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Preface
If we measure "market shares" of all programming languages in some
way and plot the data as a pie chart, the functional programming
languages, all of them combined, would not even show up as a wedge-
shaped slice on the pie chart.

Despite their general importance, and practical usefulness, functional
programming is still considered a niche in the software industry. There
can be many reasons for this, but one of the main reasons is lack of
good educational materials. There are also a lot of misinformation out
there regarding functional programming. Many software developers
consider functional programming "difficult", which can be done only by
the "elitist" programmers. That cannot be further from the truth.

Functional programming is different from imperative programming.
But, not necessarily more difficult. Unfamiliarity breeds prejudice.

Haskell is one of the most widely used functional programming
languages. Haskell has been around for over 30 years, and it has
influenced the language designs of numerous (modern) programming
languages, including many popular imperative languages such as
Python, JavaScript, C#, Julia, and Rust to name a few.

Haskell is a pure functional programming language. This means that we
primarily, and almost exclusively, use the mathematical principle of
function applications and function compositions as the primary means
of computation. This also means that more traditional imperative
programming styles using side effects cannot be generally used while
programming in Haskell (with a few important exceptions).

When programmers with the imperative programming background
start learning functional programming languages like Haskell, they
generally face two main challenges. First, they will need to learn pure
functional programming, which requires a rather different mindset.
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This can be the hard part for some people who have been trained in
imperative programming for many years. Second, languages like
Haskell use somewhat different syntax from most of the main stream
languages. In fact, functional programming languages all tend to use
more terse syntax, for example, and this trips over many beginning
Haskell programmers. However, this is the easy part.

Books like this can help you learn Haskell language syntax so that you
can focus more on learning high-level functional programming styles.
As a matter of fact, this mini reference will not teach you how best to
program in a functional style, but rather it will only teach you the
essentials of the Haskell programming language. If you are looking for a
tutorial on functional programming, this book may not be the right one
for you. If you are a complete beginner, then you will not find this book
very useful.

This book is specifically written for the people

• Who have some exposure to functional programming and would
like to learn Haskell,

• Who are learning functional programming in Haskell and making a
rather slow progress due to its somewhat unfamiliar syntax, or

• Who are experienced in procedural programming and want to get a
quick taste of the Haskell language.

For this intended target audience, this mini reference will provide an
excellent overview of the Haskell functional programming language.



This book is largely based on the official "Haskell 2010
Language Report", but it is not an authoritative
language reference. We recommend the readers refer
to the original Report for more precise and more
detailed information whenever there is any ambiguity
in the descriptions in the book.
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Dear Readers:

Please read b4 you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are
small ones and there are big ones. Some blocks are straight and some
are L-shaped. You use these lego blocks to build spaceships or
submarines or amusement parks. Likewise, you build programs by
assembling these building blocks of a given programming language.

This book is a language reference, written in an informal style. It goes
through each of these lego blocks, if you will. This book, however, does
not teach you how to build a space shuttle or a sail boat. If this
distinction is not clear to you, it’s unlikely that you will benefit much
from this book. This kind of language reference books that go through
the syntax and semantics of the programming language broadly, but not
necessarily in gory details, can be rather useful to programmers with a
wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start
learning a foreign language, for instance, you do not start from the
grammar. Likewise, this book will not be very useful to people who
have little experience in real programming. On the other hand, if you
have some experience programming in other languages, and if you
want to quickly learn the essential elements of this particular language,
then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for
you. But, as stated, this book is written for a wide audience, from
beginner to intermediate. Even experienced programmers can benefit,
e.g., by quickly going through books like this once in a while. We all
tend to forget things, and a quick regular refresher is always a good
idea. You will learn, or re-learn, something "new" every time.

Good luck!
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Chapter 1. Introduction
The Haskell programming language is based on lambda calculus at its
core. In fact, all syntactic structures in Haskell are formally defined
through translations of those structures into the lambda calculus-based
core part, known as the Haskell kernel.

However, you do not need to be familiar with lambda calculus to use
Haskell. Haskell is a high-level general purpose programming language
that supports, and encourages, pure functional style programming. If
you are new to functional programming, then Haskell is the best
language to learn functional programming with.

Despite some common misconceptions, functional programming styles
are widely used in modern programming. For example, many
developers are now used to programming styles using higher order
functions like map, filter, and reduce. Pattern matching has been
adopted by virtually all modern languages. Immutability is considered
a holy grail even in imperative programming nowadays, especially in
the multi-core concurrent programming environments.

It may still require some time and practice to transition to pure
functional programming, but as indicated in the Preface, we do not
believe that is the main reason why functional programming languages
like Haskell are not as much widely used.

It is most likely the unfamiliar syntax that is what keeps many
programmers from trying out functional programming languages.
Therefore, we hope that books like this one that focuses on the language
grammar can help developers get into functional programming more
easily and more willingly.

Other than that, the case for (pure) functional programming is
overwhelming, and we will not make any effort to convert you in this
book.
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1.1. Example Haskell Program
Merge sort is one of the most functional algorithms. Here’s a simple
implementation of merge sort in Haskell.

MergeSort.hs

module MergeSort(sort) where             ①

divide :: Ord a => [a] -> ([a], [a])     ②
divide xs = splitAt ((length xs + 1) `div` 2) xs

merge :: Ord a => [a] -> [a] -> [a]      ③
merge [] s2 = s2                         ④
merge s1 [] = s1
merge s1@(x:xs) s2@(y:ys)                ⑤
  | x > y = y : merge s1 ys
  | otherwise = x : merge xs s2

sort :: Ord a => [a] -> [a]              ⑥
sort [] = []
sort [x] = [x]
sort list =
  let (fstHf, sndHf) = divide list       ⑦
   in merge (sort fstHf) (sort sndHf)

① This line declares a module MergeSort and exports a function sort.
Module imports and exports are explained in the Modules chapter.

② This line denotes a type signature for the function divide, whose
implementation follows in the next line. Notice the general syntax,
name :: type, separated by double colons (::). splitAt is a "built-in"
function, included in the Haskell Standard Prelude. Types and
functions are two of the most important concepts in Haskell
programming, and they are explained throughout this book.

③ Likewise, a type declaration of the function, merge.

1.1. Example Haskell Program
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④ The merge, and sort, functions are implemented using pattern
matching, which is described in detail in the later part of the book.
Pattern matching was first introduced by Haskell, and it is now
becoming a core part of virtually every modern programming
language, thanks to its intuitive syntax and expressive power.

⑤ Recursion is at the heart of functional programming. One of the
unique features of Haskell is that, lexically, Haskell programs can be
written in layout-sensitive or layout-insensitive formats. For
instance, the expression written in three lines in this example can be
written in one line as well. The layout rule is described in the Lexical
Structure chapter, in the very beginning of the book.

⑥ The sort function also uses pattern matching and recursion. Notice
the common pattern in the way that functions are defined over
multiple patterns (and, over multiple lines) in Haskell.

⑦ Unlike some popular beliefs, even pure functional programming
uses "variables" (albeit immutable). The let in expression is
explained in the main part of the book, in particular, in the Let and
Where chapter. Note that this let in expression captures the
essence of the merge sort algorithm.

Here’s a sample program using this sort function:

Main.hs

module Main where                        ①

import MergeSort (sort)                  ②

main :: IO ()                            ③
main = do                                ④
  print $ sort [7, 5, 8, 6, 4, 9]        ⑤

① Every Haskell program needs a Main module, which includes a value
named main. This is similar to the way C-style languages work, in
which the "main" function is the entry point to a program.

1.1. Example Haskell Program
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② Importing the sort function from the MergeSort module. Notice
the lack of semicolons throughout this code example. Again, this is
explained in the context of layout rules.

③ The type of main is IO, which is an instance of the Monad class. Types
and classes (or, typeclasses) are explained throughout this reference.
The infamous Monad class is briefly described in the Monads chapter,
primarily for completeness. Note that, only through monads, we can
include (non-pure) actions in pure functional programs.

④ In the monadic context, the do expression can be used for
"sequential programming". Do expressions often include multiple
statements, e.g., expressions and declarations. The expression in this
particular line will output [4,5,6,7,8,9] to standard output, or the
terminal.

If you do not fully understand this program at this point, then read on.
This book will teach you how to read Haskell programs, at least in
terms of all essential syntax.

1.2. Functional Programming
Pure functional programming is about computing (desired) values
through applications of functions. (In this book, and in functional
programming in general, a function means a pure function, that is, a
mathematical function.) You get an input, a value, and you produce an
output, another value, through pure computations. There are no
imperative statements involved like "do this and do that".

Although there is no general consensus as to what exactly is functional
programming (FP), FP is often characterized by a few tenets, if you will:

• In FP, functions are the main building blocks of programs.

• FP only deals with values, and values are by definition immutable.

• FP does not cause side effects (that is, unless explicitly intended).

1.2. Functional Programming
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In addition, Haskell has a few important characteristics that are not
necessarily considered an intrinsic part of FP. For example,

• Haskell has a strong static type system, with support for parametric
polymorphism.

• Haskell supports universal type inference, and hence type
declarations are (almost) optional.

• Haskell supports lazy evaluation of expressions by default, which
can lead to code optimization.

• Haskell supports user-defined operators, which is much more
powerful than the "predefined operator overloading" mechanism
found in other programming languages.

• Haskell supports powerful pattern matching, which plays an
essential role in virtually every aspect of Haskell programming.

• In Haskell, all functions take one value and return one value,
through what is known as currying.

• In Haskell, every function is a value. And, every value is a function.

• Haskell isolates pure functions and non-pure actions using Monads
(which originated from category theory).

• As a high-level programming language, Haskell runtimes support
automatic memory management, e.g., garbage collection.

• Haskell programs can be either dynamically interpreted, or they can
be compiled to executables.

Haskell has such a strong static type system that the Haskell compiler
removes all type information when building an executable. That is,
there is no need for runtime type information for Haskell programs
after they have been verified by the static type checker. Furthermore,
despite the pervasive misconceptions that FP languages are "slow", the
leading Haskell compiler can produce highly optimized code which are
comparable to those generated by other "fast" imperative languages.

1.2. Functional Programming
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1.3. Book Organization
We start the book with a quick introduction to the Haskell software
development process, in particular, using the Cabal - GHC toolchain.
This is included primarily for completeness, especially for absolute
beginners, and it can be skipped if you have some experience with
Haskell programming.

In fact, this book assumes that the reader has some exposure to Haskell,
or other similar functional programming languages.

In the next chapter, we briefly go through the lexical structure of
Haskell programs, again for completeness. This book, by its very nature,
emphasizes breadth more than depth. This chapter can also be skipped,
maybe except for the layout rules section, unless you are completely
new to Haskell. The rest of the book is organized more or less in a top
down fashion.

A Haskell program comprises one or more modules. Modules are
generally used to manage namespaces and organize large programs.
Names can be shared among different modules through Haskell’s
import-export mechanism. All Haskell programs include a special
module Main, which includes a value named main with the type IO.
This is the entry point to any Haskell program.

A Haskell module consists of a collection of declarations for entities like
ordinary values, datatypes, and type classes, and for fixity information.
Some declarations can only be used at the module-, or top-, level, and
they are described in the top-level declarations chapter. Some other
kinds of declarations, on the other hand, can be included both at the
top-level and at some nested context. They are described in the nested
declarations chapter.

We also go through some basics of Haskell’s type system in these two
chapters, including data types, newtype types, and type synonyms.

1.3. Book Organization
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As with other programming languages, Haskell includes a number of
primitive, or "builtin", types. We go through some of them, such as
booleans, numbers, characters, and strings in this chapter, and we
further discuss user-defined data types and type classes later in the
book.

Haskell is a pure functional programming language, and hence it does
not have constructs comparable to the "statements" in other imperative
programming languages, whose main purpose is to generate side
effects. At the level below the modules and declarations are
expressions, as described in the next several chapters. An expression
denotes a value and has a static type. Expressions are the bread and
butter of Haskell functional programming.

It may seem somewhat ironic, because many developers consider
functional programming languages like Haskell "complex", but the
Haskell’s language grammar is much simpler than those of other widely
used programming languages. In fact, the Haskell language itself
includes only a few different kinds of expressions (again, no side effect
causing statements), and the rest of the language constructs (e.g.,
operators) are included in the standard library. Some of them are part
of "the Standard Prelude", and they are no different from the "built-in"
language syntax for all intents and purposes.

As is the case with virtually all functional programming languages,
functions are the most important construct in Haskell. In the Functions
chapter, we review how to define a function, how to invoke a function,
and how to compose two or more functions in Haskell. We also
introduce lambda functions in this chapter.

Other than the primitive types like Bool and Char, and numbers, lists
are the most important types in Haskell, as in many functional
programming languages. Functional programming often involves
manipulating lists. Tuples are also important compound data types that
deserve a careful study if you are new to Haskell. Tuples provide a

1.3. Book Organization
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light-weight syntax for user-defined data types, which are discussed
later in the book.

All expressions in Haskell have static types. Haskell can deduce the
broadest possible type for any expression, which is called its "principal
type". Otherwise, that is, if Haskell cannot deduce the principal type,
then it is not a valid expression, i.e., not a valid Haskell code. The
expression type signature syntax can be used to specify a type
narrower than the principal type. Or, it can sometimes be used to make
an otherwise-invalid expression valid by explicitly specifying the type.

As with any high-level programing language, Haskell supports
conditional expressions, with the familiar if - then - else syntax.
Unlike in many other languages, however, both then and else clauses
are required in Haskell.

Functional programming languages also use "variables". But they have
different meanings, and they play different roles, in functional
programming languages like Haskell. In particular, variables in Haskell
do not imply "storage locations" in memory as in imperative
programming languages. (Pure) functional programming languages
only deal with "values". Variables are just names for values. In the next
chapter, Let and Where, we go through the basic syntax of the let
expressions. We also discuss the where syntax in this chapter, which
itself is not an expression but can be used in a somewhat similar
fashion to let, e.g., to define variables.

If we have to pick one particular feature that is the most important in
Haskell, it would be the pattern matching. In Haskell, it is almost the
foundation of all other expressions. Virtually everything is built on top
of pattern matching. The case expressions play the fundamental role in
this regards. Other pattern matching syntax is ultimately translated to
case expressions. A case expression can include one or more
alternative patterns, and each pattern can include zero or more
Boolean guards.

1.3. Book Organization
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In the following chapter, Patterns, we go through each of the pattern
types supported by Haskell. This is a somewhat artificial classification,
and in practice, we mostly use some combinations of these patterns.

In Haskell, there is little distinction between functions and operators.
Operators are just a special kind of functions (e.g., which take two
arguments). In the chapter, Core Functions, we describe a few of the
"built-in" functions and operators from the Prelude.

In the next chapter, List Functions, we go through other "built-in"
functions that are used to manipulate lists. There are quite a few, and
they are all important, to varying degrees. We only briefly cover each of
these functions, but it is essential to understand and "internalize" all
these functions in order to be able to use Haskell effectively. One thing
to note is that Haskell comes with other standard libraries beyond the
Prelude, but we do not cover those in this book.

Haskell supports a rather powerful polymorphic type system. After
having gone through all important expressions, we now go back to a
few important kinds of declarations, namely, the data type and class
declarations.

Needless to say, types are important in modern programing. This is
especially so in languages like Haskell which provide strong type-safety
checks at build time. It is pretty much impossible to have type-related
errors at run time. It does not mean that if you can build it, it runs
without errors, but it is pretty close. Haskell makes it rather easy to
create and use custom types through the data type declaration syntax.
A data type is defined by declaring one or more constructors, with
positional fields. Haskell also supports the record syntax for data
constructors, e.g., using labeled fields. The record syntax is now widely
adopted by many other programming languages.

Haskell’s polymorphic type system is based on type classes. We briefly
discuss the class declarations, instance declarations, and the
deriving syntax in the following chapter. The Standard Prelude

1.3. Book Organization
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includes a few predefined classes, such as Eq, Ord, Enum, Bounded,
Read, Show, and other numeric classes like Num. We briefly go through
some of these classes in the next chapter, Standard Classes.

Whether justifiable or not, Functors and (especially) Monads are
generally considered the most difficult topics in Haskell. This (short)
book will not be able to convince you otherwise if you are in that camp.
But, nonetheless, we briefly cover each of these builtin classes.
Learning is about recognizing patterns. If you have some experience in
programming, then you will realize that Functors and Monads are just
simple abstractions over some familiar programming patterns. If not,
no worries. You do not have to understand precisely what these terms
mean to be able to program in Haskell.

In the monadic context, one can use sort of "imperative-style"
programming, which a majority of programmers are more used to,
even in Haskell. This is briefly explained in the next chapter, do
Expressions.

The most important beneficiary of the Monad class is the I/O related
actions. In fact, Haskell, as a pure functional programming language,
did not initially have support for I/O for many years. Now, through
Monad, Input/Output can be easily incorporated into Haskell programs.
The IO type is one of the most important instances of Monad.

In the next, and final, chapter, IO Functions we go through some of the
I/O related functions defined in the Prelude. These are core functions to
be able to do basic IO in any Haskell programs.

It should be noted that, as indicated earlier, we do not cover any of the
Haskell Standard libraries in this book, in the interest of space and the
reader’s time. This book is a mini language reference.

1.3. Book Organization

19



Chapter 2. Haskell Software
Development
The Haskell programming language was originally created over 35
years ago. But there have been only two official releases in terms of the
language specifications. The Haskell language definition was first
publicly released in 1998, which is known as Haskell 98. The second and
currently most up-to-date spec was released in 2010, which is officially
called the Haskell 2010 Language Report.

At this point, there does not appear to be an ownership of the language
by any particular organizations. That does not mean Haskell is dead or
abandoned. Some day, there might be formed another Haskell
Committee, and they will produce the next version of the language, if
necessary. Meanwhile, the GHC team (originally, of the University of
Glasgow) has the de-facto stewardship of Haskell. They create and
distribute the most widely-used Haskell compiler and interpreter,
called ghc and ghci, respectively. And, their build tools support an
extensive set of "language extensions", which are essentially additions
to the language beyond the Haskell 2010 Report.

Although this book’s main focus is the Haskell language itself, we will
briefly discuss in this chapter the particular toolings provided by the
GHC team, to the benefit of the people who are new to Haskell software
development.

2.1. Development Tools
The most important tool in programming is clearly the compiler (or, the
interpreter). But, the modern software development is aided by various
tools. Haskell is no exception. We briefly go through some of the GHC-
related development tools in this section, without attempting to be
complete or exhaustive.

2.1. Development Tools
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2.1.1. GHCup

GHCup is an optional tool that allows easy management of other
Haskell build and package management tools. You can download it
from the GHCup Installation page [https://www.haskell.org/ghcup/install/].
Although it is not required, it is often the best and easiest way to
manage Haskell tools such as GHC, Cabal, Stack, and HLS.

For example, you can easily manage these tools using the tui command:

$ ghcup tui

(If you have used RustUp for Rust development, for instance, these two
tools are comparable to each other. In fact, there are many similar tools
across different programming languages.)

2.1.2. Cabal

Cabal is one of the most essential tools for professional Haskell software
development. It is a project and package management tool, and it is also
a high-level build tool (which uses the ghc compiler underneath). You
can scaffold a simple Haskell project using the init command. For
instance,

$ cabal init -i

You can build a Cabal project using cabal build, or you can build and
run using cabal run during development. For example,

$ cabal run --verbose=0                  ①

① The verbose flag can be used to change the verbosity of the build
output messages.

2.1. Development Tools
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You can also install any Haskell packages (available on Hackage) using
cabal install. cabal --help will print out some common usages of the
cabal command.

2.1.3. Stack

Stack is a (newer) alternative to Cabal. That is, you can manage and
build a Haskell project using Stack instead of Cabal. Some people prefer
one tool over the other, but it is really a matter of preference.

It should be noted that Stack is also integrated into the Haskell Cabal
infrastructure. The relationship between Stack and Cabal is comparable
to that of Gradle vs Maven in Java, for instance.

2.1.4. HLS

HLS, or "Haskell Language Server", is used to add Haskell language
support to IDEs or other programs that understand the language server
protocols. VS Code, along with the third-party provided extensions,
provides good dev support for a wide range of programming languages
(e.g., syntax highlighting, intellisense, static code analysis during
development, etc.). If you install HLS, then you can use VS Code, for
example, for Haskell development,

2.1.5. GHC

GHC stands for "Glasgow Haskell Compiler". As stated, it is the de-facto
standard compiler for Haskell. If you develop production-quality
software in Haskell, you will most likely have to use GHC, either directly
or indirectly.

In practice, the ghc command is rarely used directly. Most developers
use the aforementioned high-level (project-oriented) build tools like
Cabal or Stack.

2.1. Development Tools
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2.1.6. GHCI

If you are new to Haskell programming, or to functional programming
in general, REPL is one of the most important tools during software
development. It is rather hard to theorize precisely why REPL plays a
lot more important roles in functional programming than in imperative
programming, but it is not uncommon to see Haskell programmers
always keep the REPL terminal open during development.

The ghci command, the REPL that comes with the GHC toolchain, does
not compile the Haskell program like ghc. Rather it interprets the given
expressions, one at a time, in the interactive mode. (The runghc
command also interprets a given Haskell program, but in the non-
interactive mode.) You can start a Haskell REPL by simply invoking the
command, ghci:

$ ghci
GHCi, version 9.4.4: https://www.haskell.org/ghc/  :? for help
ghci>                                    ①

① The default GHCI prompt, waiting for the next command.

You can see a list of all available commands using the :h command. For
example, :info, or :i, displays information about the provided names,
and :type, or :t, shows the type of a given expression.

ghci> :i map
map :: (a -> b) -> [a] -> [b]   -- Defined in ‘GHC.Base’
ghci> :t "Hello World"
"Hello World" :: String
ghci> :t 42
42 :: Num a => a                         ①

① Numeric literals are polymorphic in Haskell. We explain what this
notation means later in the book.

2.1. Development Tools
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2.1.7. Haskell source code

As with most programming languages, Haskell programs are generally
written in files as text. Haskell programs can be coded in two different
forms, a normal program style and a "literate" style. The Haskell source
code file written in the regular style is generally saved in a file with the
.hs extension. This represents a normal code, as is commonly done in
any other programming languages.

On the other hand, in the literate programming style, Haskell code
should be prefixed with >. (Or, alternatively, code blocks can be
enclosed within LaTex style tags.) All other text is considered a
comment in the literate style code. Literate source code is generally
saved in the files with the extension .lhs.

2.2. Language Extensions
As mentioned, the GHC toolchain provides an extensive set of language
extensions. You can selectively turn on or off each of these extensions,
e.g., using the ghc command line options or using the compiler
LANGUAGE pragmas (which we do not discuss in this book). Note that, in
Glasgow Haskell, the baseline for the language definition is Haskell 98,
and not Haskell 2010. That is, you will need to enable all necessary
language extensions (or, "features") if you plan to use Haskell 2010.

Luckily, GHC also provides a small number of meta-extension options
which include other options. For example, there are currently three
predefined values, e.g., as of GHC 9.4, Haskell98 (e.g., no extensions
enabled), Haskell2010, and GHC2021.

We will always be using Haskell2010 with ghc in this book unless
otherwise specifically noted. When there is any uncertainty or conflict,
the Haskell 2010 Language Report should be the authoritative
reference. As for what language extensions are available and how to
use them, we recommend the readers refer to the GHC User’s Guide.

