our hello world program consists
of four components? Scanning from left, we see five
letters p, r, i, n, and t, and they form a single
component since there are no white spaces between
them. The next character (acts like a white space or

3.1. Hello World, Again!

31

separator, and it also forms a component by itself. Next,
we see a character ", which is a start symbol of a string.
Hence, we proceed until we see another (closing) ", and
all these characters form a single string component.
After that, the last character) is another separate
component.

If you do not fully understand this, that is perfectly all
right. You will be able to recognize these almost
subconsciously in no time once you start programming
for a little while. One important takeaway from this
section is that different classes of characters like letters,
numbers, and punctuation symbols, as well as white
spaces, play different roles in the program source code.
Details are not as important as you might think, at least
in the beginning.

3.2. How to Create a Sentence
So, what do these components mean? As we will see, it’s
not just the meaning of each of these components, but
more importantly it’s their arrangement that is
important in programming. This is where the
aforementioned syntax comes in.

Just like words have to be arranged in a certain way to
form a valid sentence in English, these components
have to be arranged in a certain way to be a valid
"statement" in programming.

3.2. How to Create a Sentence

32

Going back to our hello world program,

print ("Hello, World!") ;

This is a statement. (In Lua, a statement can optionally
end with a semicolon, ;, but semicolons are rarely used
in practice.) In general, a statement does something. It is
an instruction to the computer to do what the statement
indicates (e.g., its "semantics").

Again, without explaining exactly why or how, this
statement is a "function call". The first word print is
the name of a (built-in) function, and the pair of
parentheses, (), is used to call this function. The string
in the middle, "Hello, World!", is called the
"argument" (of this function call).

We will discuss functions in more detail later in the
book, but a function does something when it is called.
What’s important at this point is its syntax, or "form": A
function name, followed by a pair of parentheses, and
the argument(s) inside the pair of parentheses.



A programming language like Lua
includes many syntactic rules, and you
will have to learn most, if not all, of
them to be proficient in programming
with that language.

3.2. How to Create a Sentence

33

But you do not have to memorize them
like you memorize the multiplication
table. With some practice, you will get
gradually more familiar with them over
time, and eventually they will become
natural to you.

3.3. What’s the Meaning of All
These?
So, what does this statement, print("Hello,
World!"), do? Well, we already saw what it did. It
printed the string argument "Hello, World!" to the
console, without the double quotes.

That is more or less the semantics of this statement.

This functionality is implemented in the function
print, which is a builtin function in that it is built into
any Lua interpreter. In other words, when you use Lua,
you can always rely on this function being available for
your use. (One cannot say the same for other library, or
user-defined, functions, in general.)

Just as an illustration, if you happen to be using the
command line Lua interpreter, e.g., instead of Replit,
then you can execute our hello world program as
follows. (You can skip this if you do not know what this
means at this point.)

3.3. What’s the Meaning of All These?

34

$ lua ①
Lua 5.4.4 Copyright (C) 1994-2022 Lua.org,
PUC-Rio
> print("Hello, World!") ②
Hello, World! ③
> ④

① The dollar sign $ represents the shell prompt. We
start the Lua interpreter using the lua command in
this example.

② The greater-than sign > represents the Lua prompt.
We run our favorite print hello world statement by
typing it in one line and pressing the Enter key.

③ This is the output.

④ Another Lua prompt, waiting for the next command.

3.4. Do This? And Then Do That?
In programming languages like Lua, in fact, in the vast
majority of languages, a program is essentially a
sequence of statements. As indicated, statement is a
general term that we commonly use to refer to a
command or an instruction to a computer, as in "do
this". (Well, please is optional. ). Lua includes a
number of different kinds of statements, which are all
essential to be able to write any non-trivial Lua
program. We will look at a few of them in this book.

3.4. Do This? And Then Do That?

35

But, the more important thing to remember is that, as a
general rule, a program is executed (more or less)
sequentially, from top to bottom, one statement at a
time. This is known as "sequential processing".
Languages like Lua are often called imperative
programming language.

The only statement that we have learned so far is the
print statement, which is also, and more precisely, a
function call expression, as we mentioned earlier. Let’s
try writing more than one statement using print.

print("It's like the ticking crocodile, isn't
it?") ①
print("Time is chasing after all of us.")

① Due to the fixed paper size (for the paperback
version) and device size (for the ebook version), the
text may wrap around. But, this is one line. If you
type it on a computer, you will need to put it in one
line. Unfortunately, this comment applies throughout
this book. This is just a limitation of the medium that
we use. In practice, many people use big screen
monitors for programming.

This is one program, comprising two statements.
Although it’s not absolutely necessary, we tend to write
statements in separate lines, e.g., one statement per line.
What do you think this program will do?

3.4. Do This? And Then Do That?

36

When we give this to Lua, it first executes (or,
"interprets") the first statement, which will print the
text It’s like … to the console. It then executes the second
statement, which will print the text Time is …. Here’s a
sample output, if you run it on Replit, for instance,

It's like the ticking crocodile, isn't it?
Time is chasing after all of us.

Now, what do you think we will have to do to execute 3
statements or 4 statements, or more, one after another?
Here’s a sample program that includes 5 statements:

print("I'm the first.")
print("I'm the second..")
print("I'm the third...")
print("I'm the fourth....")
print("I'm the fifth.....")

When we run this program, it will print out the
following output. You can try it yourself, if you’d like.

I'm the first.
I'm the second..
I'm the third...
I'm the fourth....
I'm the fifth.....

3.4. Do This? And Then Do That?

37

3.5. The Great Escape
We have seen so far, although we haven’t explicitly
stated, that strings can contain sequences of various
characters. For example, "Never is an awfully
long time." is also a string since, why?, since the
characters are enclosed in a pair of double quotes "". So
is "blah blah abc xyz 123 !@#$%^&* I’m
gibberish (blah) 42 yak yak".

One small detail we didn’t mention is that the opening "
and closing " double quotes of a string must be in the
same line, e.g., in a program source code. (Remember,
that’s just "syntax", or rules. You cannot argue with the
rules. "Officer, why is the speed limit of this road only
25 miles per hour? I can drive much faster here." )

Most characters can be included in a string. But, there
are some exceptions. For example, the newline
characters (or, linebreaks, formfeeds, etc.) cannot be
directly included in a string because, for example, that
will end up putting the two quotes of a string on two
different lines. (Again, "why" is not important, at least
for now. At the end of the day, it’s just a rule. Whether
the rule is reasonable, or it’s necessary, is a different
question. You’ll eventually have to learn, and follow, all,
or most of, these rules, aka the syntax (of a particular
programming language).)

3.5. The Great Escape

38

Then, how do you include newlines in a string? You can
"escape" the newline characters. It is a special syntax.
Lua supports a few different "escape characters", and
all of them start with the backslash character, \. For
example, a newline is represented as \n. Another
example is a tab, which is represented as \t. Note that
these escape characters represent single characters in a
program although they are written with two characters
(including the backslash prefix) in a source code. (They
are sometimes called the "escape sequences" since they
lexically involve more than one character.)

Incidentally, this escape syntax was originated from C.
In fact, programming languages all have very similar
syntax although some of them look very different. It’s
like humans and pigs share 98% of the same genes. (We
think that) we are, and look, so different from pigs, and
yet we are really cousins. There are dozens of different
programming languages that are currently in wide use,
and at the end of the day, the differences between them,
at least syntactically, are not that great. ("So, why do we
have so many languages?" is for another day. )

Getting back to the newline escape character, what do
you think the following program will do?

print("If you cannot teach me to fly,\nteach
me to sing.")

3.5. The Great Escape

39

Yes. It outputs something like this to the console:

If you cannot teach me to fly, ①
teach me to sing.

① The \n character in a string in a source code is
replaced with the real newline in the output.

An astute reader might have realized that this could
also have been done with two statements. No?

print("If you cannot teach me to fly,")
print("teach me to sing.")

This program will print out exactly the same output.
Although these two programs are different (e.g., they
use different syntax, etc.), they do the same thing.



Now, here’s an important lesson. You
can achieve the same goal in life using
different means. Oh, we are talking
about programming, so, formally, there
is a many-to-one correspondence from
syntax to semantics. OK, this statement
is just a total gibberish, but to put it
differently, you can write programs in
many different ways to do the same
task, more or less.

3.5. The Great Escape

40

3.6. String Additions
What? You can add strings? Yes, you can do anything in
programming. (Or, maybe not.) You can add two strings
to create a new string, e.g., using an "operator" .. (two
dots) in Lua. They are more formally called the "string
concatenation". For example,

print("Absence makes the heart grow fonder...
" .. "or forgetful.")

This will print the following text in one line.

Absence makes the heart grow fonder... or
forgetful.

The two strings "Absence ..." and "or forgetful."
are added, as indicated by the string concatenation
operator .. between them. This program is the same as
the following, using one string:

print("Absence makes the heart grow fonder...
or forgetful.")

Again, syntactically these two programs look (slightly)
different, but they are semantically equivalent. They do
the same thing.

3.6. String Additions

41



So, why do we have so many different
ways to do the same things? So, how do
we choose one method over others? …
These are not easy questions to answer,
especially, in the beginner’s book. But,
let us just say that as you learn more
you will know when to use certain
things and when not to use certain
things. You will also develop your own
preference, over time. Sometimes, doing
certain things in one way might be
"better" than others, in some criteria.

Note that, for example, concatenated strings can be put
into multiple lines unlike in the case of using only one
string.

print(
"To live will be an awfully big adventure.\n"
..
"To die will be an awfully big adventure.")

If you will remember, from the beginning of this lesson,
spaces are generally ignored between the lexical tokens
in Lua. Newlines and tabs are also syntactically
considered white spaces in many programming
languages. For instance,

3.6. String Additions

42

print(
 "Wendy, " ..
 "one girl is more use than "
 ..
 "twenty boys."
)

Although this program looks "ugly" , it will print out
the following text to the console:

Wendy, one girl is more use than twenty boys.

Exercises
As indicated, all exercises are optional, and in fact you
may want to skip all, or some, of them in your first
reading of this book.

Ex 1. Lexical analysis

The program source code "components" that we
mentioned earlier in this lesson, which are usually
called the lexical tokens, form the lowest level
constituents in programming. That is, programs are
made up of tokens, and not of individual characters.
The syntactic grammar is defined with tokens.

