A Quick Guide to the Modern Go
Programming Language for Busy Coders

Harry Yoon

Version 1.2.3, 2023-05-14

Copyright

Go Mini Reference:
A Quick Guide to the Modern Go Programming Language

© 2022-2023 Coding Books Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor its dealers and distributors
will be held liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Published: September 2022

Harry Yoon
San Diego, California

ISBN: 9798353247326

Preface

We are going through a Cambrian explosion of new programming
languages. It seems like a new language is being created every day.

In the last decade or so, a new generation of programming languages
were created, including Rust, Swift, Kotlin, Julia, and of course Go. They
are now widely used alongside more traditional languages such as
C/C++, Java, C#, Python, and Javascript, to name a few.

From 30,000 feet above, all these programming languages look more or
less the same. As we go down, we can see some distinctions between
imperative languages and functional languages. Although this
distinction is becoming blurred as more imperative languages adopt
various functional programming features, Go remains to be a
quintessential imperative language.

As we go further down, we start to see some more details, and as we
approach the ground, all programming languages look different, and
appear rather unique in their own rights.

The Go programming language differentiates itself with a set of unique
features, including the builtin concurrency support via goroutines. But,
more importantly, Go stands out, among these hundreds of modern
languages, in terms of its fundamental language design philosophy.

First of all, Go is a "minimalistic" language. Go is reminiscent of simple
languages like Lua. The similarity between Go and Lua goes far deeper
than their syntactic appearances. The minimalism is at the heart of the
Go programming language design.

Second, Go values the stability of the language over anything else. This
is in contrast with many other programming languages which are
literally in the "arms race" for more and more features. Go is more like
the C programming language in this regards, which has gone through

absolutely minimal changes since its creation over four decades ago.

The recent introduction of generics, in Go 1.18, was an exception.
Clearly, it was a necessary change. However, it opened up a can of
worms as well. We will likely see some more (small and big) changes in
the next few years or so before generics becomes a truly native part of
the language.

Third, Go is a "batteries included" programming language when it
comes to the standard libraries. Go is not necessarily unique in this
respect. Languages like Python became widely popular partly due to
this "batteries included" approach. Although there is a huge community
of third party libraries and frameworks, Go gives you everything you
need to get started in developing professional software without having
to rely too much on external libraries.

This book is a "mini" language reference on the Go programming
language. We go through all essential features, and the core syntax, of
the modern Go programming language (as of 1.18 and later) in this
book. Although it is written as a reference, however, you can read it
more or less from beginning to end and you should be able to get the
overall picture of the Go language (but not necessarily all the gory
details).

One thing to note is that there are a fair amount of cross references,
unlike in the tutorial-style books written for complete beginners (which
are generally written in a linear fashion). If you have no or little prior
experience with programming in Go, you may find it hard to read some
parts of the book.

This book is not an authoritative language reference.
For that, we recommend the readers to refer to the
official language specification.

Dear Readers:
Please read b4 you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are
small ones and there are big ones. Some blocks are straight and some
are L-shaped. You use these lego blocks to build spaceships or
submarines or amusement parks. Likewise, you build programs by
assembling these building blocks of a given programming language.

This book is a language reference, written in an informal style. It goes
through each of these lego blocks, if you will. This book, however, does
not teach you how to build a space shuttle or a sail boat. If this
distinction is not clear to you, it’s unlikely that you will benefit much
from this book. This kind of language reference books that go through
the syntax and semantics of the programming language broadly, but not
necessarily in gory details, can be rather useful to programmers with a
wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start
learning a foreign language, for instance, you do not start from the
grammar. Likewise, this book will not be very useful to people who
have little experience in real programming. On the other hand, if you
have some experience programming in other languages, and if you
want to quickly learn the essential elements of this particular language,
then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for
you. But, as stated, this book is written for a wide audience, from
beginner to intermediate. Even experienced programmers can benefit,
e.g., by quickly going through books like this once in a while. We all
tend to forget things, and a quick regular refresher is always a good
idea. You will learn, or re-learn, something "new" every time.

Good luck!

Table of Contents

Preface
1. Introduction
2. Packages
2.1. Source File Organization
2.2. Package Clause
2.3. Import Declarations
2.4. Top-Level Statements
3. Program Initialization and Execution
3.1. Program Execution
3.2. Initialization
3.3. The go Command
4. Go Modules and Workspaces
4.1. Go Module
4.2. Go Workspace
5. Lexical Elements
5.1. Comments
5.2. Semicolons
5.3. Tokens
5.4. Identifiers
5.5. Keywords
5.6. Operators and Punctuation
5.7. Literals
6. Declarations and Scope
6.1. Declarations
6.2. Top-Level Declarations
6.3. Blocks
6.4. Scoping

14
14
15
16
18
20
20
21
23
25
25
26
31
31
31
32
32
32
33
33
38
38
38
39
39

6.5. Label Scopes
6.6. Blank Identifier
6.7. Exporting Identifiers

7. Constants

7.1. Constant Declarations
7.2. Constants
7.3.Iota

8. Variables

8.1. Variable Declarations

8.2. Short Variable Declarations
8.3. Variable Re-Declarations
8.4. The Builtin new Function

8.5. The Builtin make Function

9. Types

9.1. Types (And Generic Types)
9.2. Method Sets

9.3. Underlying Types
9.4. Type Declarations
9.5. Type Parameter Lists
9.6. Predeclared Types
9.7. Array Types

9.8. Slice Types

9.9. Map Types

9.10. Channel Types

9.11. Pointer Types

9.12. Struct Types

10. Interfaces

10.1. Interface Types
10.2. Type Sets

40
40
41
42
42
43
43
45
45
46
46
47
48
49
49
50
51
51
53
56
59
61
64
67
69
70
73
73
75

10.3. Implementing Interfaces 76

10.4. Basic Interfaces 77
10.5. General Interfaces 78
11. Functions 80
11.1. Function Types 80
11.2. Function Declarations 81
11.3. Generic Functions 82
11.4. Function Literals 83
12. Methods 85
12.1. Method Declarations 85
13. Expressions 89
13.1. Operands 89
13.2. Addressable Expressions 89
13.3. Primary Expressions 90
13.4. Constant Expressions 90
13.5. Composite Literals 91
13.6. Index Expressions 93
13.7. Slice Expressions 95
13.8. Selectors 97
13.9. Function and Method Calls 98
13.10. Conversions 100
13.11. Type Assertions 100
13.12. Operators 101
13.13. Arithmetic Operators 103
13.14. Comparison operators 104
13.15. Logical Operators 105
13.16. Address Operators 106
13.17. Receive Operator 106
14. Statements 108