2.2. Language Extensions
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Chapter 3. Lexical Structure
Haskell uses the Unicode character set. A Haskell program can only
include graphic characters and whitespaces. A comment is lexically
considered a whitespace.

3.1. Comments

3.1.1. Line comments

An ordinary line comment begins with a sequence of two consecutive
dashes (e.g. --) and extends to the end of the line, including the
newline. (Note that, in Haskell, the double dashes can also be part of
lexically legal operator symbols, e.g., -->.)

-- This is comment.
--- This is also comment.

3.1.2. Nested comments

A nested multiline comment begins with {- and ends with -}. Nested
comments may be nested to any depth. Any occurrence of the character
sequence {- within the nested comment starts a new nested comment,
terminated by -}. Within a nested comment, each {- is matched by a
corresponding occurrence of -}.

{--
{-
I am a comment inside another comment.
-}
--}

3.1. Comments
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3.2. Identifiers
An identifier consists of a letter followed by zero or more letters
(including underscores _), digits, and single quotes ('). One or more
single quotes are often used at the end of an identifier to denote
alternative versions of the given entity with the same identifier but
without the single quote suffix. Identifiers are case sensitive.

Haskell identifiers are lexically distinguished into two namespaces:

• Variable identifiers - The identifiers that begin with a lowercase
letter, which denote variables or functions, and

• Constructor identifiers - The identifiers that begin with an
uppercase letter, which denote types or constructors.

Underscore _ is treated as a lowercase letter, and it can occur wherever
a lowercase letter is syntactically allowed. The identifier, _, by itself is a
reserved identifier, which is used as the wildcard in patterns. Haskell
generally offers warnings for declared but unused identifiers. However,
these warnings are suppressed against the identifiers that start with
underscores, by convention. This, for example, allows programmers to
use names like _foo or _bar as a placeholder (that they expect to be
unused).

3.3. Reserved Words
The following 20 identifiers are reserved in Haskell:

case       class       data        deriving
do         else        if          import
in         infix       infixl      infixr
instance   let         of          module
newtype    then        type        where

3.2. Identifiers
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3.4. Operators
Operator symbols consist of one or more symbol characters, and they
are classified into two distinct namespaces.

• An operator symbol with two or more characters starting with a
colon : is a constructor.

• An operator symbol starting with any other character is an ordinary
identifier.

All operators are infix by default, and they can be used in a section.

3.4.1. Reserved operator symbols

..      :       ::      =       \       |
<-      ->      @       ~       =>

3.5. Layout Rules
Haskell uses curly braces and semicolons for the purposes of grouping,
etc., just like many other programming languages. Haskell, however,
also supports layout-based style of coding without requiring braces and
semicolons in many places. These layout-sensitive and layout-
insensitive styles of coding can be freely mixed within one program.
Although the layout rules include many details, it is based on rather
straightforward indentation rules, and in practice, curly braces and
semicolons are rarely used in Haskell programs.

3.5.1. Braces and semicolons

Statements written in the layout-based style can be converted to layout-
insensitive style by adding braces and semicolons in places determined
by the layout rules.

3.4. Operators
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In general, semicolons demarcate the end of an expression, and curly
braces represent scope. For example,

cube x = c where { c = x * x * x; }

Note that an explicit open brace must be matched by an explicit close
brace. Within these explicit braces, no layout processing, as described
next, is performed.

3.5.2. Layout processing

The braces and semicolons are inserted as follows.

• When an open brace is omitted after the keyword where, let, do, or
of, a new layout starts:

◦ First, the omitted open brace is inserted at the indentation of the
next token, and then

◦ For each subsequent line,

▪ If it contains only whitespace or is indented more, then the
previous item is continued.

▪ If it is indented by the same amount, then a semicolon is
inserted and a new item begins, and

▪ If it is indented less, then a close brace is inserted and the
current layout list ends.

• When the indentation of the next token after a where, let, do, or of
is less than or equal to the current indentation level, then

◦ Instead of starting a layout, an empty item {} is inserted, and

◦ Layout processing occurs for the current level.

(Note: If you are a beginner, you do not have to memorize these rules.
Haskell’s layout rules are rather flexible, and it will all come naturally.)

3.5. Layout Rules
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Chapter 4. Modules
A module defines a collection of entities such as values, datatypes, and
classes, in an environment created by a set of imports. A module, in
turn, can make some of these entities available to other modules by
exporting them. Modules are used for namespace control, and they are
not first class values.

A Haskell program comprises one Main module and possibly zero or
more other modules. The Main module exports a value named main,
which must be an expression of type IO T for some type T. The value of
the whole program is the value of main.

4.1. Module Names
A module name is a sequence of one or more identifiers, separated by
dots (.). Each identifier must begin with a capital letter.

Although it is not part of the language definition, module names can be
thought of as being arranged in a hierarchy in which appending a new
component (with a dot .) creates a child of the original module name.

Modules in standard libraries and other widely used modules tend to
use a standardized set of "top-level" module names such as System,
Data, and Network, etc. and other related modules are organized
"under" this top-level module names such as System.IO, Data.List,
Data.Char, etc. It should be emphasized, however, that it is purely a
naming convention, and Haskell does not support "submodules" or
other relationships among the modules.

4.2. Module Structure
Generally speaking, a module and a source code file in Haskell has a
one-to-one correspondence. A Haskell module consists of two parts.

4.1. Module Names
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• A module begins with a header:

◦ The keyword module,

◦ The module name,

◦ A list of entities to be exported (enclosed in parentheses), and

◦ The keyword where, and the header is followed by

• A module body:

◦ A possibly-empty list of import declarations that specify the
modules to be imported into the current module, and

◦ A possibly-empty list of top-level declarations.

In case of the Main module, the module declaration header can be
omitted. In such a case, the header is assumed to be module
Main(main) where.

4.3. Export Lists
An export list identifies the entities to be exported by a module
declaration such as functions, types, and constructors.

If an export list is not provided, then all values, types, and classes
defined in the module are automatically exported, and they will be
available to anyone importing the module. Note that the entities
imported from other modules are not exported in this case.

module MyModule where

Limiting the names exported is done by adding a parenthesized list of
names after the module name:

module MyModule (MyType1, MyClassA, myFuncX) where

4.3. Export Lists
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Note that all instance declarations are automatically exported with
associated datatypes, and they cannot be explicitly specified in the
export list.

If a module imports another module, it can also export that module,
using the module prefix:

module MyModule (module Data.Set, module Data.Char) where

import Data.Set
import Data.Char

4.4. Import Declarations
An import declaration brings into scope the entities exported by
another module. The import declaration specifies the name of a
module, and it may optionally include the specific entities to be
imported from that module. Imported names serve as top level
declarations in the current module.

For each entity imported, both the qualified and unqualified names of
the entity is brought into scope. If the import declaration uses the
qualified keyword, however, only the qualified names of the entities
are brought into scope.

An as clause may be used with both qualified and unqualified import
statements to provide local aliases.

4.4.1. Importing all

If no specific entities are specified after the imported module name,
then all the entities exported by that module are imported, including
functions, data types and constructors, classes, and other re-exported
modules. For instance, using the following module M as an example,

4.4. Import Declarations
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module M(X(..), y) where
data X = X
y = 1

The following import declaration imports both X and y.

import M

These names can be used either as qualified, e.g., M.X and M.y, or
unqualified, e.g., X and y.

For a qualified import, however,

import qualified M

Only the qualified names are available in the importing module, e.g.,
M.X and M.y in this example. Or, we can use an as alias,

import M as M2

Or,

import qualified M as M2

In these two cases, the names M2.X and M2.y are brought into scope, in
addition to X and y in the case of unqualified import.

Note that it is legal for more than one module in scope to use the same
alias provided that all names can still be resolved unambiguously. For
example,

4.4. Import Declarations
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module Main where
  import qualified M as M2
  import qualified N as M2

This is valid as long as the module N does not export names X and y.

4.4.2. Importing some or none

The imported entities can be specified explicitly by listing them in
parentheses. The list may be empty, in which case only the instances
are imported, if any. When the (..) form of import is used for a type or
class, the (..) refers to all of the constructors, methods, or field names
exported from the module.

Using the same example module M,

import M(X(..))                          ①
import M as M2(y)                        ②
import qualified M(X(..))                ③
import qualified M as M2(X(..), y)       ④

① The names M.X and X are imported.

② The names M2.y and y are imported.

③ The name M.X is imported.

④ The names M2.X and M2.y are imported.

The following import declaration, on the other hand, imports no names
from the module M.

import M()

4.4. Import Declarations
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4.4.3. Importing all but some

As a variation of the method for importing all exported names, one can
explicitly exclude some names by using the form import moduleM
hiding(import1, …, importn). This import declaration specifies
that all entities exported by the named module should be imported
except for those specifically named in the list.

For example,

import M hiding ()                       ①
import M hiding (X)                      ②
import qualified M hiding ()             ③
import qualified M hiding (y)            ④
import qualified M as M2 hiding(X)       ⑤

① This brings the names X, y, M.X, and M.y into scope.

② This imports the names y and M.y.

③ This imports the names M.X and M.y.

④ This imports the name M.X.

⑤ This imports the name M2.y.

4.4. Import Declarations
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Chapter 5. Top-Level
Declarations
A Haskell module can include

• Zero, one, or more top-level declarations,

◦ type synonym declarations,

◦ newtype declarations,

◦ data type declarations,

◦ class declarations,

◦ instance declarations,

◦ default declarations, and

• Other declarations that can be included in both top-level and nested
scopes (e.g., within a let expression), which comprise

◦ Type signatures,

◦ Fixity declarations,

◦ Function declarations, and

◦ Pattern bindings.

These declarations can also be classified into three groups:

• User-defined data types, e.g., type, newtype, and data declarations,

• Type classes and overloading, e.g., class, instance, and default
declarations, and

• The rest nested declarations, e.g., type signatures, fixities, and value
bindings for both functions and patterns.

Haskell’s builtin types, such as integers and floating-point numbers, and
other primitive types are described in the Basic Types chapter.
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5.1. Types and Classes
Haskell uses a polymorphic type system augmented with type classes.
Idiomatic haskell programming styles are often based on manipulating
parametrized types (aka, generic types).

5.2. Haskell Type System
Haskell’s type system attributes a type to each expression during
compilation. The type of an expression depends on an environment
that determines the types of the variables in the expression. It also
depends on a class environment if types are instances of classes. In
general, a type is defined over a context for a set of type variables,
typically denoted by (one letter) lowercase alphabets. For example,

Eq a => a -> a

This denotes a function which takes a value of type a and returns a
value of the same type a (a -> a). The type constraint Eq a states that
this function type can only be defined on the types which are instances
of type class Eq. The most general type that can be assigned to a
particular expression (e.g., in a given environment) is called its
principal type. The Haskell type system can infer the principal types of
all valid expressions. Therefore, explicit type signatures for expressions
are usually not necessary.

5.3. Typeclasses
A class declaration introduces a new type class and a set of
overloaded operations, called class methods. An instance type of that
class must support those operations. An instance declaration declares
a new type of a given type class, and it (generally) includes the
implementations of the class methods.

5.1. Types and Classes
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5.4. Contexts and Class Assertions
A context consists of zero or more class assertions, with a general form
( C1 u1, …, Cn un ), where Ci ui is a class assertion. Ci represents
a type class identifier, and ui can be either a type variable, or the
application of type variable to one or more types. (e.g., Eq a in the
above example.) When there is only one type assertion, the outer
parentheses can be omitted. A class identifier begins with an uppercase
letter whereas a type variable begins with a lowercase letter.

In general, we write cx => t to indicate the constraint that the type t
is restricted by the context cx. When the context is empty, we just write
t without =>.

5.5. Type Syntax
Type values are built from type constructors. The names of type
constructors start with uppercase letters just like data constructors. But,
unlike data constructors, infix type constructors are not allowed, other
than (->). Type expressions have the following four main forms:

Type Variables

Type variables (or, "generic type parameters", as they are called in
some other programming languages) are written as identifiers
beginning with a lowercase letter, as just indicated.

Type Constructors

Here are some examples of type constructors. (Note that they are
generally called "generic types" in other languages.)

• The built-in Char, Int, Integer, Float, and Bool are type
constants. (That is, they are not "generic".)

• Maybe and IO are unary type constructors.

• Either is a binary type constructor.

5.4. Contexts and Class Assertions
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• The declarations data T … or newtype T … introduce the type
constructor T.

Haskell provides special syntax for certain built-in type constructors:

• The unit type constant is written as (), and it has one value ().

• The binary function type constructor is written as (->) (as a prefix).
A function type (->) t1 t2 can also be written, using the infix
notation, as t1 -> t2. Function type arrows are right-associative
just like in expressions. For instance, Int -> Char -> Bool is
equivalent to Int -> (Char -> Bool).

• The list type constructor is written as []. A list type [] t can also be
written as [t]. It denotes the type of lists with the element type t.

• The tuple type constructors (with two or more components) are
written as (,), (,,), and so on. A tuple type (, …,) t1 … tk can
also use the special syntax (t1, …, tk). It denotes the type of k-
tuples with its component types t1 through tk.

Type Applications

A type application t1 t2 is a type expression of types t1 and t2.

Parenthesized Types

A parenthesized type of a form (t) is identical to the type t.

Notice that Haskell supports consistent syntax for expressions and their
corresponding types. For example, if t1 and t2 are the types of
expressions e1 and e2, respectively, then a function e1 -> e2, a tuple
(e1, e2), and a list [e1] have the function type t1 -> t2, the tuple
type (t1, t2), and the list type [t1], respectively.

5.6. User-Defined Types
There are three primary constructs in Haskell through which a new
type or type alias can be introduced:

5.6. User-Defined Types
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• The data declaration for creating a new algebraic datatype,

• The newtype declaration for creating a new type based on an
existing type, and

• The type declaration for creating a type synonym for another type.

5.6.1. The data declarations

A new algebraic datatype can be declared with the data keyword.
Datatypes, along with the record syntax, are described later in the book.

Here’s a simple example:

data Cat = Cat Int Bool                  ①

① The Cat on the left hand side is a type constructor (with no type
variables), whereas the Cat on the right hand side is a data
constructor. A data type can be defined with one or more
constructors. When a data type has only one constructor, it is
conventional to use the same name for the type itself and its (only)
data constructor. The Cat constructor, in this example, includes two
fields of Int and Bool types.

5.6.2. The newtype declarations

A new type can be introduced whose representation is the same as an
existing type using the newtype keyword:

newtype cx => T u1 ... uk = N t

This declaration creates a new type T u1 … uk based on, but distinct
from, the type N t. newtype does not change the underlying
representation of an object.

5.6. User-Defined Types
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For example,

newtype Age = Age Int
newtype Weight = Weight Float

A newtype declaration may use the record syntax with one field. For
example,

newtype Age = Age { unAge :: Int }

The declaration brings into scope both a constructor and a de-
constructor:

Age   :: Int -> Age
unAge :: Age -> Int

5.6.3. The type declarations

A type synonym declaration introduces a new type that is equivalent to
an old type.

type T u1 ... uk = t

This type declaration introduces a new type constructor, T. For
example,

type LastName = String
type Perhaps = Maybe Int
type Both a = Either a a

5.6. User-Defined Types

40



Chapter 6. Nested Declarations
Nested declarations may be used in any declaration list, e.g., either at
the top-level of a module or within a where or let construct.

6.1. Type Signatures
A type signature declaration specifies types for variables, e.g., patterns
and functions. A type signature has the following general form, for one
or more variables v1 … vn:

v1, ..., vn :: cx => t

cx refers to a context and t represents a type variable or type
application. This is equivalent to

v1 :: cx => t
...
vn :: cx => t

Although Haskell can deduce the principal type of any variable, it is
conventional to include the type signature declarations for top-level
variables, especially functions, in a program. In many cases, the type
you want to use for a variable may not be the broadest principal type
(which is generally polymorphic in Haskell).

Note that, although it is syntactically not required, the type signature
declaration of a variable (almost always) immediately precedes the
binding declaration of the variable.

A variable cannot be declared with more than one type signature even
if the signatures are identical.

6.1. Type Signatures
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6.2. Fixity Declarations
A fixity declaration gives the fixity (or, "associativity") and binding
precedence of one or more operators. A fixity declaration may appear
anywhere that a type signature appears and, like a type signature, it
declares a property of a particular target operator.

Also like a type signature, a fixity declaration can only occur in the
same sequence of declarations as the declaration of the operator itself,
and no more than one fixity declaration may be given for any operator.
There are three kinds of fixity:

• Non-associativity - infix,

• Left-associativity - infixl, and

• Right-associativity - infixr.

There are ten precedence levels, 0 to 9, from binding least tightly to
binding most tightly. If the level is omitted, 9 is assumed. Any operator
without an explicit fixity declaration is assumed to be infixl 9. E.g.,

infixl 6 `plus`
a `plus` b = a + b

6.3. Function Bindings
A function binding binds a variable to a function value. A function
binding declaration for variable f has the following general form with
n clauses, n >= 1:

f p11 ... p1k  match1
...
f pn1 ... pnk  matchn

6.2. Fixity Declarations
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where each pij is a pattern each matchi is of the general form:

| gsi1 = ei1
...
| gsimi = eimi
  where { declsi }

The expressions, gsi1 through gsimi, are called the guards, and they
are evaluated to the Boolean values. Pattern matching is further
discussed throughout this book, especially in the case expressions and
patterns chapters.

In case when matchi has a single guard that is merely True, it can be
simply written as follows:

= ei where { declsi }

Note that

• All clauses defining a function must be contiguous, and

• The number of patterns in each clause must be the same.

For example,

fun :: Int -> Int -> String              ①
fun 0 0 = "Origin"                       ②
fun x 0                                  ③
  | x > 0 = "Positive x-axis"
  | x < 0 = "Negative x-axis"
fun 0 y                                  ④
  | y > 0 = "Positive y-axis"
  | y < 0 = "Negative y-axis"
fun _ _ = "Not so special"               ⑤

6.3. Function Bindings
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① The general type signature declaration syntax is discussed earlier in
this chapter. We further discuss what this particular signature
means for functions later in the book. As indicated, it is a universal
convention that the type signature for a top-level function binding is
placed immediately before the biding declaration.

② This clause is equivalent to fun 0 0 | True = "Origin".

③ This clause includes a pattern and a match with two guards.

④ Ditto. After the function name, 0 y is a pattern, and the rest is a
match.

⑤ The underscore symbol _ is a wildcard pattern. The two juxtaposed
patterns, in a function binding declaration as in this example,
effectively represent a tuple pattern (e.g., for the two function
arguments), as we further discuss later, in the context of case
expressions.

6.4. Pattern Bindings
A pattern binding declaration binds variables to values. The general
form of a pattern binding is p match, where a match is the same
structure as for function bindings.

p | gs1 = e1
  | gs2 = e2
  ...
  | gsm = em
  where { decls }

The pattern p is matched "lazily" as an irrefutable pattern, as if there
were an implicit ~ in front of it.

In case when the guard is simply True, the pattern binding has the
simple form:

6.4. Pattern Bindings
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p = e

For example,

x :: Int                                 ①
x = 3                                    ②

a, b :: Int
(a, b) | x > 0 = (3, 4)                  ③
       | x < 0 = (-3, -4)
       | otherwise = (0, 0)

① A type signature declaration for the following pattern binding. Note
that Int is the type of the value of the expression 3 in this example.
We discuss what is an "expression" in Haskell throughout the book.

② A simple pattern binding. Note that, in other more traditional
programming languages this kind of syntax may be called a variable
declaration and/or variable assignment, etc. In Haskell, the
expression on the left-hand side is a pattern (which is clearly more
general and more flexible than just using "names" in other
languages). This particular pattern binding declaration is equivalent
to x | True = 3.

③ A slightly more general pattern binding example. The value
otherwise is a synonym for True.

6.4. Pattern Bindings
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Chapter 7. Basic Types
The Haskell Prelude contains predefined classes, types, and functions
that are implicitly imported into every Haskell program.

The following types are defined in the Prelude:

• The boolean type, Bool,

• Numeric types, Int, Integer, Float, and Double, etc.,

• Char and String,

• Lists,

• Tuples,

• Maybe, Either, Ordering, and

• IO and IOError Types.

In addition, Haskell defines the unit () datatype, which represents a
void value, and an implicit type "Bottom" _|_, which is included in
every type.

7.1. Booleans
The boolean type Bool is an enumeration.

data Bool = False | True
  deriving (Read, Show, Eq, Ord, Enum, Bounded)

7.1.1. Boolean functions

The basic boolean functions are && (and), || (or), and not. The name
otherwise is defined as True to make guarded expressions more
readable.

7.1. Booleans
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(&&) :: Bool -> Bool -> Bool
(||) :: Bool -> Bool -> Bool
not :: Bool -> Bool
otherwise :: Bool

For example,

ghci> [True && True, True && False, False && True, False &&
False]
[True,False,False,False]
ghci> [True || True, True || False, False || True, False ||
False]
[True,True,True,False]
ghci> [not True, not False]
[False,True]
ghci> otherwise
True

7.2. Characters
Haskell’s character type Char is an enumeration whose values
represent Unicode characters. Character literals, e.g., a, Z, and #, are
nullary constructors in the datatype Char.

Type Char is an instance of the classes Read, Show, Eq, Ord, Enum, and
Bounded. The toEnum and fromEnum functions, from the Enum class,
map characters to and from the Int type, respectively. For example,

ghci> toEnum 65 :: Char
'A'
ghci> fromEnum 'a' :: Int
97

7.2. Characters
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7.3. Strings
String in Haskell is an alias for a list of chars. That is,

type String = [Char]

For example,

ghci> h = "hello world"
ghci> import Data.Char
ghci> map toUpper h
"HELLO WORLD"

A string literal may include a "gap", that is, a pair of backslashes
enclosing one or more whitespace characters, including newlines. Gaps
are ignored, which allows writing "multi line" strings in Haskell. For
example,

ghci> :{                                 ①
ghci| truth = "It's not\      \enough\   ②
ghci|         \ to speak, \
ghci|         \but to speak true."
ghci| :}
ghci> putStrLn truth                     ③

① GHCI accepts multi-line commands with this syntax, using a pair of
opening and closing symbols, :{ and :}.

② Note that there are three backslash characters. The first two match
and form a gap. The third one pairs with the one at the beginning of
the next line.

③ This will output It’s notenough to speak, but to speak true.

7.3. Strings
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7.4. Numbers
The Prelude defines a few basic numeric types:

• Fixed sized integers (Int),

• Arbitrary precision integers (Integer),

• Single precision floating (Float), and

• Double precision floating (Double).

Other numeric types such as rationals and complex numbers are
defined in libraries. The class Num of numeric types is a subclass of Eq,
since all numbers may be compared for equality. Its subclass Real
library is also a subclass of Ord, since the order comparison operations
apply to all but complex numbers.

7.4.1. Numeric operators

The following operators for arithmetic computations are defined in the
Prelude:

(^)  :: (Num a, Integral b) => a -> b -> a
(^^) :: (Fractional a, Integral b) => a -> b -> a
(**) :: Floating a => a -> a -> a

(*)  :: Num a => a -> a -> a
(/)  :: Fractional a => a -> a -> a
quot :: Integral a => a -> a -> a
rem  :: Integral a => a -> a -> a
div  :: Integral a => a -> a -> a
mod  :: Integral a => a -> a -> a

(+)  :: Num a => a -> a -> a
(-)  :: Num a => a -> a -> a

7.4. Numbers
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(^), (^^), and (**) are exponent operators. Note that `quot`, `rem`,
`div`, and `mod` are usually used as infix operators.