3.6. String Additions

43

Here’s a simple Lua "module" that defines an add
function. You do not have to, and you are not expected
to, understand this code. (You don’t have to know what
a module is.) The question is, how many tokens are
there in this source code?

local funs = {}

function funs.add(a, b)
 return a + b
end

return funs

The same question with the following program, which
computes the greatest common divisor (GCD) of two
numbers, 30 and 12.

function gcd(a, b)
 while b > 0 do
 a, b = b, a % b
 end
 return a
end

local a, b = 30, 12
local v = gcd(a, b)
print("gcd =", v)

3.6. String Additions

44

Ex 2. Syntactic analysis

Here’s a simple Lua program with two statements:

print("Hello, Peter!")
print("Hello, Wendy!")

As is generally the convention, we put these two
statements in two lines. Can you think of a way to make
it a one-line program? Write a program that does the
same thing as this but occupies only one line. (There can
be more than one way to accomplish this.)

Ex 3. Semantic analysis

Do a Web search, and find five different ways to say
"Hello, world!", say, in five different languages. Write a
program that prints out these five different greetings in
five lines.

Ex 4. Lua programs

We’ve learned a few important programming concepts.
First, a program source code can be analyzed at three
different levels, lexical, syntactic, and semantic.

Furthermore, a program in languages like Lua consists
of one or more statements. The statement is what makes
the computer do things. If you do not fully understand

3.6. String Additions

45

these concepts, no worries. Again, what’s important is
the gist, and not every detail. We will go through these
important concepts, again and again, throughout this
book. Statements in a program are, in general, executed
sequentially, e.g., from top to bottom. Now, write a
program that prints the following output.

Dreams do come true,
 if only we wish hard enough.
You can have anything in life,
 if u will sacrifice everything else for it.

Ex 5. Escape characters

Write a Lua program that prints the following output,
without using space characters. 

Apple Pear Orange
Lemon Mango Strawberry
Kiwi Tomato Melon

Ex 6. Double quotes in a string?

This is a difficult question since we haven’t discussed
this yet. Write a program that prints the following:

Huh? Is "Peter Pan" a true story?

3.6. String Additions

46

Lesson 4. Is Programming
Art?

Computers, or more precisely computer programs, can
do so much these days. One of the most popular uses of
the modern AIs has been generating images. These AI
models can create pretty good looking, and sometimes
rather realistic, images. There are some controversies
surrounding the method and data they use to train
these generative models, but it is still amazing to see
how much a computer software can do.

Before the age of computer graphics and graphical user
interfaces, we only used character-based terminals.
There is one technique, or more like a tradition, that
persists till today, called the ASCII art. The word ASCII in
this context simply refers to the fact that we only use
characters for "drawing". For example, here’s an ant.
Does it look like an ant to you? 

47

\(")/
 (|)
/(_)\ ①

① All artworks used in this book are in the public
domain, in our understanding. Otherwise, their
copyright belongs to the respective owners.

Let’s continue this tradition by practicing some ASCII
art in this chapter. But, first, a little digression.

4.1. Values and Some Such
Let’s try running (or, interpreting) the following code on
Replit:

print (1 + 2)

It prints out 3. This is because 1 + 2 evaluates, or
computes, to the number 3. These components like 1, 2,
and 3 are called values in programming. Sometimes,
terms like "objects" are also used (e.g., in possibly
slightly different contexts), but we will stick to the word
value in this book.

We have already seen some other values in this book.
For example, "Hello, World!" is also a value.
Interestingly, this does not look anything like 3 or 300,

4.1. Values and Some Such

48

for instance. But, it is still a value (in programming). The
difference between strings like "Hello, World!" and
numbers like 300 is that they have different "types". In
Lua, "Hello, World!" has a type, string, whereas
numbers like 1, 2, and 300 have a type, number
(naturally).



It is not really important to know what
exactly type is at this point. You can
think of it as something like "category",
"class", "group", or "set", etc. Values like
5 or 500 belong to one category, or one
type, and other values like "Hello,
World!", "will be an awfully big
adventure", or "X" belong to another
category or type.

Let’s try the following code:

print(type("Value is What You Get"))

This will print string. On the other hand,

print (type (420000))
-- 5 0 5 0 5 ①

① This is a comment.

4.1. Values and Some Such

49

This will print number. What are we doing here? Let’s
try dissecting, or analyzing, this last statement, for
practice. First, this statement consists of 7 components,
or tokens. Can you see that? This is what we called the
"lexical analysis" earlier, and most programmers do this
without even realizing it, e.g., almost subconsciously.

Syntactically, as we explained in the previous lesson, a
pair of matching parentheses is used to call a function in
Lua, e.g., the function, or name, that precedes the pair.
Remember? Hence, as before, print is the name of a
function (since it precedes the pair of parentheses at
positions 7 and 25).



Parentheses can be used for other
purposes as well in Lua, and in
programming in general. But, we will
try not to overly complicate things by
trying to be too accurate in our
explanations in this book. The readers
might ask "then, how do you know if
these parentheses are used for function
calling, and not for something else?", for
instance. That is syntax. We already
mentioned that syntax is about
structure, as in an English sentence, and
not just individual tokens or symbols.
This is something you will have to learn
to recognize over time.

4.1. Values and Some Such

50

Using the same logic, we can tell that the token type
refers to a function, e.g., because it precedes the pair of
parentheses at positions 14 and 23. This is purely based
on syntax. The fact that you may have never seen this
particular function before has no relevance.
Syntactically, type has to be a function name.
Otherwise, it is an incorrect program statement. (You
will see, and most likely have seen, many "syntax
errors" while programming.)

In fact, type happens to be another builtin function in
Lua. It returns the type of the given argument. (And,
hence the name.) In this particular example, its
argument is 42000. The argument of print is
type(42000), whose value is number. Hence, the whole
statement ends up printing number to the console.

Going back to our original example, 1 + 2, in the
beginning, this is one example of what we call an
"expression". An expression is something that evaluates
to a value in programming. Since 1 + 2 evaluates to a
value 3, it is an expression. So is 1 + (2 * 3) since it
evaluates to a value 7. (The * operator is used for
multiplication in Lua.) Values are expressions since they
(trivially) evaluate to the same values.

Strings are values, as just stated, and hence they are
also expressions. String concatenations are also
expressions since they result in strings, which are
values (and, expressions).

4.1. Values and Some Such

51

As we stated in the very beginning, computers do
"computation". Therefore, as one can easily imagine,
values, and hence expressions, play a fundamental role
in programming. Roughly speaking, the statements, the
building blocks of Lua programs, consist of values and
expressions, and possibly other (nested) statements.

4.2. What’s in a Name?
Now, although we primarily deal with values and
expressions in programming, sometimes it is not always
convenient to deal with them directly. For example, let’s
consider the following Lua code.

print("Oh, the cleverness of me!")
print("Oh, the cleverness of me!")
print("Oh, the cleverness of me!")

We are printing the same string value, "Oh, the
cleverness of me!", three times in this program. As
we will explain a bit later, there is a "better", or at least
different, way to do this. But, regardless, this program
looks a bit odd, for example, because we are repeatedly
typing the same value again and again, and again.

Just like you and I have names, values can have names.
We can give this particular string value a name, and use
that name instead of the value itself. For instance,

4.2. What’s in a Name?

52

local message = "Oh, the cleverness of me!"
print(message)
print(message)
print(message)

In this program, we give the string a name, message,
and we use that name in the following three print
statements. In programming, the names like message
are generally called "variables". In Lua, we declare a
new name using the special keyword local. Note the
syntax. It starts with the keyword local, followed by a
name, an equality sign =, and finally the target value.

A variable declaration statement like this is generally
(and, often erroneously) called assignment, and the
equality sign = is called the assignment operator. This
implies that we are "assigning" the value on the right
hand side of = to the variable on the left hand side. In
Lua, however, this interpretation, and the terminology,
is not entirely accurate. The variables in Lua are just
names. In this example, the name message refers to the
value, "Oh, the cleverness of me!".

Functions are also values, and they also have names.
We used the names print and type earlier, which refer
to their respective function values. Note that we do not
know what exactly they are, but that does not matter. As
long as we know their names, we can use them.

4.2. What’s in a Name?

53

Names have a lot more uses in programming. Just like it
is unimaginable for us not to have names, it is (almost)
unimaginable to program without using names.

Here are a few more examples.

local part1 = "To be, "
local part2 = "Or not to be, "
local part3 = "That is the question!"
local question = part1 .. part2 .. part3

print(question) ①

① What would be the output of this statement?

Names have to follow certain lexical rules, but we will
not cover them here. In general, a name has to start
with a letter, and it can include letters and numbers.



We do not cover all syntax in this book.
For example, there is a different way to
declare a variable in Lua. We do not
include it in this book. This comment
generally applies throughout this book.
For example, we may explain one way
to do "iteration", but not all different
ways to do it. We do not cover all the
syntax of Lua. That is not the purpose of
this book.

4.2. What’s in a Name?

54

4.3. ASCII Art
Now, with all theories aside, let’s go back to our ASCII
art. We already know at least two different ways to
print the ASCII art. Let’s use our small ant as our model:

\(")/
 (|)
/(_)\

4.3.1. Print, print, and print.

This particular drawing occupies three lines, and hence
we can print it in three separate print statements.

print("\\(\")/")
print(" (|)")
print("/(_)\\")

A few things to note here. First, the backslash characters
are used for escaping special characters, and hence they
cannot be used directly in a string. The backlash
character itself has to be escaped, that is, using another
backslash, e.g., "\\".

Likewise, since the double quotes are used as the start
and end symbols of a string, the double quote character
needs to be escaped. E.g., "\"". (Although we didn’t

4.3. ASCII Art

55

mention, and we don’t use them in this book, Lua
strings can also use a single quote pair instead of a
double quote pair. In strings using single quotes, the
double quote character need not be escaped, and vice
versa.)

We can alos use variables.

local antHead = "\\(\")/"
local antBody = " (|)"
local antTail = "/(_)\\"

print(antHead)
print(antBody)
print(antTail)

In this particular example, using variables seems more
cumbersome.