14.1. Empty statements
14.2. Assignments
14.3. Increment - Decrement Statements
14.4. Expression Statements
14.5. Send Statements
14.6. If Statements
14.7. Labeled statements
14.8. For Statements
14.9. Switch Statements
14.10. Select Statements
14.11. Fallthrough Statements
14.12. Continue Statements
14.13. Break Statements
14.14. Goto Statements
14.15. Defer Statements
14.16. Return Statements
14.17. Go Statements

15. Errors
15.1. The error Interface
15.2. Run-Time Panics

16. Example Code (Bonus)
16.1. An Informal Introduction to Generics
16.2. A Generic Stack
16.3. Exercises

A. How to Use This Book

Index

About the Author

About the Series

Community Support

109
109
111
113
113
114
115
116
120
124
126
127
128
128
129
130
131
133
133
134
136
136
139
149
151
153
174
175
176

Chapter 1. Introduction

Go is a general-purpose programming language created by Google, and
it was open-sourced a little over 10 years ago.

Go was originally designed as a "low level" systems programming
language. It is now used broadly in many different systems and
application areas including Web programming. It is currently one of the
most widely used languages.

Go is a strongly typed language suitable for building a large scale
system. Go is garbage-collected, which makes it easier to use by
developers with a wide range of skill sets and which helps reduce many
memory-related problems. Go has a native support for concurrent
programming at the language level.

An executable Go program builds into a single standalone binary with
no runtime (shared) library dependencies, making it easier to deploy
across many different platforms. Any dependent Go libraries are
imported during the build time as source code, not as pre-built shared
libraries/binaries, reducing the chances of library conflicts.

Go is one of the simplest programming languages in terms of grammar,
and it is one of the easiest to learn and use.

This book starts from the high level structure of a Go program, namely,
packages. Then it describes how the Go programs are built and
executed in the next chapter, Program Initialization and Execution. We
briefly go through the go command and the module/workspace system.

In the Go programming language, the packages are used to organize the
source code, and they are also the basic units of code sharing. In the
standard go toolchain, one or more packages can be grouped into a
module, e.g., for dependency management and versioning, etc., and one
or more modules can be managed together using a workspace.

Go programs are written in Unicode. The Go compiler scans the
characters in the input program, converts them first into a sequence of
"tokens", and then parses it into an internal data structure that can be
eventually converted to a machine code.

In the Lexical Elements chapter, we go through various low level
aspects of the program code. In particular, we go through the basic
elements, or tokens, like names/identifiers, keywords, comments,
operators, and builtin type literals. Many programming languages have
similar lexical structures, and this chapter can be skipped if you have
experience with other C-style languages.

Every name in a Go program must be declared before use. That
includes names for constants, variables, types, functions, methods, and
the imported packages. We introduce the general concepts of
declarations in the next chapter, and go through each of them in the
following six chapters.

A constant declaration creates constants by binding names with
constant expressions. Go supports boolean constants, numeric
constants, and string constants.

Variables are used to hold values during program execution. A variable
declaration binds names with expressions, and types, and it reserves
storage for the named variables. We also go through a number of ways
to allocate memory and initialize variables. For instance, the builtin new
and make functions can be used for this purpose.

In the modern programming languages, types play crucial roles. Go is
no exception. In the next chapter, Types, we go through the type system
of Go.

* Go includes a set of builtin, or primitive, types that are found in
most programming languages.

* Go has a support for creating composite types, such as arrays, slices,

10

maps, and channels.
* struct can be used to create a structured data type.

* A type declaration allows creating a new type, or a type alias, from
another type. Go now supports a generic type declaration.

* Go also supports pointer types, similar to C/C++, but with some
restrictions. A pointer is an address to a variable.

An interface is a special kind of type. A (non-interface) type can
implicitly "implement an interface” by implementing all methods
declared in the given interface. A variable declared with an interface
type can be used, at run time, for any of the types that implement this
interface. This provides the runtime polymorphism in Go.

Since Go 1.18, interfaces can also be used as generic type constraints. In
this usage, an interface represents a "type set" rather than a single
polymorphic type. Go’s generics requires type constraints for all generic
type parameters. When any type can be used, one can use the interface
type, any, which is an alias to interfacef{ }.

As with any C-style programming languages, the function is one of the
most important constructs in Go. (Just to be clear, using functions does
not make Go a functional programming language, which seems to be a
common misconception among beginning programmers.) Go’s
functions are rather similar to those of C, with some minor differences.
In particular, Go functions can return zero, one, or more values.

Go also supports the method declaration syntax. A method in Go is just
a function which is defined for a specific non-interface type called the
"receiver". This way, functions can be organized in terms of their
receivers' base types. Go now supports generic functions. A method can
likewise be declared over a generic type.

Go also supports function literals, or anonymous functions, which are
syntactically expressions rather than declarations.

11

Expressions and statements are the bread and butter of programming.
Go supports most, if not all, of the common expressions found in C-style
languages. For example,

» Constant expressions can be used to declare and initialize constant
variables.

* Composite literals can be used to create a new value of a composite
type such as arrays, slices, and maps.

* Index and slice expressions can be used to create, update, or
otherwise manipulate, variables of collection types.

» Selector expressions are used for selecting fields and methods of a
struct type.

* Function and method calls are expressions (regardless of whether
they return any values).

» Type assertion expressions are used for runtime type assertion for
polymorphic/interface types.

* The channel receive operation, e.g., <-channel, is an expression in
Go.

* In addition, Go supports all common operation types, arithmetic,

comparison, and logical, etc.

Likewise, Go includes all common statements generally found in other
C-style programming languages. For instance,
» Assignments are used to bind values to variables.

* Many expressions can be used as statements. They are called
expression statements.

* Unlike in C, postfix increment (++) and decrement (--) operations
are statements in Go.

* The channel send operation, e.g., channel<-, is also a statement.

* Go supports if, for, and switch statements, with more or less the

12

same semantics as in other C-style languages.
* Go supports switch-like select statement for channel operations.
e Go includes the common continue, break, and return statements.

* Because of the way Go’s switch statement works, Go also includes
the fallthrough statement.

* Go’s rather unique defer statement can be used to "clean up"
before a function returns.

* The go statement is used to create a new goroutine. Goroutines are
used for concurrent programming in Go, among other things.

Go provides a minimal builtin support for error handling. By
convention, functions return error values, or nil to indicate the non-
error situation, as the last return value. The Go programming language
includes a builtin error interface, which is commonly used for the
error return type. In case of "unrecoverable" errors, the runtime panic
is generally used in Go programs.