7.4.2. Numeric functions

In addition, the following functions are also defined in the Prelude for
numeric types:

subtract     :: (Num a) => a -> a -> a
even, odd    :: (Integral a) => a -> Bool
gcd          :: (Integral a) => a -> a -> a
lcm          :: (Integral a) => a -> a -> a
fromIntegral :: (Integral a, Num b) => a -> b
realToFrac   :: (Real a, Fractional b) => a -> b

What these functions do should be rather self-evident even if you
haven’t used Haskell before. gcd and lcm stand for greatest common
divisor and least common multiple, respectively. Note that the
distinction between operators and functions is rather subtle in Haskell.
This is discussed later in the Expressions chapter.

7.5. The Unit Datatype
The unit type () is an enumeration with one nullary constructor ().
Type () is an instance of Read, Show, Eq, Ord, Bounded, and Enum.

ghci> [() == (), () /= ()]
[True,False]
ghci> [minBound :: (), maxBound :: ()]
[(),()]
ghci> fromEnum () :: Int
0
ghci> toEnum 0 :: ()
()

7.5. The Unit Datatype
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7.6. Maybe
The Maybe datatype, defined in the Prelude, consists of two constructors
Nothing and Just a.

data Maybe a = Nothing | Just a
  deriving (Eq, Ord, Read, Show)

The Maybe type derives from Eq, Ord, Read, and Show. In addition,
Maybe is an instance of classes Functor, Monad, and MonadPlus.

The Prelude also includes maybe function, which takes a value n, a
function f, and a value of Maybe type and returns the first value n if the
Maybe value is Nothing or f x if the Maybe value is Just x.

maybe :: b -> (a -> b) -> Maybe a -> b

For example,

ghci> maybe 0 (+ 10) Nothing
0
ghci> maybe 0 (+ 10) (Just 2)
12

7.7. Either
The Either datatype consists of two constructors Left and Right, and
it derives from Eq, Ord, Read, and Show.

data Either a b = Left a | Right b
  deriving (Eq, Ord, Read, Show)

7.6. Maybe
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The either function takes two functions and a value of Either, and it
invokes the first function or the second function depending on whether
the given value is the Left or Right variant, respectively.

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x)  =  f x
either f g (Right y) =  g y

For example,

ghci> either (* 2) (+ 10) (Left 3)
6
ghci> either (* 2) (+ 10) (Right 5)
15

7.8. Ordering

data Ordering = LT | EQ | GT
  deriving (Eq, Ord, Enum, Bounded, Read, Show);

The Ordering datatype is used to represent "greater than", "less than",
and "equal to" relationships. For example,

ghci> :{
ghci| cmp :: Int -> Int -> Ordering
ghci| cmp x y
ghci|   | x > y = GT
ghci|   | x < y = LT
ghci|   | otherwise = EQ
ghci| :}
ghci> [cmp 1 3, cmp 3 1, cmp 3 3]
[LT,GT,EQ]

7.8. Ordering
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7.9. Bottom
The pseudo-type "Bottom" _|_ is a subtype of all types in Haskell. It is
an empty type. That is, it does not have a value of its own kind. The
bottom refers to a computation which does not return a value in
Haskell, e.g., due to some kind of errors, or because the computation
never terminates (and, hence does not return a value). The undefined
value can be used in situations where a value of bottom is needed.

7.10. The IO Type
The IO type serves as a tag for operations (actions) that interact with
the outside world. IO is a unary type constructor, and it is an abstract
type. No data constructors are visible to the user. IO is an instance of
the Functor and Monad classes. We discuss the basic I/O and I/O-related
functions at the end of the book.

7.11. The IOError Type
IOError is also an abstract type, representing errors raised by I/O
operations. It is an instance of the Show and Eq classes. Values of this
type are constructed by various I/O functions, including the userError
function defined in the Prelude.

7.9. Bottom
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Chapter 8. Expressions
Haskell is based on lambda calculus. But, as a high-level programming
language, it provides syntax for expressions and what not. In the
following few chapters, we describe the syntax and informal semantics
of Haskell expressions.

8.1. Variables
Haskell, as a pure functional programming language, has no concept of
"updating". That is, a value does not contain any mutable state.
Variables are bound to values via the pattern binding declarations. The
same variable can be bound to different values, even within the same
scope. The new binding "shadows" the earlier bindings.

8.2. Literals
In Haskell, numeric literals are polymorphic.

• An integer literal is a syntactic shorthand for applying
fromInteger to the given value of type Integer.

• A floating point literal is a shorthand notation of an application of
fromRational to the given value of type Rational.

8.3. Operators
Haskell provides special syntax for "operators". An operator is a
function that can be applied using infix notation, or partially applied
using a section. An operator is either an operator symbol, e.g., ++, or is
an ordinary identifier in back quotes, e.g., `op`. That is, x `op` y is
semantically equivalent to op x y. In reverse, an operator symbol can
be converted to an ordinary identifier by enclosing it in parentheses.
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Haskell’s "builtin" operators (e.g., from the Prelude) have the following
fixity declarations (operator precedence and associativity):

infixr 9  .                              ①
infixr 8  ^, ^^, **
infixl 7  *, /, `quot`, `rem`, `div`, `mod`
infixl 6  +, -
infix  4  ==, /=, <, <=, >=, >
-- infixr 5  :                           ②
infixr 3  &&
infixr 2  ||
infixl 1  >>, >>=
infixr 1  =<<
infixr 0  $, $!, `seq`

① This is a function composition operator. In Haskell, the function
application syntax (which is not an operator) has the highest
precedence (it’s literally off the chart ), and it is left-associative.
The next in line is the function composition, which is right-
associative (as indicated by infixr).

② The cons operator : is also a builtin syntax, and not a declared
operator. But, if a fixity declaration were given, it would be infixr
5 :. The fixity declaration syntax (e.g., for user-defined operators) is
explained later in the book.



A lot of beginning Haskell programmers find Haskell
difficult. They generally attribute this difficulty to FP.
That is, however, most likely not the case. The initial
difficulty that beginners face is the syntax, not the
functional programming. For instance, these fixity rules
are, although trivial in a sense, one of the most difficult
to learn, or to get used to. In imperative programming,
this is not that significant, in which we rarely use long
expressions. In functional programming, on the other
hand, we deal with (only) expressions. Sometimes, long
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expressions. Despite this, or possibly because of this,
the use of parentheses are generally discouraged in
Haskell when they are not necessary. Therefore, you
will have to know these fixity rules by heart to be able
to read (and, write) Haskell code.

8.4. Errors
Errors during expression evaluation, denoted by _|_ ("bottom"), are
indistinguishable by a Haskell program from non-termination. Since
Haskell is a non-strict language, all Haskell types include _|_. That is, a
value of any type may be bound to a computation that, when
demanded, results in an error. When evaluated, errors cause
immediate program termination and cannot be caught by the user.

8.5. The error and undefined
Functions

8.5.1. The error function

error stops execution and displays an error message.

error :: String -> a

8.5.2. The undefined value

When undefined is used, the error message is created by the compiler.

undefined :: a
undefined = error "Prelude.undefined"
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Chapter 9. Functions
A function is an abstract type, and they do not have constructors. A
function value is created by declaring its name, zero or more
parameters, and an equal sign =, followed by an expression, which is
the definition of the function. All function names must start with a
lowercase letter or _. For example,

incrBy1 :: Int -> Int                    ①
incrBy1 x = x + 1                        ②

① A type signature, immediately preceding the function binding.

② This notation suggests that if you apply the function incrBy1 to x, its
value will be x + 1.

9.1. Function Applications
Function application is written as, e1 e2. Application associates left.
That is, x y z is equivalent to (x y) z, for instance. This syntax is
somewhat unusual in that, in mathematics, and in fact in the vast
majority of programming languages, function application uses the
parentheses notation. However, the Haskell syntax, based on lambda
calculus, is the most efficient notation for function application, which is
at the heart of everything else in Haskell.

For example,

f1 :: Int -> Int -> Int -> Bool
f1 x y z = (x > y) && (y > z)            ①

main = do                                ②
  print $ f1 5 4 3                       ③
  print $ f1 3 3 1                       ④

9.1. Function Applications
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① As described in the Nested Declarations chapter, a function binding
uses patterns. In this example, the triple x y z, after the function
name f1, is an (implicit) tuple pattern comprising three variable
patterns. This is an irrefutable pattern, meaning that any valid
application will match this clause, and we do not need, and cannot
have, any other clauses below this line.

② As indicated earlier, the value main has a polymorphic type IO a. In
all examples in this book, which is also generally the case in
practice, the type of main is almost always IO (). Hence, we will
generally omit the type signature for main in this book. The do
notation is explained near the end of the book, in the context of the
I/O. But, in effect, do allows us to use "imperative style"
programming. In this example, the do expression includes two
print expressions, which are processed sequentially one after the
other. Note that we almost always use the layout-sensitive coding
style. That is, the curly braces enclosing these two print expressions
in this example are omitted by using the indentation rules.

③ An example of function application, f1 5 4 3. Note the similarity
between the function binding pattern and the function application
syntax. This application evaluates to True, in this example. print is
one of the builtin I/O functions that we use throughout this book
without first defining them. It prints the given value to the terminal.
The lazy infix application operator $ is explained later in the Core
Functions chapter. Since function applications are left-associative,
print f1 5 4 3 would have had a different meaning (and, in fact,
syntactically invalid). We could have done print (f1 5 4 3), but
the syntax with fewer parentheses is generally preferred in Haskell.

④ f1 3 3 1 evaluates to False. As we will discuss shortly, the f1
function can be either viewed as taking three arguments (and
returning a value), or it can be viewed as taking one argument (and
returning a function). f1 3 3 1, (f1 3) 3 1, and ((f1 3) 3) 1
are all syntactically equivalent, and they are also semantically
equivalent through currying.
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9.2. Operator Applications
Application of a binary operator op on e1 and e2, e.g., (op) e1 e2 can
be written as infix application, e1 op e2. Likewise, application of a
binary function, e.g., f e1 e2, can be also written with an infix form,
e1 `f` e2. Note that, lexically, operators belong to two categories,
operator symbols and ordinary identifiers.

Here are a couple of example functions to demonstrate the infix-based
function application syntax:

(+*+) :: Int -> Int -> Int
x +*+ y = x + 2 * y                      ①
mold :: Int -> Int -> Int
x `mold` y = x * (y + 2)                 ②

① Alternatively, (+*+) x y = x + 2 * y. Note that Haskell allows
defining any arbitrary operators, in particular, using operator
symbols. But, as the saying goes, with the great power comes the
great responsibility.

② Or, mold x y = x * (y + 2).

Then, we can use them as follows, for instance:

main = do                                ①
  print $ 5 +*+ 10                       ②
  print $ (+*+) 10 5
  print $ mold 1 2
  print $ 2 `mold` 1

① As indicated, the main function signature main :: IO () is always
omitted in this book.

② These four print function applications will output 25, 20, 4, and 6,
to the terminal.

9.2. Operator Applications

59



9.3. Lambda Abstractions
Functions can also be declared anonymously. For example, an
expression, \x -> x * x, defines a function which takes one argument
and returns its squared value. Anonymous functions, also called
lambdas or lambda expressions, are useful for simple functions that
need not be separately declared first.

As with (regular) functions, a lambda is just a value in Haskell, which
has a function type. For example,

squareAll :: [Int] -> [Int]
squareAll = map (\a -> a * a)            ①
biggerThan :: [Int] -> ([Int] -> [Int])  ②
biggerThan n = \xs -> filter (> n) xs    ③

① The map function takes two arguments. In this example, only one
(e.g., a lambda function) is given. This is called the partial
application. It is useful for currying and sections, for example.

② Note that the part in the parentheses in this type signature is the
type of the lambda function on the right hand side of the function
binding in the next line. The parentheses in this example is
redundant, as we discuss next.

③ This is for illustration only. Lambdas are typically declared at the
point of use, and they are rarely given names. Note that, by
convention, the variables that end with s are lists. E.g., zss could
refer to a list of lists (because it ends with two s's). The builtin
filter function is discussed later. (> n) is a section.

A general lambda abstraction can be written as

\ p1 ... pn -> e
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where the pi are patterns. Note that the backslash character in the
lambda syntax is supposed to represent the Greek Lambda character.
An example lambda function with two arguments:

main = do
  let lamb = \x y -> 2 * x + y           ①
  print $ lamb 5 10                      ②

① Again, for illustration only. This let binding with a lambda function
is the same as a function binding, lamb x y = 2 * x + y. Note
that, unlike in the case of regular functions, a lambda function
cannot have more than one pattern clause.

② This will print out 20 to the terminal.

9.4. Curried Applications
As indicated, function applications are left-associative in Haskell, and a
function that takes n arguments, e.g., f e1 e2 … en, is equivalent to a
function that takes n-1 arguments, e.g., g e2 … en, if f e1 == g. The
expression f e1 is called partial application.

Hence, f can be viewed as a function that takes one argument (e1) and
returns a function (g) that takes n-1 arguments (e2 … en). Likewise,
function application of g that takes n-1 arguments, g e2 … en, is
equivalent to h e3 … en if g e2 == h. Therefore, again the function g
can be viewed as a function that takes one argument (e2) and returns
another function (h) that takes n-2 arguments (e3 … en). We can
continue this process down to the level where the last function takes
one argument and returns a simple value (e.g., a function takes zero
arguments).

(In pure functional programming languages like Haskell, a function that
takes zero arguments must return a constant value. There are no other
options, unlike in other impure languages, as you can easily convince
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yourself. Hence, there is a one-to-one correspondence between a simple
value and a nullary function that returns that value. In fact, they are
equivalent in Haskell.)

Converting a function that takes n arguments, n >= 2, to a functional
form that takes one argument and returns one value, i.e., a function, is
called "currying". In Haskell, there is little difference between these two
forms, and in fact we do not need "conversion". Syntactically, Haskell
does not really distinguish these two interpretations. Therefore, we
consider all functions in Haskell take one argument and return one
value. This is manifested, for example, in the function type notations.
All functions in Haskell are curried functions.

9.4.1. An informal illustration

As an example, let’s consider the following three functions, f1, f2, and
f3, which have different arities, e.g., 1, 2, and 3, respectively.

f1 :: Int -> Int
f1 c = 5 + 3 * c

f2 :: Int -> Int -> Int
f2 b c = 1 + 2 * b + 3 * c

f3 :: Int -> Int -> Int -> Int
f3 a b c = a + 2 * b + 3 * c

As indicated, the function application is left-associative, whereas the
arrows in the function type signatures associate right in Haskell. (This
illustration will show you why that is chosen to be the case.)

The type signature of f3 is, therefore, equivalent to f3 :: Int ->
(Int -> Int -> Int). In this (curried) interpretation, the f3 function
takes one argument of type Int and returns one value of type Int ->
Int -> Int, which happens to be the type of the function f2.
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The type of f2 is f2 :: Int -> (Int -> Int), which indicates that
f2 takes one value of Int and returns one value of Int -> Int, which
happens to be the type signature of f1. The f1 function also takes one
value (of type Int) and returns one value (of type Int).

We have deliberately chosen the implementations of these three
functions. Now, let’s trace back. The f3 function takes three arguments
and returns one value, in the conventional (non-curried) view:

f3 :: Int -> Int -> Int -> Int           ①
f3 a b c = a + 2 * b + 3 * c

① Haskell could have chosen different notations for multi-argument
functions (e.g., something like (Int, Int, Int) -> Int), but they
didn’t. The illustration in this section will convince you why that was
not necessary.

This is, however, equivalent to

f3 :: Int -> (Int -> Int -> Int)
(f3 a) b c = a + 2 * b + 3 * c

That is, the partial application f3 a is a function that takes two Int
arguments and returns an Int value. f3 a happens to be the same as
f2 when a happens to be 1. Likewise,

f2 :: Int -> (Int -> Int)
(f2 b) c = 1 + 2 * b + 3 * c

The partial application f2 b is a function that takes an Int value and
returns an Int value. f2 b happens to be the same as f1 when b == 2
(again, in this deliberately constructed example). That is,
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f1 :: Int -> Int
f1 c = 5 + 3 * c

Hence, there is no difference between f2, which takes two arguments b
and c and returns one Int value and (f2 b), which returns a function
that takes one argument c and in turn returns an Int value. Likewise,
there is no difference between f3, which takes three arguments a, b,
and c and returns one Int value and (f3 a), which returns a function
that takes two arguments b and c and returns an Int value.

Note also that the left-associativity of function applications and the
right-associativity of arrows in the function types dovetail well with
each other. (Notice the respective positions of the (optional)
parentheses we’ve added in these examples.)

9.5. Sections
Sections are a syntactic shorthand for partial application of binary
operators. For example, using the multiplication * operator,

triple = (*) 3                           ①

main = do
  print $ triple 10                      ②

① triple is a function that takes one argument since the other
argument (of the binary (*)) has been partially applied with a value
3. Note that this pattern binding is essentially equivalent to a
function binding with one clause, triple x = ((*) 3) x (which is
in turn equivalent to triple x = 3 * x). Its type signature is
triple :: Int -> Int. As one can easily see, the syntactic
difference between pattern bindings and function bindings are
somewhat superficial.
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② This will print 30.

Now, using triple instead of (*) 3 has some syntactic convenience
since we do not have to use many parentheses, e.g., triple 10 vs ((*)
3) 10. Section provides this syntactic convenience without having to
create a new binding. For example, this triple function can be written
as (3 *). (Note the order.)

Another, possibly more important, advantage of sections is that we can
supply the argument either on the left or right hand side, unlike in the
case of general partial applications, in which arguments are consumed
from left to right. That is, (op e1) and (e1 op) are generally two
different sections. (Multiplication happens to be commutative, and
hence (e *) and (* e) are effectively the same function.)

Formally, given a binary operator op and an expression e, a right
section is written as

e op                                     ①

① This is equivalent to the normal partial application form, (op) e.
(Note the difference between the infix and prefix notations.)

Likewise, a left section for op and e is written as

op e                                     ①

① This form has no corresponding partial application form.

The right section (e op) is syntactically valid if and only if (e op x)
parses in the same way as ( (e) op x ). Likewise, the left section (op
e) is syntactically valid if and only if (x op e) parses in the same way
as ( x op (e) ).
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9.6. Function Composition
Function composition (.) plays as an essential role as function
application in Haskell. The builtin function composition operator .
composes two given functions.

(.) :: (b -> c) -> (a -> b) -> (a -> c)

Composing a function h (a -> b) with g (b -> c), i.e., g . h, yields a
function from a to c (a -> c). (Note the order.)

(g . h) x is defined to be g (h x). That is, if we set f = g . h, then
f x = g (h x). Note that a function (partial) application g h would
have associated left. That is, for a given argument x, the function
application would have been (g h) x, or g h x (which is syntactically
invalid in this example). On the other hand, g . h applied to x would
yield a different value, g (h x). For example,

fnOne :: Int -> Int
fnOne x = x + 1
fnTwo :: Int -> Int
fnTwo x = 2 * x
fnCombo :: Int -> Int
fnCombo = fnTwo . fnOne

main = do
  print $ (fnTwo . fnOne) 3              ①
  print $ fnCombo 3                      ②

① This will print 8.

② The same. Note that fnCombo x = 2 * (x + 1). The power of
function composition often comes from the fact that we can
manipulate, and compute, functions without applying them first to
any specific values.
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Chapter 10. Lists
The list literal, [e1, …, ek], represents a list of k expressions, e1, e2,
… through ek. The empty list is denoted [].

In Haskell, the list data constructor is a special operator : (or, "cons").
Lists are an instance of classes, Read, Show, Eq, Ord, Functor, Monad,
and MonadPlus. Standard operations on lists defined in the Prelude are
included later in the book.

10.1. List Constructors
Lists are an algebraic datatype with two constructors, albeit with
special syntax. The first constructor is the null list, written [] ("nil"),
and the second is : ("cons"). For example,

main = do
  let a = [] :: [Int]                    ①
  print a
  let b = 1 : ([] :: [Int])              ②
  print b
  let c = 'a' : ['d', 'e', 'f']          ③
  print c
  let d = 'g' : c                        ④
  print d

① A nil constructor for [Int] list. a is an empty list of type [Int]. The
print function in the next line will print [].

② A cons constructor with two arguments, 1 and an empty [Int] list. b
is [1].

③ A cons constructor with 'a' and a [Char] list, ['d', 'e', 'f']. c
is "adef", or ['a', 'd', 'e', 'f'].

④ Another cons constructor example. d is "gadef".
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Note that, for example, [1, 2, 3, 4] is the same as 1 : 2 : 3 : 4
: [], which is the same as 1 : (2 : (3 : (4 : []))). (The builtin
cons operator is right-associative.) In general, a list literal is a shorthand
for the constructor expressions with each element subsequently added
to the head.

main = do
  print $ 'L' : 'i' : 's' : 't' : []     ①

① This will print "List".

10.2. Enumerations
Haskell supports a special syntax for creating a list with enumerable
elements. This is called the "arithmetic sequences" (or, "ranges" or
"enumerations", etc.). Syntactically, it can take one of the following four
forms:

[ exp1 .. ]
[ exp1, exp2 .. ]
[ exp1 .. exp3 ]
[ exp1, exp2 .. exp3 ]

That is, exp2 and exp3 are optional, while it requires [ exp1 .. ].
The expressions, exp1, exp2, and exp3, should be of type t, which is an
instance of class Enum. Any of these arithmetic sequences denotes a list
of type [t]. They are defined as follows:

• [exp1 ..] == enumFrom exp1

• [exp1, exp2 ..] == enumFromThen exp1 exp2

• [exp1 .. exp3] == enumFromTo exp1 exp3

• [exp1, exp2 .. exp3] == enumFromThenTo exp1 exp2 exp3
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When exp3 is omitted, it is assumed to be the biggest element for the
given Enum type t. Otherwise, the semantics of arithmetic sequences
are entirely dependent on the type t. In cases of numeric types, exp1 is
the first element, and exp2 - exp1 represents the "step". For example,

main = do
  print [5 .. 10]                        ①
  print [2, 4 .. 11]                     ②
  print $ take 5 [1 .. ]                 ③
  print $ take 5 [2.0, 5.0 .. ]          ④

① This will print [5,6,7,8,9,10]. Note that the last element (exp3) is
inclusive.

② This will print [2,4,6,8,10].

③ This will print [1,2,3,4,5]. Note that [1 .. ] is an infinite list,
with the Integer element type.

④ This will print [2.0,5.0,8.0,11.0,14.0].

Another example, using Char elements,

main = do
  print ['d' .. 'h' ]                    ①
  print ['d', 'f' .. 'k' ]               ②
  print $ take 10 ['w' .. ]              ③
  print $ take 10 ['t', 'v' .. ]         ④

① This will print "defgh".

② This will print "dfhj".

③ This will print "wxyz{|}~\DEL\128". Note that Char type is
bounded. That is, ['w' .. ] is not an infinite list.

④ This will print "tvxz|~\128\130\132\134".
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10.3. List Comprehensions
List comprehensions are now widely supported by many different
programming languages, including Scala and Python.