4.3.2. String concatenation

This can also be done using string concatenations, For
example,

print("\\(\")/\n" ..
 " (|)\n" ..
 "/(_)\\")

4.3. ASCII Art

56

Alternatively, using a variable,

local ant =
"\\(\")/\n" ..
" (|)\n" ..
"/(_)\\"

print(ant)

Note that we add newlines "\n" at the end of each of
the top two lines. Why do we need to do that? Obviously,
we need to do that since the ant is drawn in three lines.
What is confusing is, in fact, why didn’t we add the
newlines in the previous examples? Why do we not add
the newline at the end of the third line in these two
examples?

Although we didn’t explicitly mention it, an observant
reader might have noticed it. The print function, by
default, automatically adds a newline after the string
argument when printing. Now, does it make sense that
we have two newlines but not three in these two
examples?

(You can change the default behavior of print, but we
will leave it to the reader to find out how. Remember
that the book covers only a portion of the Lua grammar,
and that there are, or can be, multiple ways to achieve
the same thing.)

4.3. ASCII Art

57

4.4. Multiline Strings
Lua also supports a syntax for "multiline strings".

print([[
 Never say goodbye
 because goodbye means going away
 and going away means forgetting.
]])

If we run this program, it will print the sentence in
three separate lines, as shown. There are a few things to
note here. First, syntactically, a multiline string starts
with [[and ends with]]. Second, a multiline string can
span multiple lines. Third, newlines in a multiline string
need not be escaped. The newlines in the string are
directly printed out to the output. Fourth, likewise,
special characters like backslashes need not be escaped.
We can also use variables for multiline strings:

local wisdom = [[
 All of this has happened before,
 and it will all happen again.
]]
print(wisdom) ①

① Readers are encouraged to try it out to see what kind
of output they get.

4.4. Multiline Strings

58

4.5. Back to the Ant!
Here’s the ant using the multiline string syntax:

print([[
\(")/
 (|)
/(_)\]])

If your run this program, it will print exactly the same
ant to the console.

The "ant" in this form (e.g., without escape characters)
seems a bit easier to recognize. In general, multiline
strings can be useful in many circumstances, especially
in places where many escape characters would
otherwise have been required.

You can also use a name for this multiline ant string:

local ant = [[
\(")/
 (|)
/(_)\]]

print(ant) ①

① If you’d like to follow along, you can try this code on
Replit, for example.

4.5. Back to the Ant!

59

Exercises

Ex 1. Hello you!

The "hello world" program is a terrible program since it
does only one thing.  Let’s fix that. (Not right now
though. We will do it throughout the rest of this book.)

Here’s an example program that prints Hello, Peter.

local name = "Peter"
local greeting = "Hello, " .. name
print(greeting)

Write a Lua program that prints the following:

Hello, Peter Pan
Hello, Tinker Bell
Hello, Wendy Darling
Hello, John Darling
Hello, Michael Darling
Hello, Tiger Lily
Hello, Tick Tock
Hello, Captain Hook

(Remember that there is no single right answer. You can
do this in many different ways.)

4.5. Back to the Ant!

60

Ex 2. Everything in one line?

Write a Lua program that prints the same ant, but put
everything in one.

(Obviously, the program has to work. )

Ex 3. More ASCII arts

Here are some more small ASCII arts that we found on
the Internet. (We believe that they are all in the public
domain.)

Write a Lua program that prints these character-based
drawings to the console.

Butterfly

 (\o/)
(|)
 (/!\)

Star

__/__
\ ,, /
/_ _\
 \/

4.5. Back to the Ant!

61

Bird

 (@ @)
(V)
--m-m--

Spider

 ! !
 \()/
/(__)\
! !

Floppy

| |__| |
| () |
|______|

Glass

\~~~/
 \ /
 V
 |

4.5. Back to the Ant!

62

House

 /^^\
 | # |
 |====|
_||__||_

Airplane

 __!__
_____(_)_____
 ! !

Sword

 /| ____________
O|==|* >____________>
 \|

Person

 ,,,
 (o o)
---oOO--()--OOo---

Ex 3. Bird * 10

Print the bird ten times in a row.

4.5. Back to the Ant!

63

Ex 4. A snowman

Use your creativity, or artistic skills (or, your Web
search skills ), to draw a snowman using only ASCII
characters. Write a Lua program that prints the
snowman to the console.

Ex 5. Ant and butterfly

Write a program that prints an ant and a butterfly side
by side, that is, something like the following:

\(")/ (\o/)
 (|) (|)
/(_)\ (/!\)

These are not easy problem, depending on how you
going to do it. Remember, "getting things done" (by any
means ) is the first step. Doing well, doing better,
doing more efficiently, etc., only matter only when you
can do it in some way in the first place.

Ex 6. Build five houses

A similar problem. These exercises are meant to make
you think rather than to test your programming skills.
Print five houses side by side, not one after another. Or,
how about 3 birds on the same wire? Or, can you draw
10 crawling spiders side by side? 

4.5. Back to the Ant!

64

Lesson 5. Hello, All the
Moons in the World!

We learned in the previous lesson that Lua programs
deal with values like numbers and strings. These values
are somewhat special in that they are simple.

Programs often deal with values which are more
complex. For example, a value may contain other values,
some of which may contain other values, and so on. In
programming, terms like containers, collections, or data
structures, etc. are generally used in this context. More
specifically, many programming languages support
special types like arrays, lists, and dictionaries (or,
maps), etc.

65

Lua supports this kind of complex values using a special
syntactic construct called the "table". table is a type,
and its values are also called tables. Lua does not
include any other collection types. (As briefly alluded
before, a table type is a set of all table values.)

Tables play crucial roles in many different aspects of
Lua programming. Although the use of the term table
is somewhat unique to Lua, Lua tables roughly
correspond to "objects", as this term is generally used in
other programming languages like JavaScript.

We will learn some simple uses of tables in this lesson.
In particular, we will use tables as arrays and maps.
Furthermore, we will learn how to "iterate" over tables.
In general, iterating over elements of a collection, for
various purposes, is one of the most common tasks in
programming. In a somewhat abstract term, iteration is
one way to control the flow of a program. As mentioned,
programs are generally executed from top to bottom. As
we will see shortly, the iteration allows us to repeat the
same part of code multiple times.

5.1. Tables as Arrays
Lua provides a special syntax for representing table
values. It is rather similar to the way string values are
represented by the special syntax, e.g., starting with a
double quote " and ending with a double quote ".

5.1. Tables as Arrays

66

Likewise, a table starts with an opening curly brace {
and it ends with a closing brace }. Zero, one, or more
"elements" of the table are included between these pair
of braces, separated by commas ,. This is also similar to
the way the (real) string content is enclosed within the
given pair of double quotes. For instance,

local tab1 = { 1, 2, 3 }

In this example, the right hand side of the assignment is
a table. This table { 1, 2, 3 } contains three
elements, 1, 2, and 3, each of which is a value, or more
precisely a number in this particular example.



Again, this is the "syntax", or rules.
There is no "why?". This is how the Lua
programming language is designed.
Learning, in this context, means getting
familiarized with this syntax, and
hopefully remember it when you need
to use it. Don’t try to "understand" it.

An array is a general term commonly used in
programming that, roughly speaking, refers to a
sequence of values (as in "1 and then 2 and then 3"). A
Lua table used in this way is an array. (Different
programming languages may use different syntax, but
the general concept is the same.)

5.1. Tables as Arrays

67

Why would anyone need, or use, arrays? That’s too
broad a question to answer in a short beginner’s book,
and you will have to learn that through experience.

As a general advice, however, the more syntax you
learn that is supported for a particular construct (like
table), the more of their uses you will come to realize
yourself, and learn, over time, without having to be told
explicitly what they are.

In case of Lua table, it supports two special syntax,
among others, for "indexing" and "iterating". Before we
get to them, let’s start from the basics.

5.1.1. Creating an array

Since you have seen one example so far , how would
you create an empty array, that is, an array with no
elements?

Well, you are right. Just put nothing inside the braces:

local emptyArray = {} ①

① This also represents an empty map, as we will see in
the next section. In fact, it is just an empty table.
Syntactically, there is only one construct, table, in
Lua. We are just using it in certain ways, and we are
providing particular meanings to them.

5.1. Tables as Arrays

68

Can you now create an array with four string elements,
"apple", "orange", "pear", and "avocado", and give
it a name, fruits? Maybe, something like this?

local fruits = {
 "apple", "orange", "pear", "avocado"
}

Or, maybe, something like this?

local fruits = {
 "apple",
 "orange",
 "pear",
 "avocado",
}

As emphasized a few times before, "formatting" is not
that important in Lua, unlike in some other languages,
and white spaces, including newlines, can be liberally
used to format the source code to your liking.

5.1.2. Accessing an element in an array

Each element in an array can be accessed using
"indexes". The index of a given element refers to the
position of the element in the array, starting from left.
That is, the first element has an index 1, the second

5.1. Tables as Arrays

69

element has an index 2, and so forth. For instance, using
the above example, fruits[1] refers to "apple",
fruits[3] refers to "pear", etc. Note the syntax. It
uses the square brackets after the array name, in which
the index (a number) is enclosed.

Despite the syntactic difference, the index notation is
essentially just a name. The element "avocado" can be
likewise referred to as fruits[4]. Here’s another
example array, using our three most favorite insects ,

local bugs = { ①
 "ant", "bee", "cockroach", ②
}

① The new array on the right hand side is given a name
bugs in this example.

② Note that the elements are separated by commas,
and the trailing comma is optional, as you might
have noticed from the earlier examples.

Now, what do you think the following program will do,
using the above bugs array?

print(bugs[1])
print(bugs[2])
print(bugs[3])

5.1. Tables as Arrays

70

This program is, effectively, the same as the following:

print("ant")
print("bee")
print("cockroach")

That is, bugs[1], bugs[2], and bugs[3] are essentially
just names that refer to the first, second, and third
elements of bugs, respectively,

5.1.3. Iterating over an array

One of the nice things about collecting multiple values
into a single array is that one can easily iterate over
these values, e.g., to do something with those values.

Lua provides a special syntax for iterating over arrays,
which is called the for statement. The for statements
typically span multiple lines, and they may look very
complicated, more complicated than anything we have
seen so far, but, remember, it’s just a form (as in "beauty
is only skin deep"). Here’s an example:

local pets = { "Dog", "Cat", "Bird" } ①
for i, pet in ipairs(pets) do ②
 print(i .. ": " .. pet .. ".") ③
end ④

5.1. Tables as Arrays

71

① A 3 element array. The number of elements is called
the "length" of the array. The length of pets is 3.