Go now finally has a generic type system. It is somewhat unfortunate
that it took this long to have something so essential in statically and
strongly typed languages like Go. But, despite the history, generics is not
an ad-hoc addition to the type system. It is an integral part.

As stated, we go through generics in the contexts of type definitions and
generic functions. However, if you are new to generics, this topic can be
intimidating. Therefore, we include one bonus chapter to elaborate on
generics. In particular, we provide an informal introduction to generics
for beginners, followed by an example program implementing a
generic stack data type, in the final chapter. This chapter is not part of
the "language reference", and can be skipped.

13

2.1. Source File Organization

Chapter 2. Packages

Go packages are the basic units of organization in Go programs. A Go
program is constructed from one or more packages. A Go package, in
turn, is constructed from one or more source code files.

In the current "standard" implementation, all source files of a package
should be placed in the same directory. Source files in a given directory
cannot belong to more than one package (with the exception of test file
packages).

Therefore, the go programming construct, package, and the physical
file system structure, directory, have a one-to-one correspondence with
each other.

The source files belonging to a package declare constants, types,
variables, functions, and methods of the package. They are
unconditionally accessible in all files of the same package. A package
provides a high-level scope in a Go program.

These "top-level" elements, constants, types, variables, functions, and
methods, declared in a package may be exported, and they may be used
in other packages in the same or another program (through the import
mechanism).

2.1. Source File Organization

Each source file of a Go package consists of three parts, in the following
order.

1. A package clause defining the package to which it belongs.

2. A set of import declarations that declare imported packages, if any.

3. A (possibly empty) set of top-level declarations of constants, types,
variables, functions, and methods.

14

2.2. Package Clause

All top-level declarations belong to a package, and not to a specific
source file where they are declared. One of the primary purposes of
using multiple files would be for organizing the code in a given
package, e.g., for readability, for maintainability, etc.

How the code in a package is divided into multiple source files is
generally of no consequence to Go. One notable exception is the
program initialization process. The language specification does not
define the precise order. Different build systems may read the source
files of a given package in different orders. The standard go toolchain
reads the source files of a package in a lexical order using their file
names.

The names introduced through import declarations, if any, may be
referenced in the particular source file only, not across the package.
This is referred to as the "source file scope".

2.2. Package Clause

The package clause is the first non-empty line in a source file, which
declares the package name to which the file belongs. It is required.

A package clause starts with a keyword package followed by a
PackageName.

package PackageName
The package name must be a valid non-blank identifier. The package
clause is not a declaration. Its purpose is

* To identify the files belonging to the same package, and

* To specify the default package name for import declarations.

When a package is imported, the package name becomes, by default, an

15

2.3. Import Declarations

accessor for its contents.

A commonly used convention is that the package name is the base
name of its source directory path. For example, the package for the
source files in 'src/image/color' should have a name color, and not
image_color or ImageColor, etc.

2.3. Import Declarations

A source file may include a set of import declarations, which states that
the file containing the declaration depends on the functionality of the
imported packages.

The imported packages are part of the program, and they are compiled
on the local machine along with the program’s source code.

An import declaration starts with a keyword import followed by one
or more "import specifications”, and it enables access to the exported
identifiers of those packages specified in the import specification.

An import specification includes an "import path" that specifies the
package to be imported. The import path can be optionally preceded

by

* A period (.), or

* An identifier to be used for accessing the imported package within
the importing source file.

The following import declaration imports a package in a directory
"lib/math".

import "lib/math"

If the imported package has the package clause package

16

2.3. Import Declarations

mathematics, and if it includes an exported function declaration with a
name Cosine, then the function can be referred to as
mathematics.Cosine in the importing source file. If the imported
package’s package clause is package math instead, then the imported
package name is math by default, and the Cosine function can be
referred to as math.Cosine.

As stated, by convention, the last path segment of the package directory
path is generally used as a package name. That is, it is typical, although
not required, for the source files in a directory .../lib/math to belong to a
package named math.

The imported package may be accessed with a different name, or alias,
than the one declared in the imported source files.

For example, the following import declaration with an explicit name m
allows the exported identifier Cosine to be referenced as m.Cosine
within the importing source file.

import m "lib/math"

If a period (.) appears in that place, then all the exported identifiers
declared in that package’s package block will be automatically declared
in the importing source file’s file block. They must be accessed without
a qualifier.

import . "lib/math" @

@ Using the same example above, the exported name Cosine should
be referred to simply as Cosine in the importing source file without
any package qualifiers.

An import declaration can include more than one import
specifications, in parentheses. Here’s an example:

17

2.4. Top-Level Statements

import (
"lib/math"
sci "lib/science"

It should be noted that the Go language specification does not precisely
specify how the import path strings should be interpreted. It is
implementation-dependent.

For local packages in the same module, for instance, an import path can
be a relative path of the imported package with respect to the path of
the importing source file. (Refer to the Modules chapter, however.) For
packages remote to the computer, it can be a substring of the URL of the
remote source code repository where the imported packages are found
or otherwise identified. This is because the standard go build tool chain
uses such conventions.

2.3.1. Importing for side effects

One special use case using the import declaration syntax is using the
blank identifier (_) as a package name alias. For example,

import _ "lib/math"

In this case, although it appears syntactically to be an import
declaration, it does not import the "lib/math" package’s name (or, its
exported names) into the source file. It is used solely for the purposes of
side effects (e.g., for initialization). Otherwise, it is a no-op statement.
Package initialization will be described in the next chapter.

2.4. Top-Level Statements

A source file typically includes, after the package clause and (optional)

18

2.4. Top-Level Statements

import declarations, one or more declarations for constants, variables,
types, functions, and methods.

These top-level statements essentially make up a package, and one or
more packages make up a Go program.

The operating system starts an executable go program by calling a
special entry function, main, in the special main package. This will be
further discussed in the next chapter.

19

3.1. Program Execution

Chapter 3. Program
Initialization and Execution

3.1. Program Execution

An executable Go program includes a special package, whose package
name is main. A complete runnable program is created by linking this
main package with all the dependent packages which it imports (local
or remote), either directly or indirectly.

The main package must include a mian function declaration main,
among other things. Program execution begins by initializing the main
package, and the imported packages, and then by invoking the function
main(), which may call other functions from the main package as well
as from other imported packages, which in turn may import other
packages, etc.

When the main function invocation ultimately returns, the program
exits.