A list comprehension in Haskell has the following general syntax:

[ exp | q1, ..., qi, ..., qn ]

Here n is equal to, or bigger than, 1, and each qualifier qi can be one of
the following three forms:

• Generators of the form pat <- exp, where pat and exp are
patterns and expressions of types t and [t], respectively,

• Boolean expressions known as guards, to filter preceding
generators, and

• Local let bindings that are to be used in the generated expression
exp or subsequent boolean guards and generators.

A list comprehension evaluates the target expression exp in the
successive environments, from left to right, which are created by
evaluating the generators in the qualifier list.

Note that, in the list comprehension, pattern matching in a generator is
simply used for filtering. That is, if a match fails then that element of
the list is just excluded from the resulting list.

Here are some examples:

main = do
  let c1 = [x * x | x <- [1 ..]]         ①
  print (take 5 c1 :: [Integer])         ②
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① An infinite list of squared integer values. This list comprehension
includes one generator, x <- [1 ..], which uses the enumeration
syntax.

② This will output [1,4,9,16,25] to the terminal.

divisors :: Int -> [Int]
divisors n = [d | d <- [1 .. n],
              n `mod` d == 0]            ①

main = do
  print (divisors 10, divisors 12)       ②

① A Boolean guard. This guard is used as a filter for the "divisors" of
the given Int argument.

② This line will print ([1,2,5,10],[1,2,3,4,6,12]).

main = do
  let c2 =
        [ (a, b)
        | a <- [1 .. 5] :: [Int]
        , b <- [1 .. 5] :: [Int]
        , let s = a + b                  ①
        , s >= 3                         ②
        , s <= 4                         ③
        ]
  print c2                               ④

① A local let binding, whose value is used in the subsequent guards.

② A Boolean guard.

③ Another guard. These two guards could have been combined as one
guard s >= 3 && s <= 4 in this example.

④ The output: [(1,2),(1,3),(2,1),(2,2),(3,1)].
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Chapter 11. Tuples
Tuples are algebraic data types with special syntax, (e1, …, ek). A
tuple size must be equal to, or greater than, 2, but there is no preset
upper bound, other than practical limitations. A compliant Haskell
implementation is required to support tuples up to size 15.

All tuples are instances of Eq, Ord, Bounded, Read, and Show, that is, as
long as all their component types are.

For example,

apply :: (t -> a, t -> b) -> t -> (a, b)
apply (f1, f2) list = (f1 list, f2 list)

main :: IO ()
main = do
  print (True, 'A', "Haskell")           ①
  print $ apply (head, tail) [1, 2, 3]   ②

① (True, 'A', "Haskell") is a 3-element tuple of a Bool, a Char,
and a String.

② (head, tail) is a 2-element tuple of functions. Note the definition
of apply which takes a pair of functions as its first argument.

11.1. Tuple Constructors
The constructor for an n-tuple is written as (, … ,) with n-1 commas,
e.g., by omitting the expressions surrounding the commas in an n-tuple.
Hence, for instance, (,,) a b c constructs a tuple (a, b, c).

Likewise, the tuple type constructor has a similar syntax, as described
earlier in the book. For instance, (,,) Bool Char Int denotes the
same type as (Bool, Char, Int).
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As an example,

main = do
  let x = (,,) 'a' True 'z'              ①
  print x                                ②

① Variable x has a type (Char, Bool, Char), or (,,) Char Bool
Char.

② This will print ('a',True,'z').

11.2. Tuple Functions
The following functions are defined in the Prelude for pairs (2-tuples):

fst     :: (a,b) -> a
snd     :: (a,b) -> b
curry   :: ((a, b) -> c) -> a -> b -> c
uncurry :: (a -> b -> c) -> (a, b) -> c

11.2.1. The fst and snd functions

• The fst function takes a pair and it returns its first element, e.g.,
fst (x,y) returns x.

• The snd function takes a pair and it returns its second element, e.g.,
fst (x,y) returns y.

For example,

main = do
  let pair = ("Hello", 42 :: Int)
  print $ fst pair                       ①
  print $ snd pair                       ②
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① The output: "Hello"

② The output: 42

11.2.2. The uncurry and curry functions

• The uncurry function takes a (curried) function that accepts two
arguments and converts it to a function which takes a single
argument of a pair type. That is, uncurry f pair is defined to be f
(fst pair) (snd pair). (Note that, since function applications
are left-associative, uncurry f pair is the same as (uncurry f)
pair.)

• The curry function converts an uncurried function that takes a pair
into a (regular) curried function. That is, curry ucf x y, or
(curry ucf) x y, is defined to be ucf (x, y).

For instance,

addFn :: Int -> Int -> Int               ①
addFn a b = a + 2 * b

uncurriedAddFn :: (Int, Int) -> Int      ②
uncurriedAddFn = uncurry addFn

pairFn :: (Int, Int) -> Int              ③
pairFn (a, b) = 2 * a - b

curriedPairFn :: Int -> Int -> Int       ④
curriedPairFn = curry pairFn

① A "regular" function.

② An uncurried version of addFn.

③ A function that takes a pair.

④ A curried version of pairFn.
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Here are a few simple examples of using these functions:

main = do
  print $ addFn 1 2                      ①
  print $ uncurriedAddFn (1, 2)          ②
  print $ pairFn (1, 2)                  ③
  print $ curriedPairFn 1 2              ④

① The output: 5

② The same output: 5

③ The output: 0

④ The same output: 0

11.3. The Unit and Parenthesized
Expressions
The unit expression () has type (), whose only member is () (other
than the bottom _|_). () can be thought of as the "nullary tuple" (with
zero elements). (That is, the unit notation using the tuple-like syntax is
not a coincidence.)

Haskell does not support one-element tuple types unlike in some other
programming languages. The form ( exp ) is simply a parenthesized
expression, and it is equivalent to exp. From the viewpoint of algebraic
data types, a single element tuple type is no different from the element
type itself. That is, a (hypothetical) type (t) must be the same type as t,
and a single element tuple cannot be a distinct type in Haskell.

11.3. The Unit and Parenthesized Expressions

75



Chapter 12. Expression Type
Signatures
Expression type signatures have the following two forms:

exp :: t
exp :: cx => t

where exp is an expression and t is a type. The context cx is optional,
as in normal type signature declarations.

Expression type signatures may be used

• To explicitly type an expression, or

• To resolve ambiguous typings due to overloading.

As with normal type signatures,

• The declared type may be more specific than the principal type
derivable from exp, but

• It is illegal to give a type that is more general than, or not
comparable to, the principal type.

For example,

addTwoNums :: Num a => a -> a -> a       ①
addTwoNums x y = x + y

main = do
  print $ addTwoNums (1 :: Int) 2        ②
  print $ addTwoNums (1.0 :: Float) 2.0  ③
  -- addTwoNums (1 :: Int)(2 :: Integer) ④
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① A type signature for the addTwoNums function. Note that it uses the
most general type which supports addition + for the operands and
return values. This is also the function’s principal type.

② The integer 1 is polymorphic, but we explicitly declare it as Int
using the expression type signature syntax. Note that, in this
example, 2 is also of the Int type (without requiring another explicit
expression type signature).

③ Likewise, 1.0 and 2.0 are both of the Float type.

④ This will cause a compile error since the type annotation is not
consistent with the type signature of the addTwoNums function.

Here’s another example, in which ambiguity arises as to what type
Haskell is supposed to use for an expression whose type is not explicitly
specified in the type signature declaration. This is the so-called "show .
read" problem.

readAndShow :: String -> String
-- readAndShow x = show (read x)         ①
readAndShow x = show (read x :: Int)     ②

main = do
  print $ readAndShow "300"              ③
  print $ readAndShow "abc"              ④

① Haskell cannot compile this function because it does not know the
type of read x. We must limit the type through an annotation.

② We use an explicit expression type signature to indicate that the type
of read x is Int. Note that because of the precedence rules, read x
:: Int is the same as (read x) :: Int. The function application
binds most tightly in Haskell.

③ This will print "300".

④ This will return an error, type: Prelude.read: no parse.
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Chapter 13. Let and Where

13.1. The let - in Expression
A let expression introduces a nested and possibly mutually-recursive
list of declarations, with the following general form:

let { d1 ; ... ; dn } in exp

Here, exp is an expression. The value of exp is the value of the overall
let expression.

Each declaration di is translated into an equation of the form pi = ei,
where pi and ei are patterns and expressions, respectively. The let
declarations are lexically-scoped.

For example, in its simplest form,

multiples :: Int -> [Int]
multiples x =
  let mult n = n * x                     ①
   in map mult [1 .. 10]                 ②

main = do
  print $ multiples 10                   ③

① This let expression binds mult n to an expression n * x.

② This "local function" mult is used in the expression of the in part.
The map function is a list function defined in the Prelude, and it is
described later in the list functions chapter.

③ This will print [10,20,30,40,50,60,70,80,90,100].

13.1. The let - in Expression
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13.1.1. Deconstruction

As another example, a pattern on the left hand side of a declaration in a
let expression can be used to destructure the expression on the right
hand side of the declaration.

For instance, the following function would extract the first two
characters from a string whose length is at least 2:

firstTwoChars :: String -> [Char]
firstTwoChars str =
  let (a:b:_) = str                      ①
   in "First two chars: " ++ [a, ',', b]

main = do
  print $ firstTwoChars "hello world"    ②

① str needs to have at least 2 characters for this pattern to work.

② This will print "First two chars: h,e".

13.2. Where Clauses
Similar to let, where can be used to declare bindings in function
declarations and case expressions. For example,

summation :: Int -> Int
summation m = aux m 0
  where                                  ①
    aux n acc                            ②
      | n <= 0 = acc
      | otherwise = aux (n - 1) (n + acc)

main = do
  print $ summation 10                   ③

13.2. Where Clauses

79



① A "local function" aux is declared in the where clause. Note that the
aux function is "tail recursive".

② acc is an accumulator.

③ This will print 55.

Unlike let bindings, the scope of the where bindings can extend over
several guarded equations. For instance,

piecewise :: Float -> Float -> Float
piecewise x y
  | y > z = z                            ①
  | y < z = -z                           ②
  | otherwise = 0
  where                                  ③
    z = x * x

main = do
  print $ piecewise 3 16                 ④
  print $ piecewise 4 16                 ⑤
  print $ piecewise 5 16                 ⑥

① z is defined in the where clause below.

② The same z is used in a different guarded equation. Note that this
cannot be done with a let expression, which only scopes over the
expression which it encloses.

③ Note that where is part of the syntax of function declarations and
case expressions, and they do not for separate expressions like let
expressions.

④ This will print 9.0.

⑤ This will print 0.0.

⑥ This will print -25.0.

13.2. Where Clauses
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Chapter 14. Conditional
Expressions
A conditional expression has the form if e1 then e2 else e3. It
first evaluates the Boolean expression e1, and if its value is True or
False, then it returns the value of e2 or e3, respectively. Otherwise, it
returns _|_. Note that the type of e2 and e3 must be the same, which is
also the type of the overall if expression.

For example,

summation :: Int -> Int
summation n =
  if n <= 0                              ①
    then 0
    else n + summation (n - 1)

main = do
  print $ summation 10                   ②

① An if - then - else expression. Notice the layout. The then and
else clauses have the same indentations.

② This will print 55.

This summation function is equivalent to the following definition, using
the Boolean guards:

summation' :: Int -> Int
summation' n
  | n <= 0 = 0
  | otherwise = n + summation' (n - 1)
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Chapter 15. Case Expressions
A case expression has the following general form:

case e of { p1 match1 ; ... ; pn matchn }

Each alternative pi matchi consists of a pattern pi and its match,
matchi. Each match in turn consists of a sequence of pairs of guards
gsij and bodies eij (expressions), followed by optional where
bindings, declsi.

| gsi1 -> ei1
...
| gsimi -> eimi
  where declsi

When there is only one guard that always evaluates to True, e.g., pat |
True -> exp, then it can be omitted for an alternative short hand
form, pat -> exp.

A case expression must have at least one alternative, and all bodies
must have the same principal type, which is the type of the whole case
expression.

A case expression is evaluated by pattern matching the expression e
against the individual alternatives, from top to bottom. If e matches the
pattern of an alternative, then the guarded expressions for that
alternative are tried sequentially from top to bottom. If the guard
succeeds, then the corresponding body is evaluated. If all guards fail,
then this guarded expression fails and the next guarded expression is
tried. If none of the guarded expressions for a given alternative
succeed, then matching continues with the next alternative. If no
alternative succeeds, then the value of the case expression is _|_.
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The conditional expression, if e1 then e2 else e3, for example,
can be written as follows, using the case expression:

case e1 of
  True  -> e2
  False -> e3

The function declaration using patterns is a shorthand syntax for using
a case expression. That is, for instance,

f p11 ... p1k = e1
...
f pn1 ... pnk = en

This function definition for f is equivalent to the following:

f x1 x2 ... xk =
  case (x1, x2, ..., xk) of              ①
    (p11, ..., p1k) -> e1                ②
    ...
    (pn1, ..., pnk) -> en

① The matching expression is a tuple when k >= 2, consisting of the
function arguments, in the given order. Otherwise it’s a single value.

② The pattern on the left-hand side is a tuple pattern.

Here are a couple of examples:

not' :: Bool -> Bool                     ①
not' x = case x of
  True -> False                          ②
  False -> True                          ③
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① The not function is defined in the Prelude, and hence we use a
different name not', for illustration.

② If a given argument evaluates to True, the not' function returns
False. The value True in this example is called a literal pattern.

③ Otherwise, that is, when x == False, it returns True.

This not' function is equivalent to the following:

not'' :: Bool -> Bool
not'' True = False
not'' False = True

The above two definitions of the not function are semantically
equivalent. Likewise, the following two definitions of the isZero
function are equivalent to each other.

isZero :: Int -> Bool
isZero :: Int -> Bool
isZero x = case x of
  0 -> True                              ①
  _ -> False                             ②

① If the value of x is 0, then the isZero functions returns True.

② Otherwise, it returns False. The underscore _ is a wildcard pattern,
and it matches any Int value in this example.

isZero' :: Int -> Bool
isZero' 0 = True
isZero' _ = False

Pattern matching is described in more detail in the next chapter.
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Chapter 16. Patterns
The case expressions are used with patterns, as described in the
previous chapter. Patterns can also appear in lambda abstractions,
function definitions, pattern bindings, list comprehensions, and do
expressions, which are all ultimately translated into case expressions.

16.1. Pattern Matching
Patterns are matched against values. Attempting to match a pattern can
result in one of the following three results:

• It may succeed, returning a binding for each variable in the pattern,

• It may fail, or

• It may diverge (i.e. return _|_).

Pattern matching proceeds from left to right, and outside to inside. We
describe each of the valid patterns in Haskell in the following sections.

16.2. Wildcard Patterns
The wildcard pattern _ is an irrefutable pattern, and it matches any
value. It is similar to a variable pattern, but there is no binding. Hence,
the _ patterns are useful when some part of a pattern is not referenced
on the right-hand-side. For example,

wildcardPatterns :: String -> Char
wildcardPatterns x =
  case x of
    "" -> ' '
    _ -> '!'                             ①

① The wildcard pattern _ matches any non-null string in this example.

16.1. Pattern Matching
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16.3. Literal Patterns
A numeric, Char, or String literal pattern p matches against a value v
if v == p. In case of numeric literals,

• An integer literal pattern can only be matched against a value in the
class Num, and

• A floating literal pattern can only be matched against a value in the
class Fractional.

For example,

literalPatterns :: Int -> Int
literalPatterns x =
  case x of
    33 -> 30                             ①
    -44 -> -50                           ②
    _ -> 0

① x = 33 matches this literal pattern. The value of the case
expression is 30.

② x = -44 matches this negative number literal pattern. The case
expression returns -50 in this case.

16.4. Constructor Patterns
Haskell supports a few different forms of constructor patterns. The "
record pattern" is described in the next section. A constructor pattern is
a nested pattern, and the arity of a constructor must match the number
of sub-patterns associated with it.

The pattern F {} matches any value built with constructor F, whether
or not F was declared with record syntax.

16.3. Literal Patterns
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When the constructor is defined by data, matching the pattern con
pat1 … patn depends on the value:

• If the value is of the form con v1 … vn, sub-patterns are matched
from left to right against the components of the data value.

◦ If all matches succeed, the overall match succeeds.

◦ Otherwise, the first to fail or diverge causes the overall match to
fail or diverge, respectively.

• If the value is of the form con' v1 … vm with con and con' two
different constructors, then the match fails.

• If the value is _|_, then the match diverges.

For example,

data Boring = Empty | Vacant

nullaryPatterns :: Boring -> Bool
nullaryPatterns x =
  case x of
    Empty -> True                        ①
    _ -> False                           ②

main = do
  print $ nullaryPatterns Empty          ③
  print $ nullaryPatterns Vacant         ④

① A nullary constructor pattern.

② The wildcard pattern. In this particular example, it only matches the
other nullary constructor Vacant of the Boring type. Hence, _ ->
False is equivalent to Vacant -> False.

③ This will print True to the terminal.

④ This will print False.

16.4. Constructor Patterns
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consPatterns :: Either Int String -> Int
consPatterns x =
  case x of
    Left 1 -> 100                        ①
    Right "Five" -> 500                  ②
    _ -> 0

main = do
  print $ consPatterns $ Left 1          ③
  print $ consPatterns $ Right "Ten"     ④

① A constructor pattern. The Either type is defined with two data
constructors, Left and Right.

② Another constructor pattern.

③ This will print 100.

④ The argument Right "Ten" matches neither constructor pattern in
this example, and hence it matches the wildcard pattern and the
function returns 0.

When the constructor is defined by newtype, the pattern con pat
matches against a value as follows:

• If the value is of the form con v, then pat is matched against v.

• If the value is _|_, then pat is matched against _|_.

For example,

newtype Truth = Truth Bool               ①

newtypePatterns :: Truth -> Int
newtypePatterns x =
  case x of
    Truth True -> 1000000                ②
    _ -> 0

16.4. Constructor Patterns
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main = do
  print $ newtypePatterns $ Truth True   ③
  print $ newtypePatterns $ Truth False  ④

① A newtype Truth is created with Bool. Note that the Bool type has
two nullary constructors, True and False.

② A constructor pattern.

③ This will print 1000000.

④ This will print 0.

Binary data constructors can also use the infix syntax. For instance,

data Sum = Sum Int Int                   ①

infixPatterns :: Sum -> Int
infixPatterns x =
  case x of
    1 `Sum` 2 -> 3                       ②
    _ -> 0

main = do
  print $ infixPatterns (Sum 1 2)        ③
  print $ infixPatterns $ 1 `Sum` 2      ④
  print $ infixPatterns (Sum 2 2)        ⑤

① The type Sum has a single data constructor Sum, which takes two Int
arguments.

② An infix constructor pattern. This pattern 1 `Sum` 2 is equivalent
to the normal constructor pattern Sum 1 2.

③ This will print 3.

④ Same as above. This will output 3 to the terminal.

⑤ This will print 0.

16.4. Constructor Patterns
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16.5. Labeled Patterns
In the ordinary constructor patterns, pattern matching occurs based on
the position of arguments in the value being matched. When matching
against a constructor using labeled fields, the fields are matched based
on their names, and in the order they are listed in the pattern.
Otherwise, these two constructor patterns work more or less the same
way. Fields not named by the pattern are ignored. That is, they are
matched against _.

data Color =
  Color { red, gray, blue :: Int }       ①

labeledPatterns :: Color -> String
labeledPatterns x =
  case x of
    Color {red = 0} -> "Not so red"      ②
    Color {blue = 255} -> "Full of blue" ③
    _ -> ""

main = do
  print $ labeledPatterns
   Color {red = 0, gray = 0, blue = 255} ④
  print $ labeledPatterns
   Color {red = 1, gray = 0, blue = 255} ⑤
  print $ labeledPatterns
   Color {red = 1, gray = 1, blue = 254} ⑥

① A constructor with labeled fields. The record syntax is explained
later in the book.

② A labeled field constructor pattern. This pattern matches as long as
the value of the field "red" is 0 regardless of values of other fields.

③ Another labeled pattern. This pattern matches as long as the value
"blue" is 255.

16.5. Labeled Patterns
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④ Since patterns are tested from top to bottom, this will match the first
pattern Color {red = 0} in the case expression.

⑤ This will match the second labeled pattern, Color {blue = 255}.

⑥ This will match the wildcard pattern, which is an irrefutable
pattern.

16.6. Variable Patterns
Pattern matching also allows values to be assigned to variables. For
example, matching a pattern var against a value v always succeeds and
binds var to v. This is called the variable pattern. It is similar to the
wildcard pattern in that both are irrefutable patterns, that is, they will
match any value.

For example,

variablePatterns :: Char -> String
variablePatterns x =
  case x of
    '\0' -> "None found"                 ①
    c -> "Found: " ++ [c]                ②

main = do
  print $ variablePatterns 'a'           ③
  print $ variablePatterns 'z'           ④

① A character literal pattern.

② A variable pattern. This pattern will match any x other than the null
character, \0, in this example.

③ This will print "Found: a".

④ This will print "Found: z".

16.6. Variable Patterns
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16.7. As-Patterns
Patterns of the form var@apat are called as-patterns, and allow one to
use var as a name for the value being matched by apat. That is,
matching an as-pattern var@apat against a value v is the result of
matching apat against v and, if the match is successful, binding var to
v. If the match of apat against v fails or diverges, then so does the
overall match of the as-pattern. For example,

asPatterns :: String -> (Char, Int)
asPatterns x =
  case x of
    "" -> ('\0', 0)
    w@(c:_) -> (c, length w)             ①

main = do
  print $ asPatterns "Hello, world"      ②
  print $ asPatterns "Bonjour le monde"  ③

① An as-pattern. The pattern (c:_) matches a string with at least one
character, in this example, and it binds a variable c to the first
character of the matched string. The string itself is bound to a
variable w through this as-pattern.

② This will print ('H',12). c and w are bound to 'H' and "Hello,
world", respectively.

③ This will print ('B',16).

16.8. Tuple Patterns
A tuple pattern provides a convenient syntax over what is essentially a
constructor patten. Wildcard patterns are often used to ignore certain
elements in pattern matching. As nested patterns, other (sub-)patterns
are also commonly used in the element positions of the tuple patterns.
For example,

16.7. As-Patterns
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tuplePatterns :: (Int, Char, Bool) -> Int
tuplePatterns x =
  case x of
    (1, _, _) -> 1
    (_, c, True) -> fromEnum c
    _ -> 0

main = do
  print $ tuplePatterns (1, 'a', False)  ①
  print $ tuplePatterns (2, 'A', True)   ②
  print $ tuplePatterns (3, 'a', False)  ③

① The value (1, 'a', False) will match the first pattern, and this
expression will print 1 to the terminal through IO action.

② This will print 65. The ASCII code of the English uppercase letter 'A'
happens to be 65. fromEnum is a method of the Enum class.

③ This will print 0.

16.9. List Patterns
Haskell also provides some convenient pattern syntax for matching
lists, which essentially amounts to some variations of the constructor
patterns, similar to how the tuple patterns work.

In particular, you can match with the nil constructor, or an empty list,
[], or you can match with the cons : constructor, (x:xs), where x
represents a single element, or the "head", and xs refers to the rest of
the list, or the "tail" list, which can be empty. The patterns like (x:xs)
or (_:xs), etc. can only match lists with at least one element. (Note that
parentheses () are not part of the list patterns.) Alternatively, one can
also use the complete cons pattern by repeatedly applying the cons
operator on each of the elements in a list, e.g., (x:y:z:[]), or its
syntactically sugared version, [x,y,z], which will match a list with
three elements.