② Scanning this line from the beginning, you see (i)
for, which happens to be a Lua keyword, (ii) two
names i and pet separated by a comma (,), (iii)
another Lua keyword in, (iv) a function named
ipairs with an argument pets, and (v) finally
another keyword do. Clearly, if you have never seen
the for statement before, it will not be easy to
recognize all these, but at least you can (roughly) tell
which are tokens, e.g., based on white spaces and
punctuation symbols.

③ The for statement can include other statements. In
this example, it includes one print statement. Note
that we use the variable pet in this statement, which
is declared in the previous line.

④ The keyword end matches the opening keyword do.
Together, they form a sort of braces. The statements
like print in this example are enclosed within this
do - end block, if you will.

There are so many things going on in this sample code.
But, you do not have to be overwhelmed. Remember,
"analysis and synthesis". Everything is simple once you
break it down into smaller pieces. Everything is easy
once you get to know it. (Also, remember, it takes time,
and most likely many repetitions, to get to know
something, or someone.)

5.1. Tables as Arrays

72

Let’s go over the syntax first. We mentioned four new
keywords, for, in, do, and end. (Keywords are just
names that have special meanings to Lua.)

for ... in ... do ... end

That’s the overall structure of the for statement.
Between for and in, we need (that is, syntactically) two
variables, separated by a comma (,). In the example, we
used i and pet, but these names are arbitrary as long as
they are lexically correct.

Between in and do comes a function call. Lua allows
two builtin functions to be used in this context, pairs
and ipairs. In this example, e.g., when a table is used
as an array, they are more or less the same. We will use
pairs in the next section.

If you will recall (no pun intended), a function call
expression has this syntax, a function name followed by
an argument list in a pair of parentheses. The ipairs
function takes one argument, which must be a table. In
this example, we use an array, pets, as an argument,
which has three elements.

What does the ipairs function do? That is, in fact, a
part of the for statement semantics. In each iteration, it
selects an element, in the specified order in the array,
and it returns a pair of its index and its value.

5.1. Tables as Arrays

73

Between do and end, we can include zero, one, or more
statements (even other for statements). This is where
the magic happens. The for statement repeatedly
executes this series of statements, by going through
each element of the array argument of the ipairs
function, from the first element to the last element.

More specifically, it takes an element of the given array,
one at a time, and assigns it to the second variable
between for and in. The first variable, e.g., i in this
particular example, gets the index of the chosen
element, in this particular usage of the for statement.

Next, it runs the enclosed statements, sequentially. If it
is done with the current element, it picks the next
element in the array and again executes the enclosed
statements. Once it runs out of the elements in the given
array, the for statement stops executing, and program
flow continues to the next statement, if any.

Let’s go through the earlier for statement together.

for i, pet in ipairs{"Dog", "Cat", "Bird"} do
 print(i .. ": " .. pet .. ".")
end

First iteration: We pick "Dog", the first element, and
assign it to pet. i is 1. Then, we execute the enclosed
print statement.

5.1. Tables as Arrays

74

This is roughly equivalent to the following.

local i, pet = 1, "Dog" ①
print(i .. ": " .. pet .. ".")

① This statement declares two variables, i and pet,
and initializes them with 1 and "Dogs", respectively.
This is essentially a generalization of the variable
declaration statement that we learned earlier.

Or, even

print(1 .. ": " .. "Dog" .. ".")

And hence, this will output, in its first iteration,

1: Dog.

Can you see it?

Now that it is done with the first element, it next picks
the second element, which is "Cat". In this case, the
index i becomes 2.

local i, pet = 2, "Cat"
print(i .. ": " .. pet .. ".")

5.1. Tables as Arrays

75

Or, in effect,

print(2 .. ": " .. "Cat" .. ".")

This will, therefore, output, in its second iteration,

2: Cat.

Then, it repeats the same steps by selecting the third
element, "Bird", with the index 3. In the third iteration,
the enclosed statement(s) may effectively act like this:

print(3 .. ": " .. "Bird" .. ".")

This will end up printing

3: Bird.

At this point, since there are no more elements in the
pets array, the for statement is done. The overall
output may look as follows:

1: Dog.
2: Cat.
3: Bird.

5.1. Tables as Arrays

76

If you have seen this before, it should be easy.
Otherwise, you can go through this again, and make
sure that you understand this. This is called the
"iteration" or "looping" in programming, and it is one of
the most important concepts (regardless of the
particular language syntax) that you will have to learn
as a beginner. This will eventually become your second
nature, but you will not get there unless you practice.

5.2. Tables as Maps
A map (aka, a hashmap, hashtable, or dictionary) is
another important data structure that is commonly
used in programming. (As we briefly mentioned earlier,
a "data structure" is just a complex value, which can
include, or contain, other values, for example.)

A map is a data structure that is essentially a collection
of key-value pairs. That is, each entry in a map consists
of two values, a key and a value. One of the most
important characteristics of the map data structure is
that it lets you easily find an entry based on its key.
("Easily" is the key word here, but we will not get into
algorithms and data structures too deep in this book. )

In Lua, the same syntactic construct table can also be
used as a map. In fact, using tables as arrays or maps
has rather similar syntactic structures. Let’s start from
the beginning, as in the previous section.

5.2. Tables as Maps

77

5.2.1. Creating a map

An empty table is really neither an array nor a map.
Whether it is an array or a map depends on what kind
of elements we add to the table. Here’s an empty "map",

local emptyMap = {}

Now, you can create a map with initial values using a
few different syntax in Lua. We will use one method in
this book. In particular, each initial entry can be
specified with an assignment-like syntax. For instance,

local capitals = {
 UK = "London",
 France = "Paris",
 Germany = "Berlin",
}

In this example, we create a map with three entries and
assign it to a variable named capitals. Each entry is a
pair of two values, UK → "London", France → "Paris",
and Germany → "Berlin". As we noted earlier, UK,
France, and Germany are called the keys, and
"London", "Paris", and "Berlin" are the
corresponding values. Note that there are some kind of
implicit mappings from keys to values, in a map.

5.2. Tables as Maps

78

5.2.2. Looking up an element in a map

Arrays use numeric indices, and their elements can be
accessed using the corresponding indices. In case of
maps, their elements can be accessed using their keys,
but using a rather similar (square bracket) syntax. For
instance, using the above capitals example,

print(capitals["UK"])
print(capitals["France"])
print(capitals["Germany"])

This program will print out the following:

London
Paris
Berlin

In an array, its indices are sequentially numbered, and
hence (naturally) they are all different. In a map, there
are no intrinsic ordering among the entries, but their
keys still have to be all different.

5.2.3. Iterating over a map

A map can be iterated over just like an array, but using
their keys rather than indices. Let’s use the following
map for illustrating iteration.

5.2. Tables as Maps

79

local countryCode = {
 USA = 1,
 Canada = 1,
 Mexico = 52,
}

There are a couple of things to note. First, as indicated,
all keys have to be different. But, that does not mean all
values have to be different too. In this particular
example, USA and Canada happen to have the same
country code. Second, the types of the values can be
arbitrary. In the previous example, the type was
string, and in this example, it is number.

To iterate over a map, we can use the same for
statement, but now with the pairs function, instead of
ipairs. The difference is that the pairs function, in
each iteration, returns a pair of key and value of a given
entry when used in the context of maps, rather than a
pair of index and its element as in case of arrays using
the ipairs function.



Some readers might have noticed that
these pairs and ipairs functions are
rather different from the functions we
used before, like print and type, and
the functions that we will work on in
later lessons.

5.2. Tables as Maps

80



We will not get into why pairs and
ipairs functions work the way they do,
or what is the precise difference
between these two functions, etc., in
this book. Curious readers can look up
relevant information on the Web, or do
some experiments on their own, e.g., by
swapping ipairs and pairs, etc.

For example,

for k, v in pairs(countryCode) do
 print("Dial +" .. v .. " first to call a
number in " .. k)
end

This will output

Dial +1 first to call a number in USA
Dial +1 first to call a number in Canada
Dial +52 first to call a number in Mexico

As we did for an array iteration, we can also go through
a map iteration, by picking one entry at a time. If it is
not clear to you how iteration over a map works, the
readers are encouraged to go through the same
exercise, e.g., using this countryCode map.

5.2. Tables as Maps

81

5.3. Hello, the Moon!
OK, back to the Moon! Let’s pay homage to our Moon
before we start. Our solar system has eight planets
(sorry, Uranus), and some of them have moons. The
earth has only one moon, but some bigger planets like
Jupiter and Saturn have dozens of moons each, and
possibly even more depending on how you exactly
define the "moon".

To our one and only one, and special, Moon,

print("Salute, the Moon!")

5.4. Hello, the Moons of Mars!
Our next door neighbor, Mars, has two moons, Phobos
and Deimos.

local moons = { "Phobos", "Deimos" }

Let’s say hi to them.

for _, moon in ipairs(moons) do
 print("Hello, " .. moon .. "!")
end

5.3. Hello, the Moon!

82

The underscore _ is a special name predefined in Lua,
which can be written to but cannot be read from. It
simply means that we are going to ignore the indexes of
the elements in the array (or, the keys of a map). We
only care about their values, or the names of moons in
this example, denoted by the variable moon. (In other
words, although, syntactically, two names are required,
we only care about the second name, and hence we use
_ for the first one. This is sometimes called a "discard"
variable.)

This program will print,

Hello, Phobos!
Hello, Deimos!

Do you see how we would get this output? If not, go
through the iteration steps, one element at a time. Start
from the first element, "Phobos", and so on. We will
leave it as an exercise to the readers.

5.5. Hello, the Moons of Both
Planets!
For practice, let’s try saying hello to the moons of both
planets, Earth and Mars. We will say hello to each of the
three moons, with their parent planet.

5.5. Hello, the Moons of Both Planets!

83

For example, here’s an expected output. (Let’s suppose
that the order is not important, to make our job easier.)

Hello, Moon of Earth!
Hello, Phobos of Mars!
Hello, Deimos of Mars!

How would you go about doing this? If you have never
seen this before, it will be rather difficult to figure this
out on your own. Don’t worry about it.