Go’s main function takes no arguments and returns no value, unlike
those of C or other C-style languages.

package main

func main() { /* ... %/ }
The command line arguments, in a Go program, are passed in to the
main functions via os environment variables, not as function

arguments. Any special program exit code can be returned to the
operating system via an explicit os.Exit() call.

The code of the main package can be included in one or more source

20

3.2. Initialization

files (in the same directory) just like other regular packages. The main
package cannot be imported by other packages.

As a convention, the source file containing the main function in the
main package is typically named main.go.

3.2. Initialization

3.2.1. Constants

Constants in Go are created at compile time, and hence they should be
defined with constant expressions that can be evaluated by the
compiler. Constants cannot be declared without their initial values.

Only the following builtin types (and, the types defined with these
types) can be used for constants:

* bool,
* numbers (int and float types),
* runes, and

* strings.

3.2.2. Variables

Variables can be initialized just like constants. But, their values are
computed at run time. Hence, a variable initializer can be a general
expression, e.g., a function call, computable at run time. For example,

var (

name = file.Name()
file.Size()

size

21

3.2. Initialization
3.2.3. Zero values

When no explicit initialization is provided, variables or values are
given their default values. That is, all variables and values in Go are
always initialized, either explicitly or implicitly with well-defined,
definite values, unlike in many other programming languages.

For the variables of built-in types, their "zero values" are

* false for booleans,

* 0 for numeric types,

» "" for strings, and

* nil for functions, interfaces, slices, channels, and maps. Pointers'

zero values are also nil.

For other composite types, e.g., arrays and structs, the initialization is
done recursively. For example, each element of an array is set to "zero"
if no value is specified.

3.2.4. Package initialization

If a package has any imports, then all imported packages, either directly
or transitively, are initialized first before the package itself is initialized.

In a package, all package-level variables across one or more source
code files are initialized through iterations.

In each iteration,

1. A variable is selected in the declaration order,
2. For a given variable,
o if the variable has no dependency on uninitialized variables, it is
initialized,

o otherwise, it is skipped, and

22

3.3. The go Command

3. If any new variable has been initialized in this iteration, then it goes
to the next iteration.

4. Otherwise, the process terminates.

After this process is done, if there still remains a variable that has not
been initialized, then the package is invalid.

3.2.5. The init functions

A package can have one or more init function which takes no
arguments and returns no values.

package abc

func init() { /* ... %/ }

Package-scope variables may also be initialized within these init
functions, especially for those whose initializations cannot be
expressed as simple declarations. Another common use of the init
functions is to verify or repair correctness of the program state before
real execution begins.

After all package level variable declarations are processed, the init
functions are then called, in the order they appear in the source code
files.

This completes the package initialization process.

3.3. The go Command

Although it is not part of the language specification per se, the go
command is the de-facto standard tool in building Go programs. Here’s
the official doc:

23

3.3. The go Command
* go command - cmd/go [https://pkg.go.dev/cmd/go]

Some of the most commonly used commands are go get, go build, go
run, go test, and go doc as well as go mod and go work, as we will take a
look in the next chapter.

One can use the go help command to get more information on each of

these commands. For example,

$ go help build
usage: go build [-o output] [build flags] [packages]

Build compiles the packages named by the import paths,
along with their dependencies,

24

https://pkg.go.dev/cmd/go

4.1. Go Module

Chapter 4. Go Modules and
Workspaces

As of 1.18+, Go now supports two ways to organize and manage related
packages, go modules and a go workspaces.

Modules and workspaces are not part of the Go
o language specification. They are specified by the
current "standard" go toolchain.

4.1. Go Module

A module is a collection of related Go packages which are stored in a
file tree with a go.mod file in its root directory. Go modules are the unit
of source code sharing and versioning, and dependency management.

The go.mod file defines the module’s module path, which is also the
import path used for the root directory, and its dependency
requirements. Each dependency requirement is written as a module
path plus a specific semantic version.

The go command has builtin support for modules. For example, among
other things,

* The go mod command can be used to initialize and manage a go
module,
» The import specification can be based on the current module, and

* The go build command interprets the import specifications with
respect to the module path.

25

4.2. Go Workspace
4.1.1. The go.mod file

The go.mod file is line-oriented. Each line holds a directive, which is a
pair of a "verb" and its arguments. The C++-style line comments (//)
can be used in the go.mod file.

The following verbs are used
module Defines the module path.
go Sets the expected language version.

require Requires a particular module at a given version or
later,

exclude Excludes a particular module version from use,

replace Replaces a module path/version with a different
module path/version.

retract Indicates that a previously released version should not
be used.

4.2. Go Workspace

The go command now supports the workspace mode. This can be
enabled by putting a go.work file in the working directory or a parent
directory, or by setting the GOWORK environment variable.

In the workspace mode, the go.work file will be used to determine the
set of one or more main modules used as the roots for module
resolution. The go command uses these modules for builds and related
operations.

The go command has builtin support for workspaces. For example,
among other things,

26

4.2. Go Workspace

* The go work command can be used to create and manage a go
workspace, and

» Various go commands can use the specified modules as root
modules for builds and other operations.

4.2.1. The go.work file

The go.work file follows the same syntactical structure as the go.mod
file. It is line-oriented, with each line holding a directive, made up of a
verb followed by its arguments.

The allowed verbs are:

use Specifies a module to be included in the workspace’s set
of main modules.

go Specifies the version of Go which the file was written at.
replace Takes precedence over replaces in the go.mod files.
For example,

projects/banana-farm/go.work

go 1.20 @
use (@
./producer
./consumer
./driver
)

@ Go version.

@ This workspace includes 3 modules.

27

4.2. Go Workspace

projects/banana-farm/producer/go.mod

module gitlab.com/banana-farm/producer @

go 1.20 @

@ The modu'le directive specifies the module path. The go command
should be able to find this module from this path. (This example uses
a fictitious path, for illustration.)

@ The go directive specifies the Go version.
projects/banana-farm/producer/farmer.go

package producer

/7.

projects/banana-farm/consumer/go.mod
module gitlab.com/banana-farm/consumer @

go 1.20

@ Another module included in the workspace.

projects/banana-farm/consumer/grocer.go

package consumer

/...

projects/banana-farm/driver/go.mod

module driver ©)

go 1.20

28

4.2. Go Workspace

require gitlab.com/banana-farm/producer v0.1.0 @
require gitlab.com/banana-farm/consumer v0.1.0

replace gitlab.com/banana-farm/producer => ../producer ®
replace gitlab.com/banana-farm/consumer => ../consumer

@ The module that includes the main package. The module path is not
significant since it will not be referenced.