16.9. List Patterns
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Or, one can even use syntax somewhere between the two. For example.
a pattern (x:y:zs) will match a list with at least two elements, with zs
matching a list with zero or more elements after removing the first two
elements in a value. For example,

listPatterns :: [Int] -> String
listPatterns x =
  case x of
    [] -> "Empty"                        ①
    [c] -> "Uno: " ++ [toEnum c :: Char] ②
    [c, d] -> "Dos: " ++ show (c, d)     ③
    (c:_) -> "Mas: " ++ show c ++ " etc" ④

main = do
  print $ listPatterns []                ⑤
  print $ listPatterns [100]             ⑥
  print $ listPatterns [200, 250]        ⑦
  print $ listPatterns [40, 50, 60, 70]  ⑧

① The empty list pattern [] matches an empty list.

② The list pattern [c] will match any single element list. Note that the
sub-pattern c included in this list pattern is a variable pattern,
which is irrefutable.

③ The list pattern [c, d] will match any two-element list.

④ The pattern (c:_) will match any list with at least 1 element. In this
example, however, it will match a list with 3 or more elements since
the previous patterns match all lists with fewer than 3 elements.

⑤ This will print "Empty".

⑥ This will print "Uno: d". The ASCII code of 'd' happens to be 100.
toEnum is also a method of the Enum class.

⑦ This will print "Dos: (200,250)".

⑧ This will print "Mas: 40 etc".

16.9. List Patterns
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Here are a few more examples of pattern matching in declaring some
commonly used functions in Haskell programming, As stated, lists are
one of the most important data structures in Haskell programming, and
likewise, the list patterns are one of the most widely used patterns. Note
that all three functions are defined recursively.

elem' :: (Eq a) => a -> [a] -> Bool      ①
elem' _ [] = False
elem' e (x:xs) = (e == x) || elem' e xs  ②

① The elem' function takes two values of type a and a list type [a],
and it returns True if the first value is an element of the second
value/list. Otherwise, it returns False. Note that the context
specifies that a must be an instance of the Eq Class.

② Although we mostly use case expressions to demonstrate various
patterns in this chapter, Haskell allows a special syntax for function
declaration with pattern matching, as indicated earlier. This kind of
function pattern binding syntax is more widely used, especially for
simple functions. This particular function declaration is, for
instance, equivalent to the following:

elem'' :: (Eq a) => a -> [a] -> Bool
elem'' ex list =
  case (ex, list) of
    (_, []) -> False
    (e, x:xs) -> (e == x) || elem'' e xs ①

① Note that, in the first example, the list pattern x:xs is enclosed in
parentheses. This is because function application has a higher
precedence than the cons constructor : in the pattern. In general,
list patterns are often combined with parenthesis patterns because
the cons operator has a generally rather low fixity. In this particular
example, however, the parentheses are not needed since it is an
element of a tuple pattern.

16.9. List Patterns
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The following function, dedupe, uses the elem function (e.g., from the
Prelude), and removes all duplicates in a given list.

dedupe :: (Eq a) => [a] -> [a]           ①
dedupe [] = []                           ②
dedupe (x:xs)                            ③
  | x `elem` xs = dedupe xs
  | otherwise = x : dedupe xs

① The elem function requires the type a to be an instance of the Eq
class. Hence, dedupe has the same requirement.

② We handle an empty list here.

③ Then, we can assume that all lists have at least one element at this
point. This pattern includes two guards. The implementation is
straightforward.

The following function, isAsc, takes a list of elements of an Ord type
and it returns True if all elements in the given list is sorted in the
ascending order. Otherwise, it returns False.

isAsc :: (Ord a) => [a] -> Bool
isAsc [] = True                          ①
isAsc [_] = True                         ②
isAsc (x:y:xs) =                         ③
  (x <= y) && isAsc (y : xs)             ④

① When a list includes no elements, should it be considered sorted?

② What about a list with one element?

③ At this point, we can assume that the list we are matching has at
least two elements, and hence x:y:xs is a valid pattern. (Note that
xs can still be an empty list.)

④ The implementation is straightforward.

16.9. List Patterns
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16.10. Parenthesized Patterns
Pattern matching can extend to nested values, e.g., as we have seen
some examples so far, and as we will discuss further at the end of this
section. Parenthesized patterns are used for grouping purposes. For
example,

data Me = Me (Maybe Int) (Maybe String)  ①

parenPatterns :: Me -> Int
parenPatterns x =
  case x of
    Me (Just n) (Just s) -> n + length s ②
    Me (Just n) _ -> n                   ③
    _ -> 0

main = do
  print $ parenPatterns $
    Me (Just 1) (Just "hi")              ④
  print $ parenPatterns $
    Me Nothing (Just "hi")
  print $ parenPatterns $
    Me (Just 1) Nothing
  print $ parenPatterns $
    Me Nothing Nothing

① A data type with one constructor, which consists of two fields.

② Constructor patterns can be nested. In this case, the overall pattern
is a constructor pattern. Both of its arguments are parenthesized
patterns, each of which contains a constructor pattern.

③ Similarly, a constructor pattern with two sub-patterns, a
parenthesized pattern over another constructor pattern and the
wildcard pattern.

④ These four print expressions will output 3, 0, 1, and 0 to the
terminal.

16.10. Parenthesized Patterns
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16.11. Nested Patterns
Patterns can be nested. In particular, constructor patterns, list patterns,
and tuple patterns, along with parenthesized patterns, can include
other sub-patterns, some of which can in turn include other sub-
patterns, and so on. Here are some more examples of nested patterns.

addTuples :: (Num a, Num b) =>
  (a, b) -> (a, b) -> (a, b)             ①
addTuples (x1, y1) (x2, y2) =            ②
  (x1 + x2, y1 + y2)

① The addTuples function take two pairs and return their sum.

② As indicated, this pattern is the same as a tuple of two tuples, with
each tuple containing two variable patterns.

main = do
  print $ addTuples (1.0, 3) (2.0, 0)    ①

① This will print (3.0,3).

data Point a b = Origin | Point a b      ①
  deriving(Show)

addPoints :: (Num a, Num b) =>
  Point a b -> Point a b -> Point a b
addPoints Origin Origin = Origin         ②
addPoints Origin (Point x2 y2) =
  Point x2 y2
addPoints (Point x1 y1) Origin =
  Point x1 y1
addPoints (Point x1 y1) (Point x2 y2) =
  Point (x1 + x2) (y1 + y2)
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① A datatype with two constructors.

② All patterns in this function binding are tuples of two constructors,
one of which comprises two variable patterns.

main = do
  print $ addPoints Origin Origin        ①
  print $ addPoints Origin (Point 3 4.0) ②

① This will print Origin.

② This will print Point 3 4.0.

addLists :: (Num a, Num b) =>
  [(a, b)] -> [(a, b)] -> [(a, b)]       ①
addLists [][] = []
addLists [] ((x2, y2):ws) =              ②
  (x2, y2):ws
addLists ((x1, y1):zs) [] =
  (x1, y1):zs
addLists ((x1, y1):zs) ((x2, y2):ws) =
  (x1 + x2, y1 + y2) : addLists zs ws

① This addLists function takes two lists of pairs and returns a list of
pairs by adding their corresponding elements.

② All four of these patterns are implicitly top-level tuple patterns
(when converted to a case expression). In this particular case, the
second element pattern is a list pattern enclosed in parentheses. The
inner parentheses are part of the tuple pattern.

main = do
  print $ addLists [(1, 2)] [(2, 4), (6, 8)]   ①

① This will print [(3,6),(6,8)] to the terminal.
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16.12. Irrefutable Patterns
The following patterns are irrefutable:

• A variable pattern,

• A wildcard pattern,

• A lazy pattern, in the form of ~apat, where apat ia another pattern,
which is described further at the end of the section,

• An as-pattern of the form var@apat where apat is irrefutable, and

• N apat where N is a constructor defined by newtype and apat is
irrefutable.

All other patterns are refutable. Matching an irrefutable pattern is non-
strict. That is, the pattern matches even if the value to be matched is
_|_. Matching a refutable pattern is, on the other hand, strict. That is, if
the value to be matched is _|_, then the match diverges.

16.13. Lazy Patterns
A lazy pattern has the form ~apat, where apat ia another pattern,
which may or may not be irrefutable.

Matching the pattern ~apat against a value v always succeeds. But, no
actual matching evaluation is done on a ~apat pattern until one of the
variables in apat is used. At that point the entire pattern is matched
against the value, and the free variables in apat are bound to the
appropriate values if matching apat against v would otherwise
succeed. If the match fails or diverges, so does the overall computation.
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Chapter 17. Core Functions
The Haskell Standard Prelude includes a number of "builtin" functions.

17.1. The id Function

id :: a -> a

The builtin identity function id for a given value x returns the same
value x.

main = do
  print $ id "Hello, Haskell!"           ①

① This will print "Hello, Haskell!".

17.2. The const Function

const :: a -> b -> a

The builtin constant function const takes two arguments, and it
returns the value of the first argument, ignoring the second argument.

main = do
  print $ const 'a' 'b'                  ①
  print $ const 42 "Irrelevant"          ②

① This will print 'a'.

② This will print 42.
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17.3. The flip Function

flip :: (a -> b -> c) -> b -> a -> c

The builtin flip function takes a function of two arguments as an
argument, and it return another function which works like the given
function, but taking the two arguments in the reverse order. That is,
flip f x y = f y x.

fnPower :: Int -> Int -> Int
fnPower a b = a ^ b
fnPowerFlipped :: Int -> Int -> Int
fnPowerFlipped = flip fnPower

main = do
  print $ fnPower 2 3                    ①
  print $ fnPowerFlipped 2 3             ②

① This will print 8.

② This will print 9.

17.4. The seq Function

seq :: a -> b -> b

The builtin seq function takes two arguments, and it makes both
arguments to be evaluated. Its return value is the value of the second
argument unless the first argument is _|_, in such a case it returns _|_.

_|_ `seq` b = _|_
a `seq` b = b

17.3. The flip Function

102



17.5. The Lazy Infix Application
Operator ($)

($) :: (a -> b) -> a -> b

The lazy infix application operator $ takes a function and returns the
same function. That is, ($) f == f, or f $ x == f x. The $ operator
is right-associative, and it is primarily used in continuation-passing
style. For example, the following two print expressions are the same:

main = do
  print (sum (map (* 2) [1, 2, 3]))      ①
  print $ sum $ map (* 2) [1, 2, 3]      ②

① This will print 12.

② The same 12. These two expressions are semantically equivalent.

17.6. The Eager Infix Application
Operator ($!)
The eager infix application operator $! takes a function and returns a
seq function with the same function as its second argument. That is,
($!) f == seq _ f, or f $! x == x `seq` f x. The $! operator is
right-associative, like $. Using the same example above,

main = do
  print $! sum $! map (* 2) [1, 2, 3]    ①

① This will print 12. The only difference between $ and $! is their
strictness. That is, $ preserves the default laziness whereas $! uses
the seq function to force eager evaluation of arguments.
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17.7. The until Function
until p f yields the result of applying f until p holds.

until :: (a -> Bool) -> (a -> a) -> a -> a

For example,

main = do
  print $ until (> 10) (* 2) 1           ①

① This will print 16.

17.8. The asTypeOf Function
asTypeOf is a type-restricted version of const. Its typing forces its first
argument to have the same type as the second.

asTypeOf :: a -> a -> a

For example,

main = do
  print $ asTypeOf 3 (5 :: Int)          ①

① The type of the literal 3 is Int.
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Chapter 18. List Functions
The Prelude defines the following list-related functions:

null, !!, length, ++, concat, reverse
head, tail, last, init
take, drop, splitAt, takeWhile, dropWhile, span, break
map, concatMap, filter, any, all
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1
iterate, repeat, replicate, cycle
zip, zip3, zipWith, zipWith3, unzip, unzip3
lines, words, unlines, unwords
and, or, elem, notElem, lookup, maximum, minimum, sum, product

18.1. Basic List Functions
This section describes null, !!, length, ++, concat, and reverse.

18.1.1. The null function

null :: [a] -> Bool

The list null function returns True if a given list is empty. Otherwise, it
returns False. For example,

main = do
  print $ null ([] :: [Char])            ①
  print $ null ['a', 'b', 'c']           ②

① It prints True.

② It prints False.
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18.1.2. The index !! operator

(!!) :: [a] -> Int -> a

The index operator !! takes a list and a non-negative index of type Int
and it returns the value at the given index. When the index is outside
the valid index range for the given list, it throws an error. For example,

main = do
  print $ ['a', 'b', 'c'] !! 1           ①
  -- print $ ['a', 'b', 'c'] !! (-1)     ②
  -- print $ ['a', 'b', 'c'] !! 4        ③

① This outputs 'b'. List indexes are 0-based.

② It raises an error. Prelude.!!: negative index.

③ It raises an error. Prelude.!!: index too large.

18.1.3. The length function

length :: [a] -> Int

The list length function returns the length of a given list as an Int.
This function does not terminate when the given list is not finite.

main = do
  print $ length []                      ①
  print $ length ['a' .. 'z']
  -- print $ length [1 .. ]              ②

① It prints 0.

② This function call does not return.
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18.1.4. The append ++ operator

(++) :: [a] -> [a] -> [a]

The list append operator ++ concatenates two given lists.

main = do
  print $ ([] :: [Char]) ++ ['a', 'b']   ①
  print $ ['a', 'b'] ++ ['e', 'f', 'g']  ②

① The resulting list is the same as ['a', 'b'].

② The resulting list is the same as ['a', 'b', 'e', 'f', 'g'].

18.1.5. The concat function

concat :: [[a]] -> [a]

The list concat function takes a list of lists, and it returns the
concatenation of all elements of the list.

main = do
  print (concat [[1],
    [5, 6, 7],
    [11]] :: [Int])                      ①
  print $ concat ["Hello",
    ", ", "Dr. Haskell",
    " and ", "Mr. Highly Functional!"]   ②

① This prints out [1,5,6,7,11].

② Since String is [Char], this prints out "Hello, Dr. Haskell and Mr.
Highly Functional!".
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18.1.6. The reverse function

reverse :: [a] -> [a]

The list reverse function returns the elements of a given list in reverse
order. The argument list should be finite.

main = do
  print (reverse [1, 2, 3] :: [Int])     ①
  -- print $ reverse [1 ..]              ②

① This prints out [3,2,1].

② This will not terminate.

18.2. Head and Tail Functions
This section describes the head, tail, last, and init functions.

18.2.1. The head function

head :: [a] -> a

The list head function takes a non-empty list and returns the first
element of the list.

main = do
  print $ head ['a', 'b', 'c']           ①
  -- print $ head ([] :: [Char])         ②

① It prints 'a'.

② It raises an error, Prelude.head: empty list.
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18.2.2. The tail function

tail :: [a] -> [a]

The list tail function takes a non-empty list and returns a list of the
remaining elements of the given list after the first element, which can
be an empty list.

main = do
  print $ tail ([1, 2, 3] :: [Int])      ①
  -- print $ tail ([] :: [Int])          ②

① It prints [2,3].

② It raises an error, Prelude.tail: empty list.

18.2.3. The last function

last :: [a] -> a

The list last function takes a non-empty and finite list and returns the
last element of the list.

main = do
  print $ last ['a', 'b', 'c']           ①
  -- print $ last ([] :: [Char])         ②

① It prints 'c'.

② It raises an error Prelude.last: empty list.
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18.2.4. The init function

init :: [a] -> [a]

The list init function takes a non-empty and finite list and returns a
list of the remaining elements of the given list before the last element.

main = do
  print $ init ([1, 2, 3] :: [Int])      ①
  -- print $ init ([] :: [Int])          ②

① It prints [1,2].

② It raises an error, Prelude.init: empty list.

18.3. Take and Drop Functions
This section describes the take, drop, splitAt, takeWhile,
dropWhile, span, and break functions.

18.3.1. The take function

take :: Int -> [a] -> [a]

The list take function takes an Int n and a list xs, and it returns the
prefix of xs of length n. It return xs itself if n > length xs.

main = do
  print (take 2 [1, 2, 3, 4] :: [Int])   ①
  print (take 5 [1, 2, 3] :: [Int])      ②

① It prints [1,2].
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② It prints [1,2,3].

18.3.2. The drop function

drop :: Int -> [a] -> [a]

The list drop function takes an int n and a list xs, and it returns the
suffix of xs after the first n elements. Or, it return an empty list [] if n
>= length xs.

main = do
  print (drop 2 [1, 2, 3, 4] :: [Int])   ①
  print (drop 5 [1, 2, 3] :: [Int])      ②

① It prints [3,4].

② It prints [].

18.3.3. The splitAt function

splitAt :: Int -> [a] -> ([a],[a])

The splitAt n xs function is defined as (take n xs, drop n xs).

main = do
  print $ splitAt 0 ([1, 2, 3] :: [Int]) ①
  print $ splitAt 2 ([1, 2, 3] :: [Int]) ②
  print $ splitAt 4 ([1, 2, 3] :: [Int]) ③

① It prints ([],[1,2,3]).

② It prints ([1,2],[3]).

③ It prints ([1,2,3],[]).
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18.3.4. The takeWhile function

takeWhile :: (a -> Bool) -> [a] -> [a]

The takeWhile function, applied to a predicate p and a list xs, returns
the longest (possibly empty) prefix of xs of elements that satisfy p.

18.3.5. The dropWhile function

dropWhile :: (a -> Bool) -> [a] -> [a]

The list dropWhile function, applied to a predicate p and a list xs,
returns the remaining suffix after the longest (possibly empty) prefix of
xs of elements that satisfy p.

18.3.6. The span function

span :: (a -> Bool) -> [a] -> ([a],[a])

The span p xs function is equivalent to (takeWhile p xs,
dropWhile p xs). For example,

main = do
  print $ takeWhile (<= 2) [1, 2, 3, 1]  ①
  print $ dropWhile (<= 2) [1, 2, 3, 1]  ②
  print $ span (<= 2) [1, 2, 3, 1]       ③

① It prints [1,2].

② It prints [3,1].

③ It prints ([1,2],[3,1]).
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18.3.7. The break function

break :: (a -> Bool) -> [a] -> ([a],[a])

The break p function is the same as span (not . p).

main = do
  print $ break (>= 2) [1, 2, 3, 1]       ①

① It prints ([1],[2,3,1]).

18.4. Map and Filter Functions
This section describes the map, concatMap, filter, any, and all
functions.

18.4.1. The map function

map :: (a -> b) -> [a] -> [b]

The list map function takes a function f and a list xs, and it returns a list
obtained by applying f to each element of xs. That is, map f [x1, x2,
…, xn] evaluates to [f x1, f x2, …, f xn].

For example,

mapDouble :: [Int] -> [Int]
mapDouble = map (* 2)                    ①

① A partial application of map to section (* 2). The mapDouble
function takes a list of Int and it returns another list by doubling all
elements in the given list.
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main = do
  print $ mapDouble []                   ①
  print $ mapDouble [1, 2, 3]            ②

① It prints [].

② It prints [2,4,6].

18.4.2. The concatMap function

concatMap :: (a -> [b]) -> [a] -> [b]

The list concatMap function is defined to be a composition of map and
concat functions, e.g., concat . map. That is, concatMap first applies
map to a function of type a -> [b] and a list of type [a], and then it
concats (or, flattens) the resulting list of type [[b]] to get the final list
of type [b]. For example,

initial :: [String] -> [Char]
initial = concatMap (take 1)             ①

① The initial function takes an argument of a list of list of Char, and
it returns a list comprising the first Char of each element list.

main = do
  print $ initial ["John", "F", "Kennedy"]     ①
  print $ initial ["Martin", "Luther", "King"] ②

① It prints "JFK".

② It prints "MLK".
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18.4.3. The filter function

filter :: (a -> Bool) -> [a] -> [a]

The list filter function takes a predicate and a list, and it returns a list
including only elements that satisfy the predicate. That is, filter p xs
is the same as [ x | x <- xs, p x ], using a list comprehension. For
example,

evenInts :: [Int] -> [Int]
evenInts = filter even

main = do
  print $ evenInts [1, 2, 12, 13, 14]    ①

① This prints [2,12,14].

18.4.4. The any function

any :: (a -> Bool) -> [a] -> Bool

The list any function takes a predicate and a list, and it returns True if
any element in the given list satisfies the predicate. It returns False
otherwise. That is, any p is equivalent to or . map p.

For instance,

anyOdd :: [Int] -> Bool
anyOdd = any odd                         ①

① The anyOdd xs function is equivalent to or (map odd xs).
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main = do
  print $ anyOdd [10, 11, 12]            ①
  print $ anyOdd [12, 14, 16]            ②

① It prints True.

② It prints False.

18.4.5. The all function

all :: (a -> Bool) -> [a] -> Bool

The list all function takes a predicate and a list, similar to the any
function, and it returns True if all elements in the given list satisfy the
predicate. Otherwise, it returns False. That is, all p is equivalent to
and . map p. Or, all p xs is equivalent to and (map p xs).

For example,

allOdds :: [Int] -> Bool
allOdds = all odd                        ①

① The allOdds xs function is equivalent to and (map odd xs).

main = do
  print $ allOdds [10, 11, 12]           ①
  print $ allOdds [11, 13, 15]           ②
  print $ all (> 5) [6, 8, 10, 20]       ③

① It prints False.

② It prints True.

③ It prints True.
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18.5. Fold and Scan Functions
This section describes the foldl, foldl1, scanl, scanl1, foldr,
foldr1, scanr, and scanr1 functions.

18.5.1. The foldl function

foldl :: (a -> b -> a) -> a -> [b] -> a

The list foldl function takes a binary operator, a starting value
(typically, the left-identity of the operator), and a list, and it reduces the
list using the binary operator, from left to right. That is, foldl f z
[x1, x2, …, xn] is equivalent to (…((z `f` x1) `f` x2) …) `f`
xn. For example,

main = do
  print $ foldl (++) ""
    ["To", "Be", "Or", "Not"]            ①
  print $ foldl (+) 0
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: "ToBeOrNot"

② The output: 15

18.5.2. The foldl1 function

foldl1 :: (a -> a -> a) -> [a] -> a

The list foldl1 function is a variant of fold1 that has no starting value
argument. It throws an error when it is applied to an empty list. For
example,
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main = do
  print $ foldl1 (++)
    ["To", "Be", "Or", "Not"]            ①
  print $ foldl1 (+)
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: "ToBeOrNot"

② The output: 15

18.5.3. The scanl function

scanl :: (a -> b -> a) -> a -> [b] -> [a]

The list scanl function is similar to foldl, but returns a list of
successive reduced values from the left. That is, scanl f z [x1, x2,
…] is equivalent to [z, z `f` x1, (z `f` x1) `f` x2, …]. Note
that foldl f z xs is the same as last (scanl f z xs).

main = do
  print $ scanl (++) ""
    ["To", "Be", "Or", "Not"]            ①
  print $ scanl (+) 0
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: ["","To","ToBe","ToBeOr","ToBeOrNot"]

② The output: [0,1,3,6,10,15]

18.5.4. The scanl1 function

scanl1 :: (a -> a -> a) -> [a] -> [a]
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The list scanl1 function is similar to scanl, but again without the
starting element. scanl1 f [x1, x2, …] is equivalent to [x1, x1
`f` x2, …].

main = do
  print $ scanl1 (++)
    ["To", "Be", "Or", "Not"]            ①
  print $ scanl1 (+)
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: ["To","ToBe","ToBeOr","ToBeOrNot"]

② The output: [1,3,6,10,15]

18.5.5. The foldr function

foldr :: (a -> b -> b) -> b -> [a] -> b

The foldr function takes a binary operator, a starting value (typically
the right-identity of the operator), and a list, and it reduces the list using
the binary operator, from right to left. foldr f z […, xn1, xn] is
equivalent to (… `f` (xn1 `f` (xn `f` z))…).