Here’s one way to do this.

local lunas = { ①
 Moon = "Earth",
 Phobos = "Mars",
 Deimos = "Mars",
}

for luna, planet in pairs(lunas) do ②
 print("Hello, " .. luna .. " of " .. planet
.. "!")
end

① Notice that lunas is a map, and not an array, unlike
moons in the previous example.

② This particular for loop uses pairs, and not ipairs.
These two would produce different results.

5.5. Hello, the Moons of Both Planets!

84

As mentioned, complex types like maps are known as
data structures in programming. In this example, the
local variable lunas refers to a map, a data structure.
This particular map includes three entries, and the keys,
Moon, Phoobos, and Deimos, point to the values,
"Earth", "Mars", and "Mars", respectively.

As we went through earlier, this for statement with the
pairs function will iterate over all entries of lunas. In
each of the three iterations, the values of luna and
planet will be Moon → Earth, Phobos → Mars, and
Deimos → Mars. That’s how we get the desired output.

It is somewhat hidden in the notation, but the reason
why we have chosen this particular data structure is
because of the inherent mapping structure, from a key
to its value, within a map data structure. For example,
in particular, lunas[Moon] is "Earth", and
lunas[Phobos] is "Mars", and so forth.

The for statement, in fact, hides these details (by
design), but if you think about it, the value of
lunas[luna] is always the same as planet, in each
iteration.

Note that variables like luna and planet are often
called the "loop variables", e.g., because they are used in
the loop. As indicated, their names are largely arbitrary,
to a large extent, except that, as a general principle,
good names make the program easier to read.

5.5. Hello, the Moons of Both Planets!

85

By the way, if you run this program on Replit, or on
your computer, the output might look a bit different.
This is because, in a map, the orders are not fixed. (This
can be a difficult concept to grasp at this point,
depending on your prior exposure to programming, and
if it does not make sense to you, you can ignore it.
Unless you are too busy , practicing on your own, e.g.,
using example code from this book, will help you
understand better. We can include only so much in the
book. Don’t be a passive learner, who just complains that
the book does not make sense. )

As we emphasize throughout this book, there are more
than one way to do the same thing. For this particular
problem, here’s an alternative way:

local satellites = {
 Earth = { "Moon" },
 Mars = { "Phobos", "Deimos" },
}

for planet, moons in pairs(satellites) do
 for _, moon in pairs(moons) do ①
 print("Hello, " .. moon .. " of " ..
planet .. "!")
 end
end

① One can use either pairs or ipairs in this context.

5.5. Hello, the Moons of Both Planets!

86

Note that the variable satellites is a map. On the
other hand, the values of each of its entries are arrays.
This is one of the more complicated programs we use,
and see, in this book. But, we already learned
everything that is need to understand this program.
There is a nested for loop (e.g., a for statement within
another for statement), which is "new" in a sense. But,
then again, it’s not really new, if you understand how
the for statement works. We will leave it as an exercise
to the readers to go through this nested loop.

And, remember, if you don’t understand this program,
that’s not the end of the world. You can ignore it and
move on. (It’s better to live to fight another day than
burn yourself out. Also remember that you can always
"backtrack", and you will surely have a better chance
the next time around.)

Exercises
This lesson has been somewhat technical, and
depending on your prior coding experience, you may
have found it rather difficult. That’s quite all right. As
stated, 99% of learning is just getting familiarized, and
that takes time and repetitions. Just to remember to
backtrack and iterate, as you feel necessary, and as
often as possible.

5.5. Hello, the Moons of Both Planets!

87

Ex 1. Hello, all!

Since we know how to do iteration, let’s say hi again to
some people.

• First, create an array of people’s names. For
example, in the previous section, we used the names
of the characters from Peter Pan.

• Then, write a Lua script that goes through each of
these names and say "hello" to them.

For example, here’s an example output:

Hullo, Peter~~
Hullo, Wendy~~
Hullo, Tinker Bell~~

Ex 2. Art map

We included around 11 ASCII art samples in the
previous lesson.

• Create a map using their names as keys and their
multiline drawings as their values.

• Iterate over the map and print out all drawings
vertically, one after another. You might want to add
an empty line or two between the drawings so that
they are not all merged together.

5.5. Hello, the Moons of Both Planets!

88

Ex 3. Galilean moons of Jupiter

In the history of human civilizations, we went though a
few pivotal moments. The invention of the telescope
was one of them. Pioneering scientists like Copernicus
and Galileo, paved the way, using this new invention at
the time, for the following, and still ongoing, scientific
revolutions, for the next 400 years and more.

Galileo discovered four (biggest) moons of Jupiter using
a telescope, over four centuries ago. They are often
called the Galilean moons of Jupiter in honor of him.
They were later given names, by Kepler, Io, Europa,
Ganymede, and Callisto. Incidentally, as you may know,
there is another "artificial moon" revolving around
Jupiter in the last several years (and, probably for some
more years to come), aptly named Juno.

Now, let’s send some greetings to these four moons of
Jupiter. First, create an appropriate data structure with
these four moons. Then, iterate over this data structure,
and print out something like the following to the
console:

Hello, Jupiter's first moon, IO!
Hello, Jupiter's second moon, Europa!
Hello, Jupiter's third moon, Ganymede!
Hello, Jupiter's fourth moon, Callisto!

5.5. Hello, the Moons of Both Planets!

89

Lesson 6. Day of the Week

Programming languages specify the language grammar,
both syntax and semantics. In addition, all modern
programming languages also provide specifications for
what is known as the "standard libraries". A library, in
general, is a collection of predefined functions and
custom types, etc. And hence, the standard library is a
set of libraries whose content is determined by the
programming language specification.



Learning a new coding language really
means learning its standard libraries as
well. In modern programming, one
cannot effectively program without
using the standard libraries.

90

6.1. Lua Standard Libraries
Some programming languages, like Python, provide an
extensive set of standard libraries. Lua, on the other
hand, includes only a bare minimal set. Clearly, there is
a trade-off. In a sense, because of that, the importance
of standard libraries is even bigger in Lua.

Lua’s standard libraries are classified into a few
different tables. (That is, the same table that we used
for arrays and maps.)

For example,

• string: The string library includes functions for
string manipulation and pattern matching.

• table: It includes functions for table manipulation
such as concatenating two arrays.

• math: It includes basic mathematical functions. E.g.,
arithmetic and trigonometric functions.

• io: It provides functions for basic I/O.

• os: It provides core operating system facilities.

Going through them all is well beyond the scope of this
beginner’s book. But, as an illustration, we will look at a
few concrete examples in this and the next lesson so
that the readers can explore them further on their own,
if needed, while learning programming in Lua.

6.1. Lua Standard Libraries

91

6.2. Function Calls
Although we have been using some functions, especially
the print function, it may be a good time to review
Lua’s function syntax in some more detail. In particular,
we will look at how to call functions in this section, and
how to define our own functions in the next.

A function call in Lua is an expression, and it has the
following syntax:

FUNCTION-NAME (ARG1, ARG2, ... , ARGn)

The argument list can include zero, one, or more values
(or, more generally, expressions), and the number of
required arguments is typically determined by the
function definitions. In some special cases, like the
builtin print function, one can call a function with
different numbers of arguments. For example,

print(1, 2, 10)
print("I", "am", "a", "programmer")

This will print

1 2 10
I am a programmer

6.2. Function Calls

92

6.3. Function Definitions
In Lua, one can define a custom function in a few
different ways. We will use only one method in this
book. Here’s a common syntax:

function FUNCTION-NAME (ARG1, ... , ARGn)
 STATEMENT-LIST
end

As in the previous section, all-capital-letter names are
placeholders. On the other hand, function and end are
Lua keywords. As before, the parentheses, (and), are
lexical tokens, which is part of this function definition
syntax.

Hence, in plain English, a new function can be created
by declaring its name after the keyword function, and
the function definition ends with the keyword end.
After the function name follows a parameter list within
a pair of parentheses. A function can be declared with
zero, one, or more parameters (denoted by ARG1
through ARGn in the above syntax notation).

The STATEMENT-LIST represents a list of statements, as
in the case of the for statement, and when this newly-
defined function is called, this series of statements will
be executed.

6.3. Function Definitions

93

This explanation may seem too technical, but let’s see
some concrete examples.

function f1() end ①
function f2(a, b) end ②
function f3() ③
 return 42
end
function f4(a, b) ④
 return a + b
end
function f5(tab) ⑤
 for k, v in pairs(tab) do ⑥
 print(k, v)
 end
end ⑦

① The function f1 accepts no arguments, and it does
nothing. Note the (largely arbitrary) location of end.
As stated, in Lua, formatting is not that important.

② The function f2 accepts two arguments, denoted as a
and b, and it just ignores them. This function again
does nothing.

③ The function f3 accepts no arguments, and it simply
returns a number 42. The return statement is used
to return a value from a function, which becomes the
value of the function call expression. That is, in this
example, the value of the call f3() will be 42.

6.3. Function Definitions

94

④ f4 accepts two arguments and returns its sum. That
is, f4 is an addition function.

⑤ f5 accepts one argument of a table type, which can
be seen from the implementation in the next three
lines (aka, a "function body").

⑥ As we have seen earlier, this for loop syntax only
works when the argument tab is a table. If not, it
will fail. In simpler languages like Lua, this kind of
type errors are more common. This discussion is,
however, beyond the scope of this book.

⑦ This function f5 does not return any (meaningful)
value. The only reason why we would call this
function is for its "side effects", namely, printing the
key-value pairs of the given table in this example.

6.4. Date and Time Functions

6.4.1. The os.date function

The date function from the os library returns the date
and time based on the given argument(s), either as a
table or as a string. It can be used in a few different
ways, and we will use the following two particular
syntax in this lesson.

os.date("*t") ①
os.date("*t", time) ②

6.4. Date and Time Functions

95

① This function call returns today’s date and time as a
table. "*t" is a special format that indicates that
os.date should return a table value.

② It works the same way, but it uses the given time
instead of today’s date. The time argument is a
number, more specifically, the number of seconds
since the "Unix epoch". See the next section.