@ This module depends on two other modules. The require directive
uses the same module paths used in the go.mod files for these
modules.

® The replace directive is used in this example to indicate that the go
command should use the Go source files in the directories
projects/banana-farm/producer and projects/banana-farm/consumer
rather than those from the remote git repositories.

projects/banana-farm/driver/main.go

package main

import (
"gitlab.com/banana-farm/producer" @
"gitlab.com/banana-farm/producer/farm" @
"gitlab.com/banana-farm/consumer" ®

)

// Produce and consume bananas...

@ This example main.go file depends on the producer package in the
root directory of the producer module.

@ For illustration, the producer module happens to include another
package farmin the projects/banana-farm/producer/farm folder.

@ In all these 3 import specifications, the source files are fetched from
the local file system when building the main package thanks to the

29

4.2. Go Workspace

replace directives in the driver/go.mod file.

Note that, in this particular example, the go.work file is located in the
parent directory of all three modules, producer, consumer, and driver.
But, in general, this is not required. The go workspace can be created
anywhere, and it can include modules from anywhere using the use
directive.

Another thing to note is that each module in a workspace can, and
typically does, include a main package of its own. A module can belong
to more than one workspaces.

30

5.1. Comments

Chapter 5. Lexical Elements

5.1. Comments

Go supports two kinds of comments.

C++-Style Line Comments

A line comment starts with the character sequence // and it
continues until just before the end of the line. This is the form that is
more commonly used.

C-Style Block Comments

A block comment starts with the character sequence /* and it stops
after the first subsequent character sequence */. Block comments
are typically used for package doc comments or to "comment out"
some large part of code.

In Go programs, comments serve primarily as program documentation.
The go doc command processes Go source files to extract
documentation about the contents of the package.

5.2. Semicolons

Go’s formal grammar uses semicolons to terminate statements like in
most C-style languages. However, those semicolons do not generally
appear in the Go source code.

Lexer automatically adds semicolons ; at the end of a line if the final
token is one of the following:

An identifier,

* An integer, floating-point, imaginary, rune, or string literal,

One of the keywords break, continue, fallthrough, or return, or

31

 One of the operators and punctuation ++, --,),], or }.

5.3. Tokens

Lexer also adds a semicolon, if missing, before a closing) or }.

5.3. Tokens

There are four classes of lexical tokens in the Go language:

Identifiers,
» Keywords,
* Operators and punctuation, and

e Literals.

5.4. Identifiers

An identifier is a name for program entities such as variables and types.
An identifier comprises one or more letters and digits, and its first

character must be a letter.

5.5. Keywords

The keywords are reserved, and they may not be used as identifiers in a

Go program.
break default func
case defer go
chan else goto
const fallthrough if
continue for import

interface
map
package
range
return

select
struct
switch
type
var

32

5.6. Operators and Punctuation

5.6. Operators and Punctuation

The following characters and character sequences represent operators
and punctuation:

+ & += &= &6 == = ()

- | -= | = [l < <= [1

* n *= M= <- > >= { }

/ << /= <<= ++ = =) ;

% >> %= >>= -- ! :
§" &= ~

5.7. Literals

Go supports the following builtin type literals, which are constant
expressions:

* Integer literals,

* Floating-point literals,

* Imaginary literals,

e Rune literals, and

* String literals.

Other literal types, array, slice, and map literals, are discussed later in
the book.

5.7.1. Integer literals
An integer literal represents an integer constant.

* A binary integer literal starts with the prefix 0b or 0B and it is
followed by one or more digits (0 - 9) or non-consecutive/non-
trailing underscores (_).

33

5.7. Literals

* An octal integer literal starts with 0, 0o, or 00 and is followed by one
or more digits or non-consecutive/non-trailing underscores.

* A hexadecimal integer literal is 0x or 0X followed by one or more
digits or non-consecutive/non-trailing underscores.

* All other sequences of digits and non-consecutive underscores
(except at the starting and ending positions), including 0, represent
decimal integer literals.

Underscores are ignored when evaluating the integer literals. For
instance, 1_000_000 and 1000000 are the same integer constants,
whose values are 1000000.

5.7.2. Floating-point literals

A floating-point literal represents a floating-point number constant,
either in decimal or hexadecimal notations. A floating point literal
comprises an integer part, a decimal point (.), a fractional part, and an
optional exponent part (using e or E for decimals or using p or P for
hexadecimals). One of the integer and fractional parts, but not both, can
be omitted if their value is 0.

As with integer literals, non-consecutive underscores (_) can be used to
between successive digits, or between the hexadecimal prefix and the
following digit, for floating point literals without affecting their values.

.1.2.3
0x20.
10.5e2
ox_f.P1

CECECHS)

@ A decimal floating point literal. This is equivalent to 0. 123, etc.

@ A hexadecimal floating point literal. This is equivalent to 0x20.0,
etc.

34

5.7. Literals

® A decimal floating point literal. This is equivalent to 1050 ., etc.

@ A hexadecimal floating point literal. This is equivalent to 0xf0.0,
etc.

5.7.3. Imaginary literals

An imaginary literal comprises an integer or floating-point literal
followed by 1, and it represents an imaginary number constant.

51
.5e12i
5+ 1

CNCHS)

@ An imaginary number literal, whose value is 5i == 5 * 1.
@ An imaginary number literal, 50.1 ==50. * i.

® A complex number expression, the addition of an integer constant 5
and 1 * 1.

5.7.4. Rune literals

A rune is an integer value corresponding to a single Unicode code point.
A rune literal is syntactically represented with one or more characters,
except for newlines and single quotes, enclosed in single quotes.

* A quoted single character represents the Unicode value of the
character.

* A quoted special escape sequence, a backslash (\) followed a single
character, represents the Unicode value of that escape sequence.

* A quoted multi-character sequence starting with a backslash in one
of the following four formats represents the Unicode integer value
in the specified base, as long as it corresponds to a valid Unicode
code point:

35

5.7. Literals

o \ followed by three octal digits,
> \x followed by two hexadecimal digits,
> \u followed by four hexadecimal digits, and

> \U followed by eight hexadecimal digits (for two Unicode code
points, e.g., for non-BMP characters).

o
\n'

'\007"

'X24'
"\UQO2A"
"\U000000e4 "

©@O0®00e0

@ A rune literal representing the English uppercase letter A.
@ A rune literal representing the newline character.

® A rune literal representing the bell character in the octal number
representation.

@ A rune literal representing the dollar symbol. The same as '$".
® A rune literal representing the asterisk symbol. The same as '*"'.