For example,

main = do
  print $ foldr (++) ""
    ["To", "Be", "Or", "Not"]            ①
  print $ foldr (+) 0
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: "ToBeOrNot"

② The output: 15
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18.5.6. The foldr1 function

foldr1 :: (a -> a -> a) -> [a] -> a

The list foldr1 function is a variant of foldr that has no starting value
argument. It raises an error when it is applied to an empty list.

main = do
  print $ foldr1 (++)
    ["To", "Be", "Or", "Not"]            ①
  print $ foldr1 (+)
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: "ToBeOrNot"

② The output: 15

18.5.7. The scanr function

scanr :: (a -> b -> b) -> b -> [a] -> [b]

The list scanr function is similar to foldr, but it returns a list of
successive reduced values from the right. That is, scanr f z […,
xn1, xn] is equivalent to […, xn1 `f` (z `f` xn), z `f` xn,
z]. Note that foldr f z xs is the same as head (scanr f z xs). For
example,

main = do
  print $ scanr (++) ""
    ["To", "Be", "Or", "Not"]            ①
  print $ scanr (+) 0
    ([1, 2, 3, 4, 5] :: [Int])           ②
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① The output: ["ToBeOrNot","BeOrNot","OrNot","Not",""]

② The output: [15,14,12,9,5,0]

18.5.8. The scanr1 function

scanr1 :: (a -> a -> a) -> [a] -> [a]

The list scanr1 function is similar to scanr, but again without the
starting element. scanr1 f […, xn2, xn1, xn] is equivalent to […,
xn2 `f` (xn1 `f` xn), xn1 `f` xn, xn].

main = do
  print $ scanr1 (++)
    ["To", "Be", "Or", "Not"]            ①
  print $ scanr1 (+)
    ([1, 2, 3, 4, 5] :: [Int])           ②

① The output: ["ToBeOrNot","BeOrNot","OrNot","Not"]

② The output: [15,14,12,9,5]



This book can be rather "dense", depending on your
background. It covers a lot of topics, but possibly not
with enough depth. For example, the folding functions
discussed in this section are very important tools in
Haskell, and it will require some deliberate studies if
you haven’t used this kind of functional programming
style before. Although we claim that Haskell is a much
simpler language, syntactically, than other widely-used
programming languages, learning still takes time. The
readers are encouraged to go through each of the
above examples, step by step, so that you understand
how "left folding" vs "right folding" work, etc.
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18.6. Iterate and Repeat Functions
This section describes the iterate, repeat, replicate, and cycle
functions.

18.6.1. The iterate function

iterate :: (a -> a) -> a -> [a]

The list iterate function is recursively defined as iterate f x = x
: iterate f (f x), which is an infinite list of repeated applications
of f to x, e.g., [x, f x, f (f x), …]. For example,

main = do
  print $ take 5 $ iterate (* 2) 2       ①

① The output: [2,4,8,16,32]

18.6.2. The repeat function

repeat :: a -> [a]

The list repeat function returns an infinite list by indefinitely
repeating a given argument. That is, repeat x = xs where xs =
x:xs. For example,

main = do
  print $ take 5 $ repeat 21             ①

① The output: [21,21,21,21,21]

18.6. Iterate and Repeat Functions

122



18.6.3. The replicate function

replicate :: Int -> a -> [a]

The list replicate function is defined to be replicate n x = take
n (repeat x). For example,

main = do
  print $ replicate 5 42                 ①

① The output: [42,42,42,42,42]

18.6.4. The cycle function

cycle :: [a] -> [a]

The list cycle function takes a list and returns the infinite repetition of
the given list. It returns an error when the list is empty. It returns the
same list when the list is an infinite list. For example,

main = do
  print $ take 10 $ cycle [1, 2, 3]      ①

① The output: [1,2,3,1,2,3,1,2,3,1]

18.7. Zip and Unzip Functions
This section describes the zip, zip3, zipWith, zipWith3, unzip, and
unzip3 functions from the Prelude, which deal with lists of pairs (2-
tuples) and triplets (3-tuples).
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18.7.1. The zip function

zip :: [a] -> [b] -> [(a,b)]

The list zip function takes two lists and returns a list of pairs, each pair
comprising the corresponding elements from two lists. If one input list
is shorter than the other, then excess elements of the longer list are
discarded.

main = do
  print $ zip [1, 2, 3] ['a', 'b']       ①

① The output: [(1,'a'),(2,'b')]

18.7.2. The zip3 function

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]

The list zip3 function takes three lists and returns a list of triplets, by
taking one element from each list. The length of the resulting list is the
same as that of the shortest input list.

main = do
  print $ zip3 [1, 2] ['a', 'b'] ["hi"]  ①

① The output: [(1,'a',"hi")]

18.7.3. The zipWith function

zipWith :: (a->b->c) -> [a]->[b]->[c]
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The list zipWith function takes a binary function and two lists, and it
returns a new list by applying the given function to the corresponding
elements in the two input lists.

main = do
  print $ zipWith (+) [1, 2, 3] [3, 6]   ①

① The output: [4,8]

18.7.4. The zipWith3 function

zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]

The list zipWith3 function takes a ternary function and three lists, and
it returns a new list by combining the corresponding elements in the
three input lists with the given function.

sum3 :: Int -> Int -> Int -> Int
sum3 x y z = x + y + z                   ①

main = do
  print $ zipWith3 sum3 [1, 2] [2] [3]   ②

① We define a simple ternary function for illustration. The most
general type for this kind of function would be sum3 :: Num a =>
a -> a -> a -> a.

② The output: [6]

18.7.5. The unzip function

unzip :: [(a,b)] -> ([a],[b])
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The list unzip function takes a list of pairs and returns a pair of lists.

main = do
  print $ unzip [(1, 2), (3, 4), (5, 6)] ①

① The output: ([1,3,5],[2,4,6])

18.7.6. The unzip3 function

unzip3 :: [(a,b,c)] -> ([a],[b],[c])

The list unzip3 function takes a list of triplets and returns a triplet of
three lists.

main = do
  print $ unzip3 [(1, 2, 3), (4, 5, 6)]  ①

① The output: ([1,4],[2,5],[3,6])

18.8. Special Class Functions
Some list functions are defined over particular types or classes.

18.8.1. The Bool list functions

The and and or functions deal with Bool lists.

and, or :: [Bool] -> Bool

The and function returns the conjunction of all elements in a given
Boolean list. Likewise, the or function returns the disjunction of all
elements in a Boolean list. For example,
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main = do
  print $ and []                         ①
  print $ and [True, False, False]
  print $ and $ replicate 10 True
  print $ and (False : repeat True)
  print $ and (False : repeat False)
  print $ and (True : repeat False)
  -- print $ and (True : repeat True)    ②

① The outputs are, from the top, True, False, True, False, False, and
False. Note that and [] returns True.

② This will hang.

main = do
  print $ or []                          ①
  print $ or [True, True, False]
  print $ or $ replicate 10 False
  print $ or (True : repeat False)
  print $ or (True : repeat True)
  print $ or (False : repeat True)
  -- print $ or (False : repeat False)   ②

① The outputs are, from the top, False, True, False, True, True, and True.
Note that or [] returns False.

② This will hang.

18.8.2. The Eq list functions

The elem, notElem, and lookup functions deal with lists whose
elements belong to the Eq class.

elem, notElem  :: (Eq a) => a -> [a] -> Bool
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The elem function takes a value and a list and it returns True if the
value is an element of the given list. Otherwise, it returns False. The
notElem function is a negation of elem. For example,

main = do
  print $ elem 3 [1, 2, 3, 4]            ①
  print $ elem 6 [1, 2, 3, 4]            ②
  print $ notElem 3 [1, 2, 3, 4]         ③
  print $ notElem 6 [1, 2, 3, 4]         ④

① The output: True

② The output: False

③ The output: False

④ The output: True

The lookup function

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b

The lookup function takes a value and an association list (e.g., a list of
pairs), and if there exists a pair in the list whose first element is the
same as the given value, then it returns the second element v of the
found pair, as Just v. If there are found multiple pairs with the same
given value in the list, the first pair is used. If no such pair is found,
then it returns Nothing. For example,

main = do
  let dict = [(1, 'a'), (2, 'b'), (5, 'e'), (2, 'v')]
  print $ lookup 1 dict                  ①
  print $ lookup 4 dict                  ②
  print $ lookup 2 dict                  ③
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① The output: Just 'a'

② The output: Nothing

③ The output: Just 'b'. Note that there are two pairs with its first
element equal to 2.

18.8.3. The Ord list functions

The maximum and minimum functions operate on non-empty and finite
lists whose element types belong to the Ord class.

maximum, minimum :: (Ord a) => [a] -> a

The maximum and minimum functions return the maximum value or
minimum value from a given list, respectively. For example,

main = do
  print $ maximum [10, -5, 40, 20]       ①
  print $ minimum [10, -5, 40, 20]       ②

① The output: 40

② The output: -5

18.8.4. The Num list functions

The sum and product functions operate on lists whose element types
belong to the Num class.

sum, product :: (Num a) => [a] -> a

The sum function computes the sum of a finite list of numbers. The
product function computes the product of a finite list of numbers. For
example,
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main = do
  print $ sum [1, 2, 3, 4, 5]            ①
  print $ product [1, 2, 3, 4, 5]        ②

① The output: 15

② The output: 120

18.8.5. The string lines and words functions

The lines, words, unlines, and unwords functions deal with String
and [String].

lines   :: String -> [String]
unlines :: [String] -> String

The lines function splits a given string into a list of strings using
newline characters as separators. The unlines function does the
reverse. It joins a given list of strings into one string, which comprises
multiple lines with terminating newlines. For example,

main = do
  let verse =
        "April is the cruellest month, breeding\n\
        \Lilacs out of the dead land, mixing\n\
        \Memory and desire, stirring\n\
        \Dull roots with spring rain."   ①
  print $ lines verse                    ②

① Note the "multiline string" literal syntax.

② The output: ["April is the cruellest month, breeding","Lilacs out of the
dead land, mixing","Memory and desire, stirring","Dull roots with
spring rain."]
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main = do
  let stanzas =
        [ "Frisch weht der Wind"
        , "Der Heimat zu"
        , "Mein Irisch Kind,"
        , "Wo weilest du?"
        ]
  print $ unlines stanzas                ①

① The output: "Frisch weht der Wind\nDer Heimat zu\nMein Irisch
Kind,\nWo weilest du?\n"

The words and unwords functions

words   :: String -> [String]
unwords :: [String] -> String

The words function splits a given string into a list of strings, similar to
lines, but it uses white spaces as separators. The unwords function
joins a given list of strings into one string with separating spaces. For
example,

main = do
  let toBe = "To be or not to be."
  print $ words toBe                     ①
  let question = ["That", "is", "the", "question"]
  print $ unwords question               ②

① The output: ["To","be","or","not","to","be."]

② The output: "That is the question"
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Chapter 19. Data Types

19.1. Datatypes
We discuss a few different ways to declare new types or type synonyms
in Haskell in an earlier part of the book. We describe the top-level data
declaration syntax in some more detail in this chapter.

An algebraic datatype can be declared with the data keyword. It has
the following general syntax:

data cx => T u1 ... uk =
  K1 t11 ... t1k1
  | ...
  | Kn tn1 ... tnkn

This declaration introduces a new data type T with one or more data
constructors K1, …, Kn (or, just "constructors"). In this notation, cx
denotes a context, and u1 … uk represent type parameters. The type of
each constructor Ki is (roughly) ti1 -> … -> tiki -> (T u1 … uk)
within a proper context. For example,

data Num a => Result a
  = Tie
  | Win a
  | Loss a a

This declaration introduces a new data type Result with three
constructors, Tie, Win, and Loss. The type of Tie is Result a for an
implicit type variable a, whereas the types of Win and Loss are (Num
a) => a -> Result a and (Num a) => a -> a -> Result a,
respectively, for any type a that is an instance of the Num class.
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The data declaration can optionally include a deriving clause, which
is discussed in the next chapter, in the context of derived instances.

19.1.1. Field access

A data constructor of arity k creates an object with k components, in
the specified order. These components are normally accessed
positionally, e.g, using pattern matching.

For instance, using the above Result datatype,

scored :: Result Int -> Int
scored (Loss s _) = s
scored _ = error "Not a loss"

This scored function returns the first field of the Loss data
constructor. For example,

main = do
  let result = Loss (2 :: Int) (1 :: Int)
  print $ scored result

Alternative to this positional access method, one can assign field labels
to the components of a data object. This is called a "record". A labeled
field of a record can be referenced by its label, independently of its
position within the constructor. The record syntax is described next.

19.2. Record Syntax
A datatype declaration may optionally assign labels to the fields of a
constructor, using the record syntax, C { … }. These field labels can be
used to construct, select, and update fields. For example,
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data Contact = Contact { name, phone :: String, address ::
Int, zipCode :: String }

These labels are referred to as selector or accessor functions because
they are used to access the named fields. They must start with a
lowercase letter or underscore (because they are functions), and they
cannot have the same name as another function in scope.

This particular data declaration is more or less equivalent to the
following without using field labels.

data Contact = Contact String String Int String

19.2.1. Field selection

Field labels create selector functions, which are top level bindings in a
module.

A selector can extract the corresponding field from an object. More
specifically, a field label f introduces a selector function defined as:

f x = case x of
  C1 p11 ... p1k -> e1
  ...
  Cn pn1 ... pnk -> en

where

• C1 … Cn are the constructors of the given datatype that contains a
field labeled with f,

• pij is y or _ depending on whether f labels the j-th component of
Ci, and
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• ei is y or undefined depending on whether some field in Ci has a
label of f or not, respectively.

For example, in the following datatype declaration,

data Data
  = Cons1 { f1 :: String, f2 :: Int }
  | Cons2 { f2 :: Int, f3 :: Bool }
  | Cons3 Int Int

The f1, f2, and f3 labels are field selectors, (implicitly) defined as
follows:

f1 :: Data -> String
f1 x = case x of
  Cons1 y _ -> y

f2 :: Data -> Int
f2 x = case x of
  Cons1 _ y -> y
  Cons2 y _ -> y

f3 :: Data -> Bool
f3 x = case x of
  Cons2 _ y -> y

Note that, as shown in this example,

• Record and non-record syntax constructors can be mixed in a single
data declaration, and

• The same field labels can be used across multiple data constructors
as long as they have the same types.
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19.2.2. Record construction

A record constructor may be used to construct a value by specifying
their components by name rather than by position, using the curly
braces syntax. Unlike the braces used in declaration lists, however, the
{ and } characters must be explicitly included, and they cannot be
omitted using the layout rules.

For instance, using the same Data type,

main = do
  let d1 = Cons1 {f1 = "Hell", f2 = 333} ①
  let d2 = Cons2 {f2 = 666, f3 = False}
  let d3 = Cons3 333 666
  print (d1, d2, d3)                     ②

① Note that the field order is not significant in the record syntax. That
is, Cons1 {f1 = "Hell", f2 = 333} is equivalent to Cons1 {f2
= 333, f1 = "Hell"}.

② The Data type needs to be an instance of Show in order to be able to
call print. See the section on deriving.

Note that the field selectors can be used just like any other top-level
functions, as described above. Using the same example,

main = do
  let d1 = Cons1 {f1 = "Hello", f2 = 333}
  print $ f1 d1                          ①
  print $ f2 d1                          ②

① This will print "Hell".

② This will print 333.
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19.2.3. Updating records

Values of a record syntax constructor of a datatype can be "non-
destructively updated". That is, one can create a new value based on the
field values of an exiting value belonging to the same record syntax
constructor, by selectively updating only some (or, all) of the fields. For
example,

main = do
  let d2 = Cons2 {f2 = 666, f3 = False}
  let d2' = d2 {f2 = 999}
  print d2'                              ①

① d2' has a value {f2 = 999, f3 = False}.

19.3. Abstract Datatypes
The visibility of a datatype’s constructors (outside of the module in
which the datatype is defined) is controlled by the form of the
datatype’s name in the export list, as we explain in the Modules
chapter. This effectively allows creating abstract datatypes (ADTs) that
cannot be directly constructed (outside the given module). For example,
here’s a simple queue data type, defined in a module named Queue:

Queue.hs

module Queue
  ( add
  , remove
  , empty
  ) where                                ①

data QueueType a
  = NullQueue
  | Queue a (QueueType a)
  deriving (Show)
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add :: a -> QueueType a -> QueueType a
add = Queue

remove :: QueueType a -> (Maybe a, QueueType a)
remove NullQueue = (Nothing, NullQueue)
remove (Queue v NullQueue) = (Just v, NullQueue)
remove (Queue v q) = (fst qq, Queue v (snd qq))
  where
    qq = remove q

empty :: QueueType a
empty = NullQueue

① Notice the conventional formatting. There is no difference between
this and the module declaration written in one line.

In this example, we declare a datatype QueueType with two
constructors, and define three functions, add, remove, and empty. Note
that we export neither the type QueueType nor its constructors,
NullQueue and Queue. Hence, a value of QueueType cannot be directly
constructed outside this module. But, values of QueueType can still be
used using the exported functions. For instance,

Main.hs

main = do
  let q1 = Queue.add (5 :: Int) $ Queue.add (3 :: Int)
Queue.empty
  print q1                               ①
  let (v, _) = Queue.remove q1
  print v                                ②

① This will print Queue 5 (Queue 3 NullQueue).

② This will print Just 3.
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Chapter 20. Classes
The class, or typeclass, in Haskell is comparable to constructs like
interfaces, traits, or protocols in other programming languages.

A class in Haskell is essentially a collection of types, just like a type is a
collection of values. A class specifies a set of functions, or "behaviors".
A type that belongs to a certain class needs to implement (either
explicitly or implicitly) all functions of the class.

Alternatively, another way to look at the class in Haskell is from the
viewpoint of "function overloading". A function can be defined with
parameters from certain collection of types, and not just specific types.
As long as the parameter set belongs to this "collection", they may be
valid types for the given function.

Haskell accomplishes overloading through class and instance
declarations.

20.1. Class Declarations
A class declaration introduces a new class and the operations on it,
called the class methods. Here’s a general syntax:

class cx => C u where cdecls

This declaration introduces a new class with name C and a single type
variable u. The context cx specifies the superclasses of C, if any.

The where clause (e.g., the where cdecls part above), different from the
where binding, is optional, but if provided, it can contain any of the
following three declarations.
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20.1.1. New class methods

The class declaration introduces new class methods, in the top-level
namespace. The class methods of a class declaration are those with an
explicit type signature vi :: cxi => ti in cdecls. E.g.,

class cx => C u where
  v1 :: cx1 => t1
  ...
  vn :: cxn => tn

For instance, we can define a class that provides "literate values" for
numeric types as follows:

class Num a => Value a where
  value :: a -> String                   ①

① A class method for the example class Value. Note that this is
syntactically more or less the same as the type signature declaration
for a function binding. In fact, this introduces a function name,
value, at the top-level scope.

20.1.2. Default class methods

The where clause may contain a default class method implementation
for any of the class method vi. The default class method for vi is used if
no binding is given in a particular instance declaration. For example,

class Num a => Value a where
  value :: a -> String                   ①
  value x = "High"                       ②

① An example class method, as above.
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② A default class method for the class method value. Syntactically,
orders are significant, but it is typical to put a default class method
immediately below the corresponding class method, just like we
(always) put the function binding below its type signature
declaration.

20.1.3. Fixity declaration

The class declaration where clause may also contain a fixity declaration
for any of the class methods. Since class methods declare top-level
values, the fixity declaration for a class method may alternatively
appear at top level, outside the class declaration.

20.2. Instance Declarations
An instance declaration which makes the type T to be an instance of
class C is called a C-T instance declaration. For example, for a class C
declared as class cx => C u where { cbody }, the general form of
the corresponding instance declaration for type T is,

instance cx' => C (T u1 ... uk) where { d }

The type (T u1 … uk) must take the form of a type constructor T
applied to simple type variables u1, … uk. When the type constructor is
nullary, the parentheses may be omitted. The declarations d may
contain bindings only for the class methods of C.

For instance, using the Value class example from the previous section,

instance Num => Value Int where
  -- value :: a -> String                ①
  value x = "High"                       ②
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① The class method value for the Value class. You cannot redeclare it
in an instance declaration, but sometimes it is useful to see its
signature while implementing it in a particular instance. You can put
it in a comment, as in this example, or you can use a GHC language
extension.

② An example function binding for the class method, value.

The instance body declarations may not contain any type signatures or
fixity declarations, since these have already been given in the class
declaration. The GHC language extension InstanceSigs may be used if
you want to explicitly include the method’s type signature (the class
method) in an instance declaration.

If no binding is given for a class method, then the class method of this
instance is bound to undefined unless the corresponding default class
method exists in the class declaration.

20.3. Deriving
As indicated earlier, data and newtype declarations can include an
optional deriving clause. If it is included with one or more classes,
then derived instance declarations are automatically generated for
the datatype for each of the specified classes.

Derived instances can be declared for the Eq, Ord, Enum, Bounded, Show,
and Read classes in the Prelude, and possibly for other classes in the
standard library.
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Chapter 21. Standard Classes
The following type classes are defined by the Haskell Prelude:

• Eq,

• Ord,

• Enum,

• Bounded,

• Read,

• Show,

• Functor,

• Monad, and

• Other numeric classes such as Num, Real, etc.

The Functor and Monad classes are explained later in the book, in
separate chapters. The Applicative Functor, for Applicative for
short, from the GHC language extension, is also widely used, but we do
not include it in this book.

21.1. The Eq Class
The Eq class defines equality (==) and inequality (/=) methods:

class Eq a where
  (==), (/=)  ::  a -> a -> Bool

• All basic datatypes except for functions and IO are instances of this
class.

• Instances of Eq can be derived for any user-defined datatype whose
constituents are also instances of Eq.
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For example,

data Fruit = Apple | Orange
instance Eq Fruit where
  -- (==) :: Fruit -> Fruit -> Bool
  Apple == Apple = True                  ①
  Orange == Orange = True
  _ == _ = False

① Note that we provide a binding for (==), but not for (/=), in this
example. The class Eq includes default class methods for both (==)
and (/=), using the negation of each other. That is, if a binding is
provided for one in an instance, then we can rely on the default
class method for the other.

Or, using deriving,

data Fruit = Apple | Orange
  deriving(Eq)

21.2. The Ord Class
The Ord class is used for totally ordered datatypes:

class (Eq a) => Ord a where
  compare              :: a -> a -> Ordering
  (<), (<=), (>=), (>) :: a -> a -> Bool
  max, min             :: a -> a -> a

• All basic datatypes except for functions, IO, and IOError, are
instances of this class.