The returned table will include the entries with keys,
year, month, and day, etc. For our purposes, we are
only interested in the value of the key wday, which
returns a number between 1 and 7, representing
Sunday through Saturday. For example,

t = os.date("*t")
for k, v in pairs(t) do print(k, v) end

This code will print the following:

year 2023
month 3
day 16
wday 5
hour 12
... ①

① Some output lines are omitted for brevity. wday = 5
indicates that today is Thursday.

6.4. Date and Time Functions

96

6.4.2. The os.time function

The time function in the os library returns a "Unix
epoch time", that is, the number of seconds since 00:00
AM on January 1st, 1970, UTC. The os.time function
supports two different syntax.

os.time() ①
os.time(tab) ②

① It returns the Unix epoch time of "now", e.g., the
current time at the time of the function call.

② It returns the Unix epoch time of the date and time
specified by tab. This argument uses the same table
format as those returned by the os.date call.

For example,

print(os.time())

This statement will print a number like 1678985623.
Likewise,

print(os.time{year=2023, month=1, day=1})

This will print a number 1672596000.

6.4. Date and Time Functions

97

6.5. Today, and Today Only
The problem of this lesson is to find the day of the week
for a given calendar day. We will do this in two parts.
First, we will just use today as the target date in this
section. A slightly more general problem will be
discussed in the next section.

In a sense, this is a very easy problem. You can just look
at your smartphone, and it will tell you what day of the
week it is today. But, although it may seem so trivial,
this information is the result of some computation (e.g.,
done by your expensive smartphone). In Lua, we can do
this using the aforementioned pair of library functions
os.date and os.time. To be concrete, let’s define the
problem more precisely:

The program, when executed, should print out a string,
Sunday, Monday, … Saturday, based on today’s date.

How would you do this?

First, we know that os.time() returns the Unix epoch
seconds of today. Second, if we call os.date("*t",
time) with the time argument, it will return the date
and time in the particular table format. And, we know
that the wday field includes the weekday information,
coded in numbers 1 through 7. All we have to do now is
to map the returned number to the string value, a
desired output.

6.5. Today, and Today Only

98

Here’s a map that encodes this weekday information.

dayOfWeek = {
 1 = "Sunday",
 2 = "Monday",
 3 = "Tuesday",
 4 = "Wednesday",
 5 = "Thursday",
 6 = "Friday",
 7 = "Saturday",
}

In Lua, this map is equivalent to the following array,

dayOfWeek = {
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday",
}

That is, when the keys of a map are consecutive integer
numbers starting from 1, the map can be viewed as an
array with their values as elements. They are
semantically equivalent.

6.5. Today, and Today Only

99

This may be somewhat of TMI (too much information)
at this point, but it is important to note that we may still
be using "mapping", conceptually, although at times we
use the array syntax in Lua.

Next, we can encapsulate the part for computing today’s
day of the week in a function, since we now know how
to define our own function. Here’s a skeleton (that is,
without a real implementation),

function weekday(today) ①
 return "" ②
end

① The today parameter is a Unix epoch time, that is, an
integer number.

② This function will return one of the weekday string
values, as defined above. For now, it’s a placeholder.

The top-level logic of our program might look like this:

local today = os.time()
local day = weekday(today)
print("Day = " .. day)

Does this make sense to you? We first get today’s Unix
epoch time, by calling the library function, os.time(),
and next we call our still-to-be-implemented weekday

6.5. Today, and Today Only

100

function, which takes an epoch second and returns the
weekday string. The final step is to output the result to
the console, which we do with a print statement.

Now, here’s the main logic of the weekday function.

function weekday(time)
 local d = os.date("*t", time) ①
 return dayOfWeek[d.wday] ②
end

① The os.date("*t", time) call returns a table,
including the field wday.

② We use our previously-defined mapping table to
convert the number to the corresponding string.
Note that the syntax d.wday is the same as d[wday],
and hence dayOfWeek[d.wday] is also the same as
dayOfWeek.d.wday, for instance.

The readers are encouraged to combine all these pieces
together and make a full functioning program.



Do not copy the code. Try to understand
what each piece of code does, and write
your own code from your memory. Your
program may end up being slightly
different from the code examples in the
book, but that is perfectly all right.

6.5. Today, and Today Only

101

6.6. Are You a Wednesday Child?
We will generalize this program so that it can be used
with an arbitrary date, and not just with today.

Since we already know how to do this for a given Unix
epoch time, that is, through the weekday function, all
we have to do now is to get the Unix epoch time of a
given date. And, we know how to that, e.g., by calling
os.time() with a table that represents a particular
date and time.

For practice, let’s try and create another function, which
takes year, month, and day as arguments, and returns
the Unix epoch second.

function getTime(year, month, day)
 return os.time{ ①
 year = year,
 month = month,
 day = day,
 }
end

① Note that, although we stated that the function call
syntax requires the parentheses, they are optional in
some cases. This is really a detail, but when a
function takes a single table, or a single string, as an
argument, the parentheses can be omitted.

6.6. Are You a Wednesday Child?

102

Here’s a complete program with an example date, the
last day of the last century:

local year, month, day = 2000, 12, 31
local time = getTime(year, month, day)
local wday = weekday(time)
print("Day of the week = " .. wday)

In fact, we can make this whole program even "simpler"
by using another function:

function printDayOfWeek(year, month, day)
 local time = getTime(year, month, day)
 local wday = weekday(time)
 print("Day of the week = " .. wday)
end

Now, our main program may look like this, using the
author’s birthday  as an example,

local year, month, day = 2020, 1, 1
printDayOfWeek(year, month, day)

So, are you a Wednesday’s child? Try coding a similar
program on your own running it with your birthday.
(About 14% of people are Wednesday’s children. How
do you think we came up with that number? )

6.6. Are You a Wednesday Child?

103

Exercises
We learned in this lesson

• The os.date and os.time library functions,

• How to call a function,

• How to define a custom function, and

• How to use Lua’s table for mapping purposes.

Ex 1. Hello, function!

Write a function that

• Takes a string argument, named name, and

• Prints Hello, name!, where name is the argument of
the function.

Ex 2. Length operator

Although we did not discuss in this book, Lua supports a
length operator, #, which returns the number of
elements in a table, e.g., an array or a map. That is, for
example,

local a = { 5, 10, 15 }
local t = { a = "A", b = "B" }
print(#a, #t)

6.6. Are You a Wednesday Child?

104

This code will print 3 2. Now, write a function that takes
a table as an argument and prints all elements of the
given table and its length. For instance, here’s a sample
output, using t above as an example argument,

a A
b B

The number of elements: 2

This should work for both arrays and maps.

Ex 3. Conditional processing

Another important control flow statement is the if
statement, also known as the conditional statement. The
readers are encouraged to look up the general syntax of
Lua’s if statement on the Web, which can include
keywords like if, then, elsif, and else. For the
purposes of this exercise, let’s take a look at a simple
example.

local x = 10
if (x > 5) then ①
 print("x is bigger than 5")
else
 print("x is equal to, or less than, 5")
end

6.6. Are You a Wednesday Child?

105

① You may have never seen if statements before, but
you can still recognize lexical tokens and what not.
In this example, you can identify the overall form of
this if statement, i.e., if - then - else - end, etc.

The expressions like x > 5 are evaluated to Boolean
values, e.g., true or false. In this particular example,
since x (whose value is currently 10) is bigger than 5, it
evaluates to true. In the if statement, if the Boolean
expression is true, then the statements between then
and else are executed. Otherwise, the statements
between else and end are executed. Hence, if we run
this example code, it will print out, x is bigger than 5.

BTW, the Lua’s length operator # also works with
strings, and it returns the number of characters in the
given string. For example, #"hello" evaluates to 5.
Now, write a function that accepts an array of strings,
and prints each string along with a label, long or short.
More specifically, if a string is the same as, or longer
than, 10 characters, then you use the label long.
Otherwise, short is used. For instance, given an array, {
"The moment", "you doubt", "whether", "you
can fly," }, here’s a sample output:

The moment long
you doubt short
...

6.6. Are You a Wednesday Child?

106

Ex 4. Mappings as a magic wand

We wrote a function earlier that prints out the day of
the week as a string, given a date. Instead of printing
the weekday strings, print one of the two strings, Happy
and Not so happy. In particular, if the given date falls on
a weekend, e.g., Sunday or Saturday, you print Happy.
Otherwise, you print Not so happy. You can use the
mapping, e.g, using a table, or you can use the
conditional statement, if you like.

Ex 5. Is today a prime day?

In mathematics, a prime number is an integer that
cannot be divided by any integers other than 1 and the
number itself. Write a function that takes a date as an
argument and returns true or false depending on
whether the day (e.g., 1 through 31) of the given date is
a prime number or not.

Ex 6. Back to the ASCII art

In an earlier lesson, we played around with some 11
ASCII art drawings. Write a function that takes the
name of a drawing and prints out the corresponding
drawing. For example, if you call your function with an
argument "ant", it should print the ASCII drawing of
the ant.

6.6. Are You a Wednesday Child?

107

Lesson 7. What is Your
Sign?

Although we are now more used to using graphical user
interface (GUI), and the apps specifically created for
graphical interface, many useful and essential programs
are still written for the so-called "command line"
interface. Or, CLI for short. It is a character-based
interface, and these CLI apps are typically used on
terminals (or, consoles).

Let’s try building a slightly more complete program in
this lesson that handles input and output via the
command line interface. The fundamental ideas for
handling user input and output will be also applicable
when, and if, you decide to develop GUI-based programs
in the future. First, some quick intro to the basic
input/output in Lua…

108

7.1. Basic Input and Output
Lua includes basic command line-based input and
output support, just like most other high-level
programming languages.

The builtin print function that we have been using is
mainly used for "debugging" purposes in Lua. The
readers who have used JavaScript will be familiar with
the console.log function. Their intended uses are
more or less the same. They are primarily used, for
example, to see what is going on inside the program,
while the program is running.

In Lua, the standard input and output facilities are
included in the io and os tables. (IO and OS stand for
input/output and operating systems, respectively.) The
IO functions defined in these tables are specially
designed for user input and output processing, and they
are not only more flexible than print but they can also
handle special circumstances, for instance, if you need
to run a Lua program in an environment where input
and output have been redirected.

We will briefly discuss two functions, io.read and
io.write, before we start working on our main
program, which is sort of a (fake) astrology app. It reads
the user input as a Zodiac sign, and prints out the
corresponding horoscope.