® A rune literal representing the character &, a-dieresis. The same as

a .

5.7.5. String literals

A string in Go is a sequence of (Unicode) characters There are two
forms of string literals:

* Raw string literals, and

* Interpreted string literals.

36

5.7. Literals
Raw string literals

* Raw string literals are character sequences between back quotes,
asin foo .
* Within the quotes, any character may appear except back quote.

* The value of a raw string literal is the string composed of the
uninterpreted characters between the quotes.

Interpreted string literals

* Interpreted string literals are character sequences between double
quotes, asin "bar".

» Within the quotes, any character may appear except newline and
unescaped double quote.

* The text between the quotes forms the value of the literal, with
backslash escapes interpreted as they are in rune literals.

37

6.1. Declarations

Chapter 6. Declarations and
Scope

6.1. Declarations

A declaration binds a (non-blank) identifier to a constant, variable, type,
function, method, label, or an imported package.

Every non-blank identifier in a Go program must be declared before
use. No identifier may be declared twice in the same block, or across
file and package blocks.

An identifier declared in a block may be redeclared in an inner block.
While the identifier of the inner declaration is in scope, it denotes the
entity declared by the inner declaration. This is known as "shadowing".

6.2. Top-Level Declarations

A Go package primarily includes a number of top level declarations
(other than the package clause and import statements, if any, needed in
each source file).

The following are considered top-level declarations in Go:

* Constant declarations,

Variable declarations,

Type/Interface declarations,

e Function declarations, and

Method declarations.

Function and method declarations can only be used in the top-level
package scope. Constant, variable, and (interface and non-interface)

38

6.3. Blocks

type declarations, as well as label declarations, can be used within a
non-file/package block, such as inside a function definition.

6.3. Blocks

Statements control program execution in Go. A block is a sequence of
zero, one, or more statements. Blocks can nest, and they affect scoping.

Statements can be explicitly grouped into a block using a pair of curly
braces. Unlike in some C-style languages, the enclosing curly braces are
required for all (explicit) blocks. They cannot be omitted, even for
single-statement blocks.

In addition, the Go grammar considers the following an implicit block
without requiring curly braces:

* The "universe block" including all source code from all packages in
a program.

A package block containing all Go source text for each package.

A file block containing all Go source text in a given source code file.

Each if, for, and switch statement.

* Each case/default clause in a switch or select statement.

6.4. Scoping

Go is lexically scoped using (explicit or implicit) blocks. The scope of an
identifier is the extent of source text in which the identifier denotes the
declared constant, variable, type, function, method, label, or imported
package.

* The scope of a Go predeclared identifier (e.g., int, true) is the
universe block.

* The scope of an identifier denoting a constant, variable, type, or

39

6.5. Label Scopes

function declared at a package level (e.g., outside a function
definition) is the package block.

* The scope of an imported package name is the file block. Except for
this case, a file block is not considered a distinct block from a
package block for the purposes of scoping.

* The scope of an identifier denoting a method receiver, function
parameter, or return variable is the function body.

* The scope of a constant or variable identifier declared inside a
function begins at the end of the declaration statement and it ends
at the end of the innermost containing block.

* The scope of a type identifier declared inside a function begins at
the identifier in the type declaration statement and it ends at the
end of the innermost containing block.

6.5. Label Scopes

Labels are declared by labeled statements and are used in the break,
continue, and goto statements.

In contrast to other identifiers, labels are not block scoped, and they do
not conflict with non-label identifiers.

Labels can only be declared within a function/method definition. The
scope of a label is the body of the function in which it is declared
(which can possibly include a region preceding the labeled statement),
and it excludes the body of any nested function. Defining a label that is
not used in the scope is a syntactic error.

6.6. Blank Identifier

The blank identifier (_) serves as an anonymous placeholder in place of
a regular identifier in a declaration.

40

6.7. Exporting Identifiers

The blank identifier can be assigned or declared with any expression of
any type. The expression is evaluated, but the result is ignored. The
blank identifier cannot be referenced.

6.7. Exporting Identifiers

Identifiers in a package are not exported by default.

An identifier declared in a package block is exported if the first
character of the identifier’s name is a Unicode upper case letter.
Likewise, the name of a field or method of a type that is exported is also
exported if the first character of the name is an upper case letter.
Exported identifiers can be accessed from another package.

Go has no other mechanism for access controls, unlike in some other
modern programming languages.

41

7.1. Constant Declarations

Chapter 7. Constants

7.1. Constant Declarations

A constant declaration creates constants with constant expressions by
binding one or more lists of identifiers with the corresponding lists of
values. The number of identifiers in each list on the left hand side must
be equal to the number of expressions in the corresponding list on the
right hand side.

For example,

const KlingonPi, RomulanPi = 31.4, 314.2
const (
UniversalZero =0
KlingonOne, RomulanOne = 10.0, 100

The type of identifiers in each list can be explicitly specified, in which
case all expressions must be assignable to that type. Otherwise, the
constants take the individual types of the corresponding expressions.

const (
KlingonTen, RomulanTen float32
KlingonHundred, RomulanHundred

100.0, 1000 @
1000.0, 10_000 @

@ Both KlingonTen and RomulanTen are of the type float32.

"

@ KlingonHundred and RomulanHundred are of the "untyped float
and "untyped int" types, respectively.

42

7.2. Constants

7.2. Constants

Go supports boolean constants, numeric constants (rune, integer,
floating-point, and complex numbers), and string constants.

The boolean truth values are represented by the predeclared constants
true and false. The predeclared identifier iota denotes an untyped
integer constant.

Constants may be typed or untyped. Literal constants, true, false,
iota, and certain constant expressions containing only untyped
constant operands are untyped.

When untyped constants are assigned to a typed variable without
explicit types, e.g., in a short variable declaration such as 1 := 0, they
are converted to their corresponding default types:

Boolean constants bool
Rune constants rune
String constants string
Integer constants int

Floating point constants float6s4

Complex numbers complex128

7.3. Iota

Within each constant declaration, the predeclared identifier iota
represents successive untyped integer constants, starting at 0 on the
first identifier-expression lists. iota is generally used to construct a set
of related constants (similar to enums in some other programming
languages).

43

7.3. Iota

const (
r, g, b = iota, iota + 10, iota + 20 @
y = iota @
_ ®
k @
)
®r == 0,g == 10,and b == 20. Note that all iota’s on this line
have the same value 0.
@y == 1.iotahasbeen incremented by 1.
@ This line is the same as _ = iota (fromy = iota above), which is

discarded. The value of iota is 2 on this line.