• Instances of Ord can be derived for any user-defined datatype
whose constituent types are in Ord.
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For example,

data Sound = Do | Re

instance Eq Sound where                  ①
  -- (==) :: Sound -> Sound -> Bool
  Do == Do = True
  Re == Re = True
  _ == _ = False

instance Ord Sound where                 ②
  -- compare :: Sound -> Sound -> Ordering
  compare Do Do = EQ
  compare Re Re = EQ
  compare Do _ = LT
  compare _ Re = LT
  compare Re _ = GT
  compare _ Do = GT

① Note that, since Eq is a superclass of Ord, Sound needs to be an
instance of Eq before it can be an instance of Ord.

② We rely on the default class methods for other methods of Ord.

21.3. The Enum Class
Class Enum defines operations on sequentially ordered types:

class Enum a where
  succ, pred     :: a -> a
  toEnum         :: Int -> a
  fromEnum       :: a -> Int
  enumFrom       :: a -> [a]
  enumFromThen   :: a -> a -> [a]
  enumFromTo     :: a -> a -> [a]
  enumFromThenTo :: a -> a -> a -> [a]
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For example,

data Ternary = T0 | T1 | T2
  deriving (Show)

instance Enum Ternary where
  -- toEnum :: Int -> Ternary
  toEnum x = case x of
    0 -> T0
    1 -> T1
    _ -> T2

  -- fromEnum :: Ternary -> Int
  fromEnum t = case t of
    T0 -> 0
    T1 -> 1
    T2 -> 2

21.4. The Bounded Class
The Bounded class is used to name the upper limit and lower limit of
the values of a type:

class Bounded a where
  minBound, maxBound :: a

• The types Int, Char, Bool, (), Ordering, and all tuples are
instances of Bounded.

• The Bounded class may be derived for any enumeration type.

• Bounded may also be derived for single-constructor datatypes
whose constituent types are in Bounded.
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For example,

data Drink = Tall | Grande | Venti

instance Bounded Drink where
  -- minBound :: Drink
  minBound = Tall

  -- maxBound :: Drink
  maxBound = Venti

21.5. The Show Class
The Show class is used to convert values to strings:

type ShowS = String -> String            ①

class Show a where
  showsPrec :: Int -> a -> ShowS
  show      :: a -> String
  showList  :: [a] -> ShowS

① Declared in the Prelude. Note that ShowS is a function type, which
takes a string and returns a string.

All Prelude types, except the function types and the IO type, are
instances of Show. For example,

data Weather = Sunny | Rainy

instance Show Weather where
  -- show :: Weather -> String
  show Sunny = "Sunny"
  show Rainy = "Rainy"
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Or, by deriving,

data Weather = Sunny | Rainy
  deriving(Show)

21.6. The Read Class
The Read class is used to convert values from strings:

type ReadS a = String -> [(a,String)]    ①

class Read a where
  readsPrec :: Int -> ReadS a
  readList  :: ReadS [a]

① A convenience type, defined in the Prelude.

All Prelude types, except function types and IO, are instances of Read.
For example,

instance Read Weather where
  -- readsPrec :: Int -> ReadS Weather

  readsPrec _ r =
    if r == "Sunny"
      then [(Sunny, "")]
      else [(Rainy, "")]

Or, using deriving,

data Weather = Sunny | Rainy
  deriving(Read)
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21.7. The Num Class
The Num class is defined as follows:

class (Eq a, Show a) => Num a  where
  (+), (-), (*)    :: a -> a -> a
  negate           :: a -> a
  abs, signum      :: a -> a
  fromInteger      :: Integer -> a

For example, using the following simple datatype,

data Binary = Zero | One
  deriving (Show, Eq)

We can make Binary an instance of Num:

instance Num Binary where
  -- abs :: Binary -> Binary
  abs a = a
  -- signum :: Binary -> Binary
  signum a = a
  -- fromInteger :: Integer -> Binary
  fromInteger n = if n <= 0 then Zero else One
  -- negate :: Binary -> Binary
  negate a = a
  -- (+) :: Binary -> Binary -> Binary
  Zero + Zero = Zero
  _ + _ = One
  -- (*) :: Binary -> Binary -> Binary
  One * One = One
  _ * _ = Zero
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Chapter 22. Functors
A Functor represents a parametric type that can be mapped over. In
fact, the list is an archetypical example of parametric types that support
mapping. For example,

main = do
  let x = [1, 2, 3] :: [Int]
  let y = map (* 3) x
  print y

Note that, in this example, a value [1, 2, 3] of [Int] (a list of Int)
has been mapped to another value [3, 6, 9] of the same type, using
the map function (map :: (a -> b) -> [a] -> [b]). The Functor
class is essentially a generalization of the types like lists. In addition to
lists, IO and Maybe in the Prelude are in this class.

22.1. The Functor Class
The types belonging to the Functor typeclass need to support a
mapping function, fmap, defined as follows:

class Functor f where
  fmap :: (a -> b) -> f a -> f b         ①

① If this notation is not very clear to you, f a represents a
parametrized type f with a type variable a, e.g., similar to Maybe a,
etc. The most commonly used parametrized type in Haskell, namely,
the list, has a special syntax, [a]. This is merely a syntactic sugar for
[] a, which has the form f a. Note the similarity between the list’s
map function and Functor's fmap function. In fact, as indicated, a
list is an instance of Functor with fmap defined to be the good ol'
map function.

22.1. The Functor Class
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In addition, instances of Functor should satisfy the following laws:

fmap id = id
fmap (f . g) = fmap f . fmap g

22.2. Functor Instances

22.2.1. The Maybe functor

Here’s the standard implementation of fmap for Maybe:

instance Functor Maybe where
  -- fmap :: (a -> b) -> Maybe a -> Maybe b
  fmap f Nothing  = Nothing
  fmap f (Just x) = Just (f x)

One can easily verify that this implementation satisfies the Functor
laws. For instance, both fmap $ id Nothing and id Nothing yield
Nothing, and fmap $ id $ Just x and id $ Just x yield Just x.
Hence fmap id = id for this fmap function. The second law fmap (f
. g) = fmap f . fmap g can be likewise easily verified.

Some more examples:

main = do
  let m1 = Nothing :: Maybe Int
  print $ fmap (+ 42) m1                 ①
  let m2 = Just 624 :: Maybe Int
  print $ fmap (+ 42) m2                 ②

① This will print Nothing.

② This will print Just 666.

22.2. Functor Instances
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Chapter 23. Monads
The Monad class represents parametric types that support certain
operations, in particular, binding (>>=) and return operations,

class Monad m where
  (>>=)  :: m a -> (a -> m b) -> m b     ①
  return :: a -> m a                     ②

① Again, m a refers to a parameterized type m with a type parameter a.
A type m, which is an instance of Monad, needs to implement these
methods for an arbitrary type variable a.

② Notice the return function. Haskell does not have the return
statement which is found in virtually all imperative programming
languages. The return class method of a Monad type m takes a value
of type a and returns a value of type m a.

The binding operation >>= is a generalization of concatMap (or, "flat
map") defined over a list parametric type,

concatMap :: (a -> [b]) -> [a] -> [b]    ①

① Again notice the similarity between >>= and the list’s concatMap
function (despite the flip of the two arguments).

For instance,

main = do
  let x = [1, 2, 3] :: [Int]
  let y = concatMap (\e -> [e, 2 * e]) x
  print y                                ①

① This will output [1,2,2,4,3,6].
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Informally speaking, the Monad class is a generalization of parametric
types like lists which support the "mapping and then flattening"
operation. In the Prelude, in addition to lists, Maybe and IO are
instances of Monad.

23.1. The Monad Class
The Monad typeclass defines the basic operations over a monad:

class Monad m where
  (>>=)   :: m a -> (a -> m b) -> m b    ①
  (>>)    :: m a -> m b -> m b
  return  :: a -> m a
  fail    :: String -> m a
  m >> k  =  m >>= \_ -> k               ②
  fail s  = error s

① These top four lines are class methods.

② The bottom two lines are default class methods. Hence, (>>) and
fail need not be implemented in instance declarations.

Furthermore, instances of Monad should satisfy the following laws:

return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Instances of both Monad and Functor should additionally satisfy the
following law (in addition to the Functor laws):

fmap f xs = xs >>= return . f

23.1. The Monad Class
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23.2. Monad Instances

23.2.1. The Maybe monad

Here’s the standard implementations of the >>=, return, and fail
functions for Maybe:

instance Monad Maybe where
  (Just x) >>= k = k x
  Nothing  >>= k = Nothing
  return         = Just
  fail s         = Nothing

One can easily verify that these implementations satisfy the Monads
laws. We will leave it as an exercise to the readers.

Here’s an example use of the bind >>= operator with the Maybe monad:

main = do
  let m1 = Nothing :: Maybe Int
  print $ m1 >>= Just                    ①
  let m2 = Just 666 :: Maybe Int
  print $ m2 >>= Just                    ②

① This will print Nothing. Note that although m1 is Nothing, m1 >>=
Just does not fail. It merely returns Nothing.

② This will print Just 666.

23.2. Monad Instances
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Chapter 24. Do Expressions
A do expression provides a more conventional, more imperative
programming-style, syntax in a monadic context. Syntactically, a do
expression has the following general form:

do { STATEMENTS }

where STATEMENTS can be one or more of any of the following:

• An expression,

• A monadic assignment of the form, pattern <- expression,

• A let declaration (without in), and

• An empty statement (;).

The last statement in STATEMENTS must be an expression, which
becomes the value of the overall do expression. Variables bound by let
have fully polymorphic types while those defined by <- are lambda
bound and thus they are monomorphic.

Empty statements are ignored. Otherwise, the do expressions are
evaluated as follows:

• do { exp } is the same as exp.

• do { exp; stmts } is evaluated to exp >> do { stmts }.

• do { pat <- exp; stmts } is evaluated to let ok pat = do {
stmts }; ok _ = fail … in exp >>= ok.

• do { let decls; stmts } is equivalent to let decls in do {
stmts }.

We have been using do expressions throughout this book. We will see
some more examples in the last chapter on IO.
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Chapter 25. Basic Input/Output
The I/O system in Haskell is purely functional, and yet it has all of the
expressive power found in imperative programming languages. Haskell
uses a Monad to integrate I/O operations, or actions, into a purely
functional context.

25.1. I/O Operations
The IO type is an instance of the Monad class. The two monadic binding
functions are used to compose a series of I/O operations:

(>>)  :: IO a -> IO b        -> IO b
(>>=) :: IO a -> (a -> IO b) -> IO b

• The >> operator is used when the result of the first operation is
uninteresting, for example when it is ().

• The >>= operation passes the result of the first operation as an
argument to the second operation.

Furthermore, the return function is used to define the result of an I/O
operation.

25.2. Exceptions
An I/O operation may raise an exception, a value of type IOError,
instead of returning a result. One can use the Prelude userError
function to create an IOError, which is discussed next.

The readers are encouraged to consult the official Report or other
references if you would like to learn more on the IO Monad and
exception handling. In the next and final chapter, we discuss some of
the I/O functions in the Standard Prelude and how to use them.

25.1. I/O Operations
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Chapter 26. I/O Functions
The Prelude includes the following IO-related functions:

ioError, userError, catch
putChar, putStr, putStrLn, print
getChar, getLine, getContents, interact, readIO, readLn
readFile, writeFile, appendFile

26.1. Error Functions

26.1.1. The userError function

userError :: String -> IOError

The IO userError function returns an IOError value with a given
string as an error message. For instance

demoError :: String -> IOError
demoError msg =
  userError $ "User Error: " ++ msg

26.1.2. The ioError function

ioError :: IOError -> IO a

The IO ioError function is used to raise an IOError in the IO monad.
For example,

26.1. Error Functions
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main = do
  ioError $ demoError "Urghh"

26.1.3. The catch function

catch :: IO a -> (IOError -> IO a) -> IO a

The IO catch function takes an IO action and a handler function, and if
the IO action returns an IOError it raises the error in the IO monad.

26.2. Output Functions

26.2.1. The putChar function

putChar :: Char -> IO ()

The IO putChar function writes a given Char to the standard output
device.

main = do
  putChar 'H'; putChar 'e'; putChar 'l'
  putChar 'l'; putChar 'o'; putChar '\n'

26.2.2. The putStr function

putStr :: String -> IO ()

The IO putStr function takes a string argument and it writes it to the
standard output device.

26.2. Output Functions

158



26.2.3. The putStrLn function

putStrLn :: String -> IO ()

The IO putStrLn function works the same way as putStr, but it
appends a newline character.

main = do
  putStr "Hello "
  putStrLn "Haskell!"

26.2.4. The print function

print :: Show a => a -> IO ()

The IO print function outputs a value of any Show type to the standard
output device. We have been using the print function in various
examples throughout this book.

26.3. Input Functions

26.3.1. The getChar function

getChar :: IO Char

The getChar function reads a character from the standard input
device. It returns the value as IO Char. In the following example, we
create a simple function echoChar, which repeatedly reads a character
from the terminal and prints it back unless it is 'x'. When 'x' is
inputted, we simply return with ().

26.3. Input Functions
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echoChar :: IO ()
echoChar = do
  c <- getChar                           ①
  case c of
    'x' -> return ()
    _ -> do putChar c; echoChar          ②

① Note that the monadic assignment <-, in the context of the do
expression, effectively does a safe conversion of IO Char to Char in
this example. That is, the type of c is Char.

② We recursively call echoChar in this example.

26.3.2. The getLine function

getLine :: IO String

The getLine function reads a line of text from the standard input
device and it returns the value as an IO String Monad. Here’s an
essentially the same function, echoLine, which "echoes" one line at a
time, instead of one character at a time.

echoLine :: IO ()
echoLine = do
  line <- getLine                        ①
  case line of
    "exit" -> return ()
    _ -> do
      putStrLn line
      echoLine

① Using the similar monadic assignment, we effectively convert IO
String to String in this example.

26.3. Input Functions
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26.3.3. The getContents function

getContents :: IO String

The getContents function returns all user input as a single string.

main = do
  content <- getContents                 ①
  putStr content

① The getContents function continues to read the input until it
encounters EOF (e.g., Ctrl+D). Note that this particular do expression
is equivalent to the following using the monadic binding operator.

main = getContents >>= putStr

26.3.4. The readIO function

readIO :: Read a => String -> IO a

The readIO function reads and parses a string, and it returns an IO
monad value of a Read type. It raises an exception when the parse fails.
The repeatNTimes function in the next example reads two strings as
an Int (n) and a list [Int], replicates the list by n times, and returns
the result as IO [Int].

repeatNTimes :: String -> String -> IO [Int]
repeatNTimes rep list = do
  n <- readIO rep
  xs <- readIO list
  return $ concat $ replicate n xs

26.3. Input Functions
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main = do
  list <- repeatNTimes "3" "[1, 2, 3]"
  print list                             ①

① This will print [1,2,3,1,2,3,1,2,3].

26.3.5. The readLn function

readLn :: Read a => IO a

The readLn function combines getLine and readIO. For example,

main = (readLn :: IO Int) >>= print      ①

① This read an input as an Int and prints out the value if parse is
successful. Otherwise, it throws an error.

26.3.6. The interact function

interact :: (String -> String) -> IO ()

The interact function takes a function of type String -> String as
its argument. The entire input from the standard input device is passed
to this function as its argument, and the resulting string is outputted on
the standard output device. For example, here’s another version of the
echo line function, which converts all input characters to uppercase
letters.

import Data.Char (toUpper)

main = interact $ map toUpper

26.3. Input Functions
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26.4. File Functions
FilePath is declared to be a type synonym for String in the Prelude.

26.4.1. The readFile function

readFile :: FilePath -> IO String

The readFile function reads a file and returns the content of the file as
a string. For example, using the following function in the current
directory,

$ cat hello.txt
Hello, world
ditto

main = do
  content <- readFile "hello.txt"        ①
  print $ lines content                  ②

① If the named file is not found, it will throw an error.

② If successful, it will print ["Hello, world","ditto"].

26.4.2. The writeFile function

writeFile :: FilePath -> String -> IO ()

The writeFile function takes a file path and content string, and it
writes the content to the given file. If the file does not exist, it creates a
new file. If a file with with the given name exists, it overwrites. For
example,

26.4. File Functions
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main = do
  let quote = "The future belongs to those who believe in the
beauty of their dreams."
  writeFile "world.txt" (quote ++ "\n")  ①
  readFile "world.txt" >>= print         ②

① This IO action creates a file named world.txt in the current directory,
if it does not exist, and it writes the string quote to the file.

② This will print The future belongs to those who believe in the beauty of
their dreams. to the terminal.

26.4.3. The appendFile function

appendFile :: FilePath -> String -> IO ()

The appendFile function takes a file path and a content string as two
arguments, and it writes the content at the end of the given file. If the
file does not exist, it creates a new file. For example,

main = do
  let quote2 = "The best way to predict the future is to
invent it."
  appendFile "world.txt" quote2          ①
  future2 <- readFile "world.txt"
  print $ words future2                  ②

① We use the same file used in the previous example. This IO action
will append the given content, quote2 after the current content.

② Output:
["The","future","belongs","to","those","who","believe","in","the","beauty
","of","their","dreams.","The","best","way","to","predict","the","future","
is","to","invent","it."].

26.4. File Functions
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Epilog
Haskell is a beautiful language. That is, once you get to know it. It is a
shame that only a tiny fraction of the whole developer community end
up using, and enjoying, programming languages like Haskell.

If you are reading this, congratulations! You passed the most difficult
part of learning Haskell. Once you become familiar with this relatively
foreign syntax of Haskell, the world is your oyster. You will quickly find
out that you can do so much more with so much less with Haskell. And,
more importantly, you will enjoy programming more, with Haskell.

Programming languages are not just for utility, just like natural
languages are not just for utility. We enjoy Shakespeare, for instance,
although it has no practical value. In this age of super AI and machine
learning, when programming, as a human labor, is becoming possibly
obsolete (although not any time soon), programming can still be useful,
and enjoyable, like an art.

Haskell is a "higher-level" programming language. Functional
programming is about what, rather than how. In imperative
programming, you, as a programmer, have to tell exactly how things
are done to the computer. That is why we, not the computer, learn
algorithms and what not.

In the higher level programming, in the near future, we will not have to
concern ourselves with exactly how. We will just need to tell computers
(or, AIs) what to do. They will then figure out how best to do it.
(Hopefully.) In our view, functional programming is a stepping stone to
that future. Languages like Haskell, which are more abstract and more
high-level, can be the best tool for our next progress. We will see.

But, for now, go out and do some functional programming! 

26.4. File Functions
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A. How to Use This Book
Tell me and I forget. Teach me and I remember.
Involve me and I learn.

— Benjamin Franklin

The books in this "Mini Reference" series are written for a wide
audience. It means that some readers will find this particular book "too
easy" and some readers will find this book "too difficult", depending on
their prior experience related to programming. That’s quite all right.
Different readers will get different things out of this book. At the end of
the day, learning is a skill, which we all can learn to get better at. Here
are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some
typos. We go through multiple revisions, and every time we do that
there is a finite chance to introduce new errors. We know that some
people have strong opinions on this, but you should get over it. Even
after spending millions of dollars, a rocket launch can go wrong. All
non-trivial software have some amount of bugs.

Although it’s a cliche, there are two kinds of people in this world. Some
see a "glass half full". Some see a "glass half empty". This book has a lot
to offer. As a general note, we encourage the readers to view the world
as "half full" rather than to focus too much on negative things. Despite
some (small) possible errors, and formatting issues, you will get a lot
out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several
years ago, and it became an instant best seller. There are now many
similar books, copycats, published since then. The book is written for
"laypeople", and illustrate how computer science concepts like specific
algorithms can be useful in everyday life.

166



Inspired by this, we have some concrete suggestions on how to best
read this book. This is one suggestion which you can take into account
while using this book. As stated, ultimately, whatever works for you is
the best way for you.

Most of the readers reading this book should be familiar with some
basic algorithm concepts. When you do a graph search, there are two
major ways to traverse all the nodes in a graph. One is called the "depth
first search", and the other is called the "breadth first search". At the
risk of oversimplifying, when you read a tutorial style book, you go
through the book from beginning to end. Note that the book content is
generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially
often corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are
written to cover broad and wide range of topics, and which have many
interdependencies among the topics, it is often best to adopt the breadth
first traversal.

This advice should be especially useful to new-comers to the language.
The core concepts of any (non-trivial) programming language are all
interconnected. That’s the way it is. When you read an earlier part of
the book, which may depend on the concepts explained later in the
book, you can either ignore the things you don’t understand and move
on, or you can flip through the book to go back and forth. It’s up to you.
One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

The best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get
the high-level concepts. At each iteration, you try to get more and more
details. It is really up to you, and only you can tell, as to how many
passes would be required to get much of what this book has to offer.

Again, good luck!