7.1. Basic Input and Output

109

7.1.1. The io.write function

First of all, notice that the function write is written as
io.write with the io as a prefix (with a .). This is a
common pattern. We used two other library functions,
os.date and os.time, in the previous lesson.

Other than the builtin functions, most standard library
and user-defined functions, and other values, are
generally included in "modules", and their names need
to be qualified with their module names. For example, in
this case, io is the name of the module, and write is the
name of the function.

The io.write function is defined as follows:

io.write(···)

The io.write function writes the given arguments to
the standard output (e.g., the terminal). The ... symbol
represents an arbitrary number of function parameters,
and they must be strings or numbers.

7.1.2. The io.read function

If you have used Python, Python includes a builtin
function, input, for reading the user input from the
command line. Lua’s io.read is comparable to Python’s
input function.

7.1. Basic Input and Output

110

The io.read function reads the user input from the
standard input (e.g., the terminal), and it returns the
value as a string or a number.

io.read()

The io.read function can take an argument that
dictates the type and format of the return value, but we
will only use the default format. In this simple use case,
the io.read function returns the user input as a string.

7.1.3. I/O practice

Let’s create a simple CLI program, for practice, which
reads the user input from the terminal and prints out
the result back to the terminal. This kind of program is
often called "echo", for an obvious reason.

OK, so how would you go about creating a program like
this? At a high level, we can easily think of a program
flow, something like this:

1. Read the user input,

2. Store the value in a temporary variable, and

3. Write the value of the variable to the terminal.

The second step is optional. In fact, we can write the
whole logic in one statement. But, as an exercise, let’s do

7.1. Basic Input and Output

111

this in a few distinct steps. It is a good practice to break
a problem into smaller pieces and solve each small
problem separately.

Since we learned how to define our own functions, let’s
create two functions for reading and writing.

function readText()
 return "" -- tbd
end

function writeText(text)
 ; -- tbd
end

Note that, although these are just skeletons, we
anticipate how these functions will ultimately work. For
the readText function, it is supposed return a string
value. For the writeText function, it takes a string
argument, text. (The semicolon ; represents an empty
statement.) Does this make sense to you?

Now, without actually implementing these functions, we
can write our main program as follows.

local input = readText()
writeText(input)

7.1. Basic Input and Output

112

You read a user input, using the yet-to-be-implemented
readText function, and we temporarily store it a local
variable named input. Then, we write this input value
to the terminal, or more precisely the standard out,
using another yet-to-be-implemented function,
writeText. This is the overall algorithm of our simple
"echo" program.

All we have to do now is to implement these 2 functions.

function readText()
 io.write("What's your command? ") ①
 return io.read()
end

① Before we read the user input, we write a "prompt"
first so that the user knows that an input is expected.

function writeText(text)
 io.write("Your command is " .. text ..
"\n") ①
end

① Unlike print, io.write does not automatically
append a newline at the end.

We will leave it as an exercise to the readers to code the
entire program on their own and try running the
program.

7.1. Basic Input and Output

113

7.2. Game Plan
Let’s first review what we are going to build.

App Name

Horoscope Teller.

App Type

A CLI program/terminal app.

Requirements

• Ask the user for his/her astrology sign,

• Read the sign from the console,

• Generate a horoscope for the given sign, and

• Write the horoscope to the console.

7.2.1. Design

The word "design" often refers to graphic design. But, in
programming, it also means software design. Suppose
that we are assigned a task to build this Horoscope
Teller app and we are given two hours.

What are we to do??? First, don’t panic! 

We just need some kind of a game plan. First, do we
really understand the requirements? For example, what
is an "astrology sign"? What is the "horoscope for the
given sign"? How do we get the horoscope? etc. etc.

7.2. Game Plan

114

You can do some research and what not, and let’s
suppose that we understand what exactly we are
supposed to build. For example, here’s a list of zodiac
signs.

local signs = {
 "aries",
 "taurus",
 "gemini",
 "cancer",
 "leo",
 "virgo",
 "libra",
 "scorpio",
 "sagittarius",
 "capricorn",
 "aquarius",
 "pisces",
}

Next, how are we going to build it? That’s where the
software design comes in. In some cases, drawing
diagrams, etc., can be useful. For this task, let’s just go
through the requirements one by one and see how we
can meet each of these requirements.

Ask the user for his/her astrology sign

Since it’s a CLI app, we can use the os.write
function to write the question to the console.

7.2. Game Plan

115

Read the sign from the console

We can use the os.read function to the read the user
input. We will need to make sure that the read input
is one of the valid signs. This is often called the error
handling.

Generate a horoscope for the given sign

This is the core logic of our program. We will focus
on this next.

Write the horoscope to the console

Again, we can use the os.write function to output
the "generated" horoscope.

7.2.2. Core function

As we have seen, all requirements are mostly related to
input and output handling, which may be viewed as
somewhat peripheral. The exception is the one about
"generating" a horoscope for a particular sign. That is
the main part of the program.

So, how are we going to generate horoscopes?

7.2.3. Algorithm

"Algorithm" is another big word, which has many
different definitions and subtly different meanings, e.g.,
depending on the contexts.

7.2. Game Plan

116

For our purposes, an algorithm is a step by step
instruction to the computer. Here, "step by step" is the
key word. Computers do not generally know how to do
big tasks. For example, if you tell the computer to just
create a horoscope app, it may not be able to do that.
(Well, we’ll have to wait and see how good these AI
chatbots really are. ) They need to be told what to do
in detail, step by step. That’s the algorithm.

For this task, there can be many different ways to
"generate a horoscope". But, we will just use one of the
simplest methods, namely, a table lookup. We will
create a map with the twelve signs as the keys and their
corresponding horoscopes as the values. Then, when we
need to generate a horoscope for a given sign, we can
just look it up in the map. It is not completely realistic,
but this will do for our purposes.

We will see, in more detail, how we go about doing this
in the next section.

7.3. Horoscope Function
In practice, whether you really believe in astrology or
not, the horoscope is based on the positions of the stars
and the planets in the sky. But, we will just hard-code
horoscopes in a single map. Here’s an example:

local message = {

7.3. Horoscope Function

117

 aries = "Aries, you are very smart!",
 taurus = "Taurus, you are very
intelligent!",
 gemini = "Gemini, you are very witty!",
 cancer = "Cancer, you are very creative!",
 leo = "Leo, you are very astute!",
 virgo = "Virgo, you are very clever!",
 libra = "Libra, you are very shrewed!",
 scorpio = "Scorpio, you are very wise!",
 sagittarius = "Sagittarius, you are
ingenious!",
 capricorn = "Capricorn, you are very
knowledgeable",
 aquarius = "Aquarius, you are
enlightened!",
 pisces = "Pisces, you are brilliant!",
}

Then, we can (almost trivially) implement our
horoscope function, which takes a sign as an argument
and returns the corresponding horoscope. For instance,

function horoscope(sign)
 return message[sign]
end

That’s it. Everything else is, as stated, about input and
output.

7.3. Horoscope Function

118

7.3.1. Unit testing

The unit testing is another big concept in software
engineering which you will have to learn over time. But,
let’s see briefly what unit testing is, in the present
context.

First, we implemented this horoscope function with
certain desired functionalities in mind. Although we did
not nowhere explicitly mention it, if you understand the
above implementation, this function is supposed to work
in a certain way.

For example, when horoscope is called with an
argument, "aries", it should return a string, "Aries,
you are very smart!". Again, the key word here is it
should. That’s the expected behavior. But, in practice,
programs may not work as expected. That is why we
need "testing", e.g., to verify that the program works as
expected.

How exactly we do testing is not that important at this
point.

The unit testing is a special kind of testing. If you have
paid attention, even though it is a small program, we
deliberately divided it into two parts, the core part and
the rest (mostly I/O). Now, testing the entire program
may be a little bit more complex than testing each
individual part. Testing a small part, or a unit, is what

7.3. Horoscope Function

119

we call the unit testing. This is, in a way, a divide-and-
conquer strategy (which is also related to the analysis-
synthesis method). The "unit" can mean different things
in different contexts, but again that is not very
important at this point.

In this particular example, we have this core function,
separate from the rest of the program, and it can be
more easily tested by itself. Just for illustration, let’s
write a simple "test case" for the horoscope function.

local sign = "leo"
local expected = "Leo, you are very astute!"
local result = horoscope(sign)

if (result == expected) then ①
 print("Test passed")
else
 print("Test failed: result = " .. result)
end

① The symbol == is an equality operator. The
expression A == B evaluates to true if A is the same
as B. Otherwise, its value is false.

Can you see what’s going on here? If not, don’t worry.
You will have plenty of chance to learn about unit
testing, moving forward, if you continue to learn and
practice programming.

7.3. Horoscope Function

120

7.3.2. Error handling

In this particular example, you can write twelve unit
test cases that cover all possible input arguments. Or,
more precisely, all valid input arguments.

What happens if the given argument is not one of the 12
valid signs? For our purposes, that’s an error. We
cannot provide a horoscope for an invalid astrology
sign. What do we do then? This is called the error
handling. There can be many different ways to handle
invalid inputs, for instance. In our Horoscope Teller
program, let’s just print out an error message to the
user if the given input is not valid.

In order to do this, the horoscope function needs to
return a special value to indicate an invalid input. It so
happens that the map access in Lua, e.g.,
message[sign], returns a special value nil if the key
sign does not exist in the map message. nil is a special
value in Lua that represents an absence of a value. That
is, nil is a value that is not a real value.  Hence, the
simplest way to handle errors in horoscope is just do
nothing. It will naturally return nil if the given
argument is invalid. Just for illustration,

print(message["moon"])

This statement will print out nil.

7.3. Horoscope Function

121

7.4. Horoscope Teller - CLI App
Here’s a version of our main CLI program that includes
the user input and output handling.

function playHoroscope()
 io.write("What is your sign? ")
 local sign = io.read()
 local msg = horoscope(sign)
 if (msg == nil) then
 io.write("Invalid sign: " .. sign ..
"\n")
 else
 io.write(msg .. "\n")
 end
end

playHoroscope()

7.4.1. Let’s play!

Combine all the pieces together and make a complete
program, as an exercise. Then, try to run the program.

Here’s one example run.

What is your sign? cancer
Cancer, you are very creative!