@ Likewise, the value of k is iota (from the line y = iota) since it is
not explicitly specified. iota is 3 at this point, and hence k ==

44

8.1. Variable Declarations

Chapter 8. Variables

A variable is a location in memory for holding a value. The set of
permissible values for a given variable is determined by its type.

When a variable is referred to in an expression, its value is returned.
The value of a variable is the most recent value assigned to the variable.
If a variable has not yet been explicitly assigned a value, its value is the
"zero value" for its type.

A variable declaration reserves storage for a named variable at build
time. Likewise, a function declaration and function literal reserves
storage for function parameters and results. The "static type" of a
variable is the type given in its declaration.

A variables of an interface type also has a distinct "dynamic type",
which is the concrete type of the value assigned to the variable at run
time.

8.1. Variable Declarations

A variable declaration binds a list of identifiers to the values of the
corresponding list of expressions, and gives each identifier a type, or
static type, and an (explicit or implicit) initial value.

var speed, direction float64 @

@ Both speed and direction are of type float64 and they are
initialized with 0. 0.

var (
NumGames int32

® o

NumWins, NumlLosses = 0, 10

45

8.2. Short Variable Declarations

@ NumGames is of the int32 type and it is initialized with 0.

@ Numwins and NumLosses are of the int type and their initial values
are 0 and 10, respectively.

8.2. Short Variable Declarations

A short variable declaration is a shorthand for a (non-parenthesized)
variable declaration with initializer expressions, but without explicit
type specifications.

A short variable declaration uses the : = operator instead of the regular
assignment operator =. They can be used only in a function block, or
within a local block in a function block, to declare local variables.

For example,

func doNothing() {
var a0, al = 0.0, 1.0
bo, bl := 0.0, 1.0
println(a@, al, bo, bil)

In this example, all 4 variables are of the float64 type. The values of
a0 and b0 are 0.0, and the values of al and b1 are 1.0, after executing
each of these statements.

8.3. Variable Re-Declarations

Identifiers in Go cannot be generally redeclared within the same block.
When a short multi-variable declaration syntax is used, however, a
variable can be redeclared as long as

46

8.4. The Builtin new Function

* That variable was declared with the same type earlier in the same
block, and

* The short variable declaration statement includes at least one new
non-blank identifier.

For instance,

func doSomething() {
var c0 int = 10
println(co)
co, cl := 20, 40
println(co, c1)

In this example, the variable c0 appears to be declared twice, first
through the regular var declaration with the initial value 10, and
second through the short variable declaration with the new initial
value 20. Because c1 is declared for the first time in this statement, the
redeclaration of c0 is allowed.

8.4. The Builtin new Function

Go has a built-in function, new, that allocates memory for a given type
T, including struct types. But unlike the "new" functions/operators in
some other languages, it does not initialize the memory. It only zeros it.

That is, new(T) allocates zeroed storage for a new item of type T and
returns its address, a value of type *T. In Go, this is called a pointer,
which points to the newly allocated zero value of type T. In case of a
struct type T, new(T) and a composite literal expression §T{} (with no
field initializers) are equivalent.

47

8.5. The Builtin make Function

8.5. The Builtin make Function

In contrast to new(T), the builtin function make(T, args) is only used
to create slices, maps, and channels. The make function allocates
memory and it returns an initialized value of type T (not *T).

For slices, maps, and channels, make initializes the internal data
structure and prepares the value for use.

For example, make([]int, 10, 100) allocates an array of 100 ints
and then creates a slice structure with length 10 and a capacity of 100
pointing at the first 10 elements of the array.

In contrast, new([]int) returns a pointer to a newly allocated, zeroed
slice structure, that is, a pointer to a nil slice value.

48

9.1. Types (And Generic Types)

Chapter 9. Types

9.1. Types (And Generic Types)

A type essentially defines

* A set of all possible values (for the given type), and

* The operations allowed on those values.

Types are not mutually exclusive. That is, a value can belong to more
than one types. In particular, in Go, a value can belong to at most one
non-interface type (across compile and run time), and it can belong to
zero, one, or more interface types at the same time. Furthermore, a
value has at least one type at compile type (known as a "static type").

The Go language includes a number of predeclared types:

any bool byte comparable

complex64 complex128 error float32 float64
int int8 int16 int32 int64 rune string
uint uint8 uintl16 uint32 uint64 uintptr

New types may be created, e.g., using composite type literals:

array, struct, pointer, function, interface, slice, map,
channel

A type can be anonymous. Or, a type can be denoted by an explicit type
name followed by an optional type argument.

Go also supports parameterized types (since Go 1.18). A named type
declaration can be parameterized with a type parameter, which
essentially declares a set of possible types. A named type with a type

49

9.2. Method Sets
parameter is called a generic type.

For instance, this example declares a generic struct type Node with type
parameter E, which can be used for creating a (generic) linked list data
structure.

type Node[E any] struct {
Item E
Next *Node[E]

E is constrained to be of type any, in this example. any is a predeclared
type alias for interface {}. Every value in Go is of type any. Hence,
any type can be used to define a concrete type of Node. For instance,
Node[int] is a valid type as well as Node[string], and so forth.

9.2. Method Sets

Every type has a (possibly empty) "method set" associated with it. The
method set of a type determines what interfaces the type (implicitly)
implements and what methods can be called using a receiver of that
type. In a method set, each method must have a unique non-blank
method name.

» The method set of an interface type is its interface.

* The method set of a non-interface type T consists of all methods
declared with receiver type T.

* The method set of the corresponding pointer type =T is the set of all
methods declared with both receivers *xT and T

* Any other type has an empty method set.

50

9.3. Underlying Types

9.3. Underlying Types
Each type T has an "underlying type":
o If T is one of the predeclared types, then the corresponding

underlying type is T itself.

* Otherwise, T's underlying type is the underlying type of the type to
which T refers in its type definition or alias declaration.

* The underlying type of a generic type parameter is the underlying
(interface) type of its type constraint interface.

9.4. Type Declarations

A type declaration (using the keyword type) binds a list of identifiers
(type names) to a list of types. There are two kinds of type declarations:
alias declarations and type definitions.

9.4.1. Alias declarations

A type alias declaration, which uses an assignment-like syntax, after the
type keyword, binds an identifier(s) to the given (existing) type(s).

Within the scope of the identifier, it serves as an alias for the type. For
example,

type (©)
Rank = uint8 @
Suit = rune ®
)

@ The parentheses are required when more than one types/aliases are
declared in one statement.