167



Index
@

!!, 105-106
$, 58, 103
$ operator, 103
$!, 103
$! operator, 103
&&, 46
(), 38, 50, 75, 146, 156, 159
(>>), 153
* operator, 64
++, 105
0, 42
9, 42
:, 67, 95
<-, 155, 160
>> operator, 156
>>=, 152, 154
>>= operation, 156
[], 38, 67, 93-94, 111
[String], 130
_, 90, 134
_ patterns, 85
_|_, 53, 56, 87-88, 100, 102
{, 136
||, 46
}, 136
~, 44

A

Abstract Datatypes, 137
abstract datatypes, 137

abstract type, 53, 57
accessor, 134
actions, 156
algebraic data types, 72, 75
algebraic datatype, 39, 132
alias, 32
all, 113
all function, 116
alternative, 82
alternatives, 82
and, 126
and [], 127
and function, 126
annotation, 77
Anonymous functions, 60
any, 113
any function, 115-116
append ++ operator, 107
appendFile function, 164
application, 58
Applicative, 143
Applicative Functor, 143
Arbitrary precision integers, 49
arithmetic sequences, 68-69
arity, 86
arity k, 133
as alias, 32
as clause, 31
as-pattern, 92, 100
As-Patterns, 92
as-patterns, 92

168



ASCII code, 93-94
association list, 128
associativity, 42
asTypeOf, 104
asTypeOf Function, 104

B

back quotes, 54
backslash character, 61
backslashes, 48
Basic List Functions, 105
Basic Types, 35
biding declaration, 44
Binary data constructors, 89
binary function, 59, 125
binary operator, 59, 117, 119
binary operators, 64
binary type constructor, 37
bind >>= operator, 154
binding, 85, 140, 142, 144, 152
binding least tightly, 42
binding most tightly, 42
binding operation, 152
binding precedence, 42
bindings, 79
bodies, 82
Bool, 46, 146
Bool list functions, 126
Bool lists, 126
Boolean expression, 81
Boolean expressions, 70
Boolean functions, 46
boolean functions, 46
Boolean guard, 71

Boolean guards, 81
boolean guards, 70
Boolean list, 126
boolean type, 46
Boolean values, 43
Booleans, 46
Bottom, 53
Bounded, 47, 50, 142-143, 146
bounded, 69
Bounded Class, 146
Bounded class, 146
braces, 27-28, 136
Braces and semicolons, 27
break, 110
break function, 113
break p function, 113
build tool, 21
builtin I/O functions, 58
builtin types, 35

C

Cabal, 21-22
cabal --help, 22
cabal build, 21
cabal command, 22
cabal install, 22
Cabal project, 21
cabal run, 21
capital letter, 29
case expression, 82-83, 86, 91
Case Expressions, 82
case expressions, 43, 79-80, 85, 95
catch function, 158
Char, 47, 146

169



Char type, 69
character literal pattern, 91
Character literals, 47
character type, 47
Characters, 47
characters, 47
class, 35, 139
class, 36, 139, 141
class assertion, 37
Class Assertions, 37
class assertions, 37
class declaration, 36
class declaration, 139-142
Class Declarations, 139
class declarations, 35
Class Enum, 145
class Eq, 144
class Fractional, 86
class identifier, 37
class method, 140-142
class methods, 36, 139
class methods, 36, 140-141, 153
class Num, 49, 86
Classes, 36, 139
classes, 29-31, 46, 126, 142-143
close brace, 28
colon :, 27
command line options, 24
comment, 25, 142
Comments, 25
compile error, 77
compiler, 20, 22, 24
component types, 38
composition, 114

concat, 105
concat function, 107
concatenation, 107
concatMap, 113-114, 152
concatMap function, 114, 152
conditional expression, 81, 83
Conditional Expressions, 81
conjunction, 126
cons : constructor, 93
cons constructor, 67, 95
cons operator, 68, 93, 95
cons operator :, 55
cons pattern, 93
consecutive dashes, 25
const, 101, 104
const Function, 101
constant function, 101
constraint, 37
constructor, 27, 40, 72, 86-88, 90, 97,

132-133
constructor expressions, 68
Constructor identifiers, 26
constructor patten, 92
constructor pattern, 86, 88, 90, 97
Constructor Patterns, 86
Constructor patterns, 97
constructor patterns, 86, 90, 93, 98
constructors, 26, 30-31, 33, 51, 57, 67,

99, 132, 134-135, 137-138
content string, 163-164
context, 37
context, 37, 41, 76, 95, 132, 139
Contexts, 37
continuation-passing style, 103

170



curly braces, 27-28, 58
curly braces syntax, 136
Curried Applications, 61
curried function, 74
curry, 74
curry function, 74
currying, 60
cycle, 122
cycle function, 123

D

data, 35, 87, 142
data constructor, 39, 89, 133
data constructors, 37, 53, 88, 132, 135
data declaration, 39, 133, 135
data declaration, 134
data declaration syntax, 132
data declarations, 39
data keyword, 39, 132
data object, 133
data structures, 95
data type, 97, 132
data type declarations, 35
Data Types, 132
data types, 31
datatype, 99, 133-134, 137-138, 142
datatype Char, 47
datatype declaration, 133, 135
Datatypes, 39, 132
datatypes, 29, 31, 143-144, 146
de-constructor, 40
declaration, 79, 132
declarations, 35, 139
declared type, 76

Deconstruction, 79
default, 35
default class method, 140
default class method, 140, 142
Default class methods, 140
default class methods, 144-145, 153
default declarations, 35
derived, 143-144, 146
derived instance declarations, 142
Derived instances, 142
derived instances, 133
Deriving, 142
deriving, 136, 148
deriving clause, 133, 142
Development Tools, 20
development tools, 20
disjunction, 126
do, 58
do expression, 58, 155, 160-161
Do Expressions, 155
do expressions, 85, 155
do notation, 58
dots, 29
double dashes, 25
Double precision floating, 49
Drop, 110
drop, 110
drop function, 111
dropWhile, 110
dropWhile function, 112

E

Eager Infix Application, 103
eager infix application, 103

171



Either, 51
Either datatype, 51
Either type, 88
elem, 127-128
elem function, 128
element type, 38
element types, 129
empty, 105
empty list, 67, 93-94, 96, 109, 111, 117,

120
empty list pattern, 94
empty statement, 155
Empty statements, 155
Enum, 47, 50, 142-143
Enum Class, 145
Enum class, 47, 93-94
enumeration, 46-47, 50, 71
enumeration type, 146
Enumerations, 68
EOF, 161
Eq, 47, 50, 142-143, 145
Eq, 53
Eq Class, 95, 143
Eq class, 96, 127, 143
Eq list functions, 127
equal sign, 57
equality, 49, 143
error, 56
error, 106, 109, 117, 120, 158
error function, 56
Error Functions, 157
error message, 56, 157
Errors, 56
errors, 53

exception, 156, 161
exception handling, 156
Exceptions, 156
export, 138
export list, 30-31, 137
Export Lists, 30
exported functions, 138
exporting, 29
expression, 29, 36, 45, 57, 76, 155
expression evaluation, 56
expression type, 77
expression type signature, 77
Expression Type Signatures, 76
Expression type signatures, 76
expressions, 36, 54, 70
extensions, 22

F

fail, 153-154
field, 133-134
Field access, 133
field label, 134
Field labels, 134
field labels, 133-135
field names, 33
field order, 136
Field selection, 134
field selectors, 135-136
field values, 137
Fields, 90
fields, 90, 97, 133
File Functions, 163
file path, 163-164
FilePath, 163

172



Filter, 113
filter, 113
filter function, 115
filtering, 70
finite list, 109-110, 129
finite lists, 129
first argument, 101, 104
first element, 73, 108-109
Fixed sized integers, 49
fixities, 35
fixity, 95
Fixity declaration, 141
fixity declaration, 42, 55, 141
Fixity Declarations, 42
Fixity declarations, 35
fixity declarations, 55, 142
fixity rules, 56
flip Function, 102
flip function, 102
floating literal pattern, 86
floating point literal, 54
fmap, 150-151
fmap function, 150-151
Fold, 117
fold1, 117
folding functions, 121
foldl, 117-118
foldl function, 117
foldl1, 117
foldl1 function, 117
foldr, 117, 120
foldr function, 119
foldr1, 117
foldr1 function, 120

fromEnum, 47, 93
fromInteger, 54
fromRational, 54
fst, 73
fst function, 73
function, 54, 57, 113, 139
Function application, 57
function application, 58-59, 66, 77, 95
function application syntax, 58
Function Applications, 57
function applications, 58, 74
function binding, 42, 58, 99
function binding declaration, 42
function binding pattern, 58
Function Bindings, 42
function bindings, 44
Function Composition, 66
Function composition, 66
function composition, 55, 66
function declaration, 83, 95
Function declarations, 35
function declarations, 79-80
function definition, 83
function definitions, 85
function name, 58
function names, 57
function overloading, 139
function pattern binding, 95
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function types, 147-148
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Haskell source code, 24
Haskell tools, 21
Haskell2010, 24
Haskell98, 24
Head, 108
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head function, 108
HLS, 22
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I/O Functions, 157
I/O functions, 53, 156
I/O operation, 156
I/O Operations, 156
I/O operations, 53, 156
I/O system, 156
id, 101
id Function, 101
identifier, 26, 29
Identifiers, 26
identifiers, 26, 29, 37
identity function, 101
if - then - else, 81
if expression, 81
imperative programming, 23, 152,
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imperative style, 58
import declaration, 31-34
Import Declarations, 31
import declarations, 30
import statements, 31

Imported names, 31
Importing all, 31
importing all, 34
Importing all but some, 34
importing module, 32
Importing some or none, 33
imports, 29
in, 78
indefinitely repeating, 122
indentation, 28
indentation level, 28
indentation rules, 27, 58
index, 106
index !! operator, 106
index operator, 106
inequality, 143
infinite list, 69, 71, 122-123
infinite repetition, 123
infix, 27, 37
infix, 42
infix application, 59
infix constructor pattern, 89
infix form, 59
infix notation, 54
infix syntax, 89
infixl, 42
infixl 9, 42
infixr, 42
init, 108
init function, 110
input characters, 162
Input Functions, 159
input list, 124
input lists, 125
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instance, 35, 139
instance, 53, 95-96, 132, 136, 142, 144-

145, 149
instance body declarations, 142
instance declaration, 36, 140, 142
instance declaration, 141-142
Instance Declarations, 141
instance declarations, 31, 153
instance declarations, 35
instance type, 36
instances, 33, 148
InstanceSigs, 142
Int, 146
Int type, 47
integer literal, 54
integer literal pattern, 86
interact function, 162
interactive mode, 23
interfaces, 139
IO, 143-144, 148, 150, 153
IO, 155
IO a, 58
IO action, 93, 158, 164
IO catch function, 158
IO ioError function, 157
IO Monad, 156
IO monad, 157-158
IO monad, 161
IO print function, 159
IO putChar function, 158
IO putStr function, 158
IO putStrLn function, 159
IO Type, 53

IO type, 147, 156
IO userError function, 157
IO-related functions, 157
IOError, 53, 144, 156-158
ioError function, 157
IOError Type, 53
irrefutable, 94, 100
irrefutable pattern, 44, 58, 85, 91, 100
Irrefutable Patterns, 100
irrefutable patterns, 91
Iterate, 122
iterate, 122
iterate function, 122
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Just a, 51
Just v, 128
juxtaposed patterns, 44
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k-tuples, 38
keyword, 28
keyword module, 30
keyword where, 30
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label, 133
labeled field, 90, 133
labeled fields, 90
labeled pattern, 90-91
Labeled Patterns, 90
labels, 133-135
lambda, 60
lambda abstraction, 60
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Lambda Abstractions, 60
lambda abstractions, 85
lambda calculus, 54
lambda expressions, 60
lambda function, 60-61
lambda syntax, 61
lambdas, 60
Language Extensions, 24
language extensions, 20, 24
LANGUAGE pragmas, 24
language server protocols, 22
last, 108
last element, 109-110
last function, 109
layout, 28
Layout processing, 28
layout processing, 28
Layout Rules, 27
layout rules, 27, 136
layout-based, 27
layout-insensitive, 27
layout-sensitive, 27
layout-sensitive coding, 58
laziness, 103
Lazy Infix Application, 103
lazy infix application, 58, 103
lazy pattern, 100
Lazy Patterns, 100
Left, 51
left folding, 121
left-associative, 55, 58, 74
Left-associativity, 42
left-identity, 117
length, 105

length, 106, 110, 124
length function, 106
Let, 78
let, 41, 79, 155
let - in, 78
let binding, 61, 71
let bindings, 70, 80
let declaration, 155
let declarations, 78
let expression, 78-79
let expressions, 80
letter, 26
letters, 26
lexically-scoped, 78
line comment, 25
Line comments, 25
lines, 130-131
lines function, 130
list, 93, 106, 108-109, 111-113, 115-

117, 119, 123, 128, 150
list all function, 116
list any function, 115
list append operator, 107
list comprehension, 70-71, 115
List Comprehensions, 70
List comprehensions, 70
list comprehensions, 85
list concat function, 107
list concatMap function, 114
List Constructors, 67
list cycle function, 123
list data constructor, 67
list drop function, 111
list dropWhile function, 112
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list filter function, 115
list foldl function, 117
list foldl1 function, 117
list foldr1 function, 120
List Functions, 105
list functions, 78, 126
list head function, 108
List indexes, 106
list init function, 110
list iterate function, 122
list last function, 109
list length function, 106
list literal, 67-68
list map function, 113
list null function, 105
list of chars, 48
list of lists, 60, 107
list of pairs, 126
list of strings, 130-131
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list parametric type, 152
list pattern, 94-95, 99
List Patterns, 93
list patterns, 93, 95, 98
list repeat function, 122
list replicate function, 123
list reverse function, 108
list scanl function, 118
list scanl1 function, 119
list scanr function, 120
list scanr1 function, 121
list tail function, 109
list take function, 110
list type, 38

list type [] t, 38
list type constructor, 38
list unzip function, 126
list unzip3 function, 126
list zip function, 124
list zip3 function, 124
list zipWith function, 125
list zipWith3 function, 125
list-related functions, 105
Lists, 67
lists, 60, 95, 107, 129, 150, 153
literal, 104
literal pattern, 84, 86
Literal Patterns, 86
Literals, 54
literate programming style, 24
Literate source code, 24
literate style code, 24
local aliases, 31
longer list, 124
lookup, 127
lookup function, 128
lower limit, 146
lowercase alphabets, 36
lowercase letter, 26, 37, 57, 134
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main, 29, 58
Main module, 29-30
Map, 113
map, 113
map function, 78, 113, 150
mapping, 150
match, 44, 82

178



matching, 82
matching expression, 83
matching lists, 93
maximum, 129
maximum value, 129
Maybe, 51
Maybe, 150-151, 153-154
Maybe datatype, 51
maybe function, 51
Maybe functor, 151
Maybe monad, 154
methods, 33
minimum, 129
minimum value, 129
module, 29-33, 41, 137-138
module body, 30
module declaration, 30, 138
module declaration header, 30
module name, 29-31
Module Names, 29
module names, 29
module prefix, 31
Module Structure, 29
Modules, 29, 137
modules, 29-30
Monad, 143, 152-153, 156
monad, 153
Monad Class, 153
Monad class, 152-153, 156
Monad Instances, 154
Monad type, 152
Monad typeclass, 153
monadic assignment, 155, 160
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monadic binding operator, 161
monadic context, 155
Monads, 152
Monads laws, 154
monomorphic, 155
multiple lines, 130
mutable state, 54
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n-tuple, 72
named fields, 134
names, 90
namespace, 29
naming convention, 29
negation, 128
nested comment, 25
Nested comments, 25
Nested declarations, 41
nested multiline comment, 25
nested pattern, 86
Nested Patterns, 98
nested patterns, 92, 98
nested scopes, 35
new list, 125
new type, 38, 40
new types, 132
newline, 25
newline character, 159
newline characters, 130
newtype, 35, 39, 88, 100, 142
newtype declaration, 39-40
newtype declarations, 35, 39
next alternative, 82
nil constructor, 67, 93
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Non-associativity, 42
non-empty, 109-110, 129
non-empty list, 108-109
non-interactive mode, 23
non-strict, 100
non-termination, 56
not, 46
not function, 84
notElem, 127
notElem function, 128
Nothing, 51, 128, 154
null, 105
null function, 105
nullary, 141
nullary constructor, 50, 87
nullary constructors, 47, 89
nullary tuple, 75
Num, 143
Num Class, 149
Num class, 129, 132, 149
Num list functions, 129
number literal pattern, 86
Numbers, 49
numbers, 49, 129
numeric classes, 143
Numeric functions, 50
Numeric literals, 23
numeric literals, 54, 86
Numeric operators, 49
numeric types, 49

O
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open brace, 28

operations, 139, 153
operator, 42, 54
Operator Applications, 59
operator symbol, 27, 54
Operator symbols, 27
operator symbols, 25, 59
Operators, 27, 54
operators, 27, 42, 54
or, 126
or [], 127
or function, 126
Ord, 47, 50, 142-145
Ord Class, 144
Ord class, 129, 144
Ord list functions, 129
Ord type, 96
order comparison, 49
Ordering, 52
Ordering, 146
Ordering datatype, 52
ordinary identifier, 27, 54
ordinary identifiers, 59
otherwise, 46
Output Functions, 158
overloaded operations, 36
overloading, 35, 76, 139
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pair, 73-74, 124, 128
pair of lists, 126
pair type, 74
pairs, 73, 98-99, 123-124
parameterized type, 152
parametric type, 150
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parametrized types, 36
parentheses, 33, 37, 54, 56, 60, 95, 99,

141
parentheses (), 93
parenthesis patterns, 95
parenthesized expression, 75
Parenthesized Expressions, 75
parenthesized list of names, 30
parenthesized pattern, 97
Parenthesized Patterns, 97
Parenthesized patterns, 97
parenthesized patterns, 97-98
parenthesized type, 38
Parenthesized Types, 38
partial application, 60, 63-64, 113
partially applied, 54
pattern, 43-45, 79, 82, 90
pattern binding, 44-45
pattern binding declaration, 44-45
Pattern Bindings, 44
Pattern bindings, 35
pattern bindings, 85
Pattern Matching, 85
Pattern matching, 43, 85, 91, 97
pattern matching, 70, 82, 90, 92, 95,

133
Patterns, 85, 98
patterns, 35, 41, 43, 58, 61, 70, 78, 83,

85, 91, 99-100
polymorphic, 23, 54, 77
polymorphic type, 58
polymorphic type system, 36
polymorphic types, 155

positional access method, 133
precedence levels, 42
precedence rules, 77
predicate, 112, 115-116
prefix, 110, 112
Prelude, 46, 49, 73, 84, 105, 123, 142,

147-148, 150, 153, 156-157, 163
primitive types, 35
principal type, 36, 41
principal type, 41, 76-77, 82
principal types, 36
print, 58
print expressions, 97
print function, 159
product, 129
product, 129
product function, 129
program termination, 56
protocols, 139
putChar function, 158
putStr, 159
putStr function, 158
putStrLn function, 159
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qualified, 31
qualified, 31-32
qualified import, 32
qualified keyword, 31
qualified names, 31-32
qualifier list, 70
queue data type, 137
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R

re-exported modules, 31
Read, 47, 50, 142-143, 148
Read Class, 148
Read class, 148
Read type, 161
readFile function, 163
readIO, 162
readIO function, 161
readLn function, 162
Real, 143
Record, 135
record, 133
Record construction, 136
record constructor, 136
record pattern, 86
Record Syntax, 133
record syntax, 39-40, 86, 90,

133, 136
record syntax constructor, 137
reduced values, 120
refutable, 100
refutable pattern, 100
Repeat, 122
repeat, 122
repeat function, 122
repeated applications, 122
REPL, 23
replicate, 122
replicate function, 123
reserved identifier, 26
Reserved operator symbols, 27
Reserved Words, 26
return, 152, 154

return class method, 152
return function, 152, 156
reverse, 105
reverse function, 108
reverse order, 108
Right, 51
right folding, 121
right-associative, 38, 55, 68, 103
Right-associativity, 42
right-identity, 119
runghc command, 23
Rust, 21

S

Scan, 117
scanl, 117, 119
scanl function, 118
scanl1, 117
scanl1 function, 118
scanr, 117, 121
scanr function, 120
scanr1, 117
scanr1 function, 121
scope, 28, 31, 54
second argument, 101-103
second element, 73, 128
section, 54, 60, 113
Sections, 64
sections, 60, 65
selector, 134
selector function, 134
selector functions, 134
semicolon, 28
semicolons, 27-28

182



separating spaces, 131
separators, 130-131
seq Function, 102
seq function, 102-103
sequentially ordered, 145
shortest input list, 124
Show, 47, 50, 136, 142-143
Show, 53, 147
Show Class, 147
Show class, 147
Show type, 159
signatures, 41
single guard, 43
Single precision floating, 49
single quote suffix, 26
single value, 83
snd, 73
snd function, 73
software development, 20, 23
source code file, 24, 29
span, 110
span function, 112
span p xs function, 112
splitAt, 110
splitAt function, 111
splitAt n xs function, 111
Stack, 22
standard libraries, 29
standard library, 142
Standard Prelude, 101, 156
starting element, 119, 121
starting value, 119
starting value argument, 117, 120
strict, 100

strictness, 103
String, 48, 130
string, 130-131, 161
string literal, 48
Strings, 48
strings, 147-148
sub-pattern, 94
sub-patterns, 86-87, 98
suffix, 111-112
sum, 129
sum, 129
sum function, 129
superclass, 145
superclasses, 139
symbol characters, 27
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Tail, 108
tail, 93
tail, 108
tail function, 109
tail recursive, 80
Take, 110
take, 110
take function, 110
takeWhile, 110
takeWhile function, 112
terminating newlines, 130
ternary function, 125
The rest nested declarations, 35
three input lists, 125
three lists, 125
toEnum, 47, 94
tools, 20
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top level, 141
top level bindings, 134
top level declarations, 31
top-level, 35, 41
top-level declarations, 30, 35
top-level function binding, 44
top-level functions, 136
top-level namespace, 140
top-level tuple patterns, 99
totally ordered, 144
traits, 139
triplet of three lists, 126
triplets, 123-124
True, 46
tuple, 72, 83, 98
Tuple Constructors, 72
Tuple Functions, 73
tuple pattern, 58, 83, 92, 95, 99
Tuple Patterns, 92
tuple patterns, 92-93, 98
tuple size, 72
tuple type, 38
tuple type constructor, 72
tuple type constructors, 38
Tuples, 72
tuples, 72, 98-99, 146
type, 35
type, 36, 76, 132, 139
Type (), 50
type alias, 38
type annotation, 77
type application, 38, 41
Type Applications, 38
Type Char, 47

type class, 36
Type classes, 35
type classes, 36, 143
type constants, 37
type constraint, 36
type constructor, 38-40, 141
Type Constructors, 37
type constructors, 37-38
type declaration, 39-40
type declarations, 40
Type expressions, 37
type parameter, 152
type parameters, 132
type signature, 41-42, 44-45, 58, 60,

77, 140, 142
type signature declaration, 41, 77
type signature declarations, 41, 76
Type Signatures, 41
Type signatures, 35
type signatures, 35-36, 142
type synonym, 39
type synonym declaration, 40
type synonym declarations, 35
type synonyms, 132
Type Syntax, 37
Type System, 36
type system, 36
type variable, 37, 41, 132, 139, 150
Type Variables, 37
Type variables, 37
type variables, 36, 141
typeclass, 139
Typeclasses, 36
Types, 36
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types, 26, 30, 46, 126, 132

U

unary type constructor, 53
unary type constructors, 37
uncurried function, 74
uncurry, 74
uncurry function, 74
undefined, 56, 135, 142
undefined value, 56
underscore, 134
Underscore _, 26
underscore _, 84
underscore symbol _, 44
underscores, 26
Unicode character set, 25
Unicode characters, 47
Unit, 75
Unit Datatype, 50
unit expression (), 75
unit notation, 75
unit type, 50
unit type constant, 38
unlines, 130
unlines function, 130
unqualified, 31-32
unqualified import, 32
unqualified names, 31
until Function, 104
unused identifiers, 26
unwords, 130-131
unwords function, 131
Unzip, 123
unzip, 123

unzip function, 125
unzip3, 123
unzip3 function, 126
Updating records, 137
upper limit, 146
uppercase letter, 26, 37
uppercase letters, 37, 162
user input, 161
User-defined data types, 35
user-defined datatype, 143-144
User-Defined Types, 38
userError function, 53, 156-157

V

valid index range, 106
value, 54, 128, 138
value bindings, 35
values, 29-30
variable, 41, 54, 92
Variable identifiers, 26
variable pattern, 85, 91, 94, 100
Variable Patterns, 91
variable patterns, 58, 98-99
Variables, 54, 155
variables, 26, 41, 44, 91, 100
verbose, 21
visibility, 137
VS Code, 22

W

Where, 78
where, 41, 79
where bindings, 80, 82
where clause, 80, 139-141
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Where Clauses, 79
white spaces, 131
whitespace, 25, 28
whitespaces, 25
wildcard, 26
wildcard pattern, 44, 84-85, 87-88, 91,

97, 100
wildcard pattern _, 85
Wildcard Patterns, 85
Wildcard patterns, 92
words, 130-131
words function, 131
writeFile function, 163

Z

Zip, 123
zip, 123
zip function, 124
zip3, 123
zip3 function, 124
zipWith, 123
zipWith function, 124
zipWith3, 123
zipWith3 function, 125
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Community Support
We are building a website for programmers, from beginners to more
experienced. It covers various coding-related topics from algorithms to
machine learning, and from design patterns to cybersecurity, and more.
You can also find some sample code in the GitLab repositories.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Please join our mailing list, join@codingbookspress.com, to receive
coding tips and other news from Coding Books Press, including free, or
discounted, book promotions. If we find any significant errors in the
book, then we will also send you an updated version of the book (in
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regarding the book, then please let us know. Although we cannot
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