7.4. Horoscope Teller - CLI App

122

Exercises
We learned in this lesson

• Basic input output, and

• How to write a simple CLI program.

In particular, we learned how to read the user input
and how to write properly to the standard out, without
relying on the debugging function, print. Also, we
learned how to use the map data structure as a lookup
table, among other things. Let’s practice some of these
concepts in our last exercise session.

Ex 1. Hello, what’s your name?

Write a CLI program that does the following:

• Ask the user his/her name,

• Read the name, and

• Say, "Hello, <the user name>!".

Ex 2. The length of the user input

In the "I/O practice" section, we implemented a simple
"echo" program. Modify this program so that, instead of
echoing back the user’s input, print out one of the
following messages.

7.4. Horoscope Teller - CLI App

123

• If the length of the user input is longer than 42
characters, then write "Life is short. Use a shorter
message." to the console.

• If it is shorter than 7 characters, then write "You are
not very lucky!"

• Otherwise, write "You are just average."

Ex 3. Error handling

Add an error handling to the day of week function,
weekday(year, month, day), from the previous
lesson. First, what kind of errors do you anticipate? Is a
month 23 a valid input, for instance? Remember, there
is no right and wrong answer.

Ex 4. Day of the week CLI program

Add input output handling to the day of week program
from the previous lesson, and make it a complete CLI
program.

Ex 5. A better horoscope app?

This is an open-ended question. Can you create a
horoscope app that returns different horoscopes for
different weeks? One last comment: All exercises are
optional. 

7.4. Horoscope Teller - CLI App

124

Closing Remarks
It is not in doing what you like, but in
liking what you do that is the secret of
happiness.

— J.M. Barrie

We have covered very little in this book in terms of Lua
syntax, and programming in general. You might say, we
barely scratched the surface. But, then again, we have
covered so much in this book.

The astute readers might have noticed, but the goal of
this book was not to teach you all the details of
programming or to go through the whole laundry list of
programming language features. But, the goal of this

125

book was to teach you the fundamentals of
programming. And more importantly, to teach you how
to learn, or how to teach yourself, when it comes to
programming.

We went through some big concepts (and, big words )
in this book, both technical and non-technical, so that
you can learn much easier moving forward.

As the saying goes, "Give a man a fish, and you feed him
for a day. Teach a man to fish, and you feed him for a
lifetime", and teaching you to fish was the goal of this
book. Whether we have succeeded or not, only you can
tell.

For now, with the same spirit, try to teach yourself to
fish rather than just focusing on details while learning
programming, or while learning anything. That’s a
lifelong process. And, most importantly,

Have fun!

 .--.
 .'_\/_'.
 '. /\ .'
 "||"
 ||
___\||/___

126

Credits
Images

All drawings used in this book are taken from
undraw.co, an amazing service with an amazing
open source license. Many thanks to the creator of
the site: twitter.com/ninaLimpi!

Icons

All emoji icons used in this book are from
fontawesome.com. Fontawesome is a very popular
tool, probably used by almost everyone who does
Web or mobile programming.

Typesetting

Here’s another absolutely fantastic software,
asciidoctor.org, which is used to create an ebook as
well as paperback versions of this book. AsciiDoc
[https://asciidoc.org] is like Markdown on steroid. You
can follow them on Twitter: twitter.com/asciidoctor.

Other Resources

The author has relied on many resources on the Web
in writing this book. If the book includes any
material from these resources, then the copyright of
those content belong to the respective owners.

127

https://undraw.co
https://twitter.com/ninaLimpi
https://fontawesome.com
https://asciidoctor.org
https://asciidoc.org
https://twitter.com/asciidoctor

About the Author
Harry Yoon has been programming for over three
decades. He has used over 20 different programming
languages in his academic and professional career. His
experience spans broad areas from scientific
programming and machine learning to enterprise
software and Web and mobile app development.

He occasionally hangs out on social media:

• Instagram: www.instagram.com/codeandtips/

• TikTok: tiktok.com/@codeandtips

• Twitter: twitter.com/codeandtips

• YouTube: www.youtube.com/@codeandtips

• Reddit: www.reddit.com/r/codeandtips/

Other Programming Books by
the Author

• The Art of Go - Basics: Introduction to Programming
in Golang [https://www.amazon.com/dp/B08WYNG6YP]

• The Art of C# - Basics: Introduction to Programming
in Modern C# [https://www.amazon.com/dp/B08X2SCG2Y]

128

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/
https://www.amazon.com/dp/B08WYNG6YP
https://www.amazon.com/dp/B08WYNG6YP
https://www.amazon.com/dp/B08X2SCG2Y
https://www.amazon.com/dp/B08X2SCG2Y

Coding Lessons for
Beginners
Learn programming, and new programming languages,
using these books. The general target audience is from
absolute beginners to programmers with a few years of
coding experience.

• Learn Coding with Lua: A Slow and Gentle
Introduction to Basic Programming for Non-
Programmers [https://www.amazon.com/dp/B0BF19Q3DV/]

• Python for Serious Beginners: A Practical
Introduction to Modern Python with Simple Hands-
on Projects [https://www.amazon.com/dp/B09M7P9WCZ/]

• Python for Passionate Beginners: A Practical Guide
to Programming in Modern Python with Fun Hands-
on Projects [https://www.amazon.com/dp/B0BG9X5L8V/]

129

https://www.amazon.com/dp/B0BF19Q3DV/
https://www.amazon.com/dp/B0BF19Q3DV/
https://www.amazon.com/dp/B0BF19Q3DV/
https://www.amazon.com/dp/B09M7P9WCZ/
https://www.amazon.com/dp/B09M7P9WCZ/
https://www.amazon.com/dp/B09M7P9WCZ/
https://www.amazon.com/dp/B0BG9X5L8V/
https://www.amazon.com/dp/B0BG9X5L8V/
https://www.amazon.com/dp/B0BG9X5L8V/

Programming Language
References
We are creating a number of books under the series
title, A Hitchhiker’s Guide to the Modern Programming
Languages. We cover essential syntax of the 12 select
languages in 100 pages or so.

• Golang [https://www.amazon.com/dp/B09V5QXTCC/]

• Modern C# [https://www.amazon.com/dp/B0B57PXLFC/]

• Python [https://www.amazon.com/dp/B0B2QJD6P8/]

• Typescript [https://www.amazon.com/dp/B0B54537JK/]

• Rust [https://www.amazon.com/dp/B09Y74PH2B/]

• C++20 [https://www.amazon.com/dp/B0B5YLXLB3/]

• Modern Java [https://www.amazon.com/dp/B0B75PCHW2/]

• Julia [https://www.amazon.com/dp/B0B6PZ2BCJ/]

• Javascript [https://www.amazon.com/dp/B0B75RZLRB/]

• Haskell [https://www.amazon.com/dp/B09X8PLG9P/]

• Scala 3 [https://www.amazon.com/dp/B0B95Y6584/]

• Lua [https://www.amazon.com/dp/B09V95T452/]

130

https://www.amazon.com/dp/B09V5QXTCC/
https://www.amazon.com/dp/B0B57PXLFC/
https://www.amazon.com/dp/B0B2QJD6P8/
https://www.amazon.com/dp/B0B54537JK/
https://www.amazon.com/dp/B09Y74PH2B/
https://www.amazon.com/dp/B0B5YLXLB3/
https://www.amazon.com/dp/B0B75PCHW2/
https://www.amazon.com/dp/B0B6PZ2BCJ/
https://www.amazon.com/dp/B0B75RZLRB/
https://www.amazon.com/dp/B09X8PLG9P/
https://www.amazon.com/dp/B0B95Y6584/
https://www.amazon.com/dp/B09V95T452/

Community Support
We are building a website for programmers, from
beginners to more experienced. It covers various
coding-related topics from algorithms and design
patterns to machine learning. You can also find some
sample code in the public code repositories on GitLab.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Join our mailing list, join@codingbookspress.com, to
receive coding tips and other news from Coding Books.
If we find any significant errors in the book, then we
will send you an updated version of the book (in PDF).

Request for Feedback
If you find any errors or typos, or if any part of the book
is not very clear to you, or if you have any general
comments regarding the book, then please let us know.
Although we cannot answer all the questions and
emails, we will try our best to resolve the issues.

• feedback@codingbookspress.com

Revision 1.0.0, 2023-04-05

131

https://www.codeandtips.com
https://gitlab.com/codeandtips
mailto:join@codingbookspress.com
mailto:feedback@codingbookspress.com

THANK YOU!!
Thanks for signing up to be part of our advance review
team. It means so much to us. This effort wouldn’t be
possible without you.

-Harry

132

	Learn Coding with Lua: A Slow and Gentle Introduction to Basic Programming for Non-Programmers (REVIEW COPY)
	Copyright
	Preface
	Table of Contents
	Lesson 1. A Journey of a Thousand Miles …​
	1.1. What is Programming?
	1.2. Two Big Words - �Syntax and �Semantics

	Lesson 2. …​ Begins with a Single Step
	2.1. �Online Code Editor
	2.2. �Hello World!
	2.3. �Comments

	Lesson 3. Anatomy of �Hello World
	3.1. �Hello World, Again!
	3.2. How to Create a Sentence
	3.3. What’s the Meaning of All These?
	3.4. Do This? And Then Do That?
	3.5. The Great Escape
	3.6. String Additions

	Lesson 4. Is Programming Art?
	4.1. �Values and Some Such
	4.2. What’s in a Name?
	4.3. ASCII Art
	4.4. Multiline Strings
	4.5. Back to the Ant!

	Lesson 5. Hello, All the Moons in the World!
	5.1. Tables as Arrays
	5.2. Tables as Maps
	5.3. Hello, the Moon!
	5.4. Hello, the Moons of Mars!
	5.5. Hello, the Moons of Both Planets!

	Lesson 6. Day of the Week
	6.1. Lua Standard Libraries
	6.2. �Function Calls
	6.3. Function Definitions
	6.4. Date and Time Functions
	6.5. Today, and Today Only
	6.6. Are You a Wednesday Child?

	Lesson 7. What is Your Sign?
	7.1. Basic Input and Output
	7.2. Game Plan
	7.3. Horoscope Function
	7.4. Horoscope Teller - CLI App

	Closing Remarks
	Credits
	About the Author
	Coding Lessons for Beginners
	Programming Language References
	Community Support