@ Rank and uint8 are identical types. Multiple alias declarations are

51

9.4. Type Declarations

syntactically to be separated by semicolons (;), but they are
normally omitted.

® Suit is an alias to rune, which is in turn a (predeclared) alias to
int32. Suit, rune, and int32 are all identical types in the given
scope.

9.4.2. Type definitions

Based on another type (named or otherwise), a type definition creates a
new, distinct named type with the same underlying type and operations
as the given type. The identifier in the type definition serves as the
name of the new type.

The new type created this way is called a defined type. It is different
from any other type, including the type it is created from. In particular,
it does not inherit any methods bound to the given type. Methods may
be associated with a new defined type.

The type definition uses a similar syntax:

* The type keyword, followed by
* A list of name type pairs, separated by semicolons, enclosed in

parentheses.

When there is only one name type pair, the parentheses are not
required.

type Rank uint8 ©)

@ Rank is a new type distinct from uint8, unlike in the earlier alias
declaration example. Type definitions and alias declarations are
syntactically different by the presence/absence of the equal (=) sign.
The underlying type of Rank is uint8 in this example.

52

9.5. Type Parameter Lists

A named new type can be created from an anonymous type as well. For
example,

type (
Point struct{ x, y int32 }
Coord Point

® o

® Point and struct{ x, y int32 } are different and distinct types.
Point is, however, structurally identical to the specified
(anonymous) type, an anonymous struct struct{ x, y int32 }in
this example.

@ Coord and Point and struct{ x, y int32 } are all different
types.

Another example, where a new type is created based on an interface
type:

type Mover interface { @)
Move() bool

D Mover and interface{ Move() } are different types. But, the
method set of Mover includes a method Move() bool.

A generic type can be created using the type definition syntax (but not
through the alias declarations). Generic types are explained next.

9.5. Type Parameter Lists

Go allows creating generic types, and generic functions, with type
parameters. Generic types can also be used in the receiver specification
of a method declaration.

53

9.5. Type Parameter Lists

In type definitions and function definitions, the generic type
parameters appear between brackets ([]) after the declared name,

» Before the target type, in case of type definitions, and

* Before the function’s arguments, in case of function definitions.

For example,

type List[T any] struct {
Items []T

® e

@ A type parameter, T in this example, is introduced after the new type
name, List.

@ The type parameter can be used in the struct definition as if it is a
concrete type.

func Cons[T any]
(head T, list List[T])
List[T] {
return List[T] {
Items: append([head], list.Items...)

CHCECHS)

@ A type parameter T is introduced after the function name, Cons.

@ The type parameter can be used in the function parameter list.

@ It can be used in the function return value type.

@ And, it can be used in the function body. The example code is for

demonstration purposes only.

Syntactically, a generic type parameter list iS one or more type
parameters, and their corresponding type constraints, enclosed in

54

9.5. Type Parameter Lists

square brackets. Parameters are comma-separated.

The type parameter names, such as T or E, are placeholder identifiers,
and they must be unique across all parameters in a list. When a generic
type or function, or a receiver type of a method, is instantiated/used,
the generic type parameter is replaced with a concrete type argument.

9.5.1. Type constraints

Type constraints are specifications that constrain the allowed types of
the given type parameters.

More specifically, a type constraint in Go is an interface that defines
the set of permissible types for the corresponding type parameter. It
effectively specifies the operations to be supported by values of that
type parameter.

A type constraint is always required in Go, even if it is just any. For
instance,

[T any]

[C comparable]

[D ~[]E, E comparable]

[S interface{ string | ~[]byte }]
[_ any]

©®0eo6

@ T is essentially unconstrained.
@ comparable is an interface defined in the standard library.

@ The first type parameter D uses the second type parameter E in its
type constraint.

@ An anonymous interface definition is used as a type constraint.

® A blank identifier can be used as a type parameter.

Any interface can be used as a generic type constraint. Go interfaces are

55

9.6. Predeclared Types

explained in more detail later in the book.

any

The predeclared name any, first introduced in Go 1.18, is an alias for
interface{}. The type constraint of any means that there is no
constraint for the respective type parameter.

comparable

The predeclared interface type comparable, first introduced in Go 1.18,
does not include any specific methods. The sole purpose of this special
interface is to denote the set of all concrete (non-interface) types that
are "comparable".

A type T is considered to implement comparable if:

* T is an non-interface type and T supports the operations == and ! =;
or

* T is an interface type and each type in T's type set implements
comparable.

9.6. Predeclared Types

Go includes a number of predeclared named types.

9.6.1. Interface types

any

It is an alias to interface{}. All non-interface types in Go, builtin or
user-defined, implements any.

comparable

It denote the set of all non-interface types that are "comparable". The
comparable interface is primarily used as a type parameter

56

9.6. Predeclared Types

constraint in generic definitions.

error

The predeclared type error includes one method, Error() string.
Error handling is discussed at the end of the book.

9.6.2. Boolean types

Go predeclares a boolean type, bool, which represents the set of two
logical values, true and false. A new named boolean type can be
created using a type definition, just like any other types. For example,

type ToBeOrNotToBe bool

9.6.3. Numeric types

Go includes a set of predefined numeric types to represent the set of
integer, floating-point, and complex values.

The architecture-independent numeric types are:

uint8 the set of all unsigned 8-bit integers (0 to 255)
uinti1e the set of all unsigned 16-bit integers (0 to
65535)

uint32 the set of all unsigned 32-bit integers (0 to
4294967295)

uint6s4 the set of all unsigned 64-bit integers (0 to

18446744073709551615)

int8 the set of all signed 8-bit integers (-128 to
127)

intl6 the set of all signed 16-bit integers (-32768 to
32767)

int32 the set of all signed 32-bit integers (-2147483648

to 2147483647)

57

9.6. Predeclared Types

int64 the set of all signed 64-bit integers (-
9223372036854775808 to 9223372036854775807)

float32 the set of all IEEE-754 32-bit floating-point
numbers
float64 the set of all IEEE-754 64-bit floating-point
numbers

complex64 the set of all complex numbers with float32 real
and imaginary parts
complex128 the set of all complex numbers with float64 real
and imaginary parts

There is also a set of predeclared numeric types with implementation-
specific sizes:

uint either 32 or 64 bits

int same size as uint

uintptr an unsigned integer large enough to store the
uninterpreted bits of a pointer value

These numeric types are defined types, and they are all distinct from
each other. Explicit conversions are required when different numeric
types are mixed in an expression or assignment.

In addition, Go includes two predeclared type aliases, byte and rune:

byte alias for uint8
rune alias for int32
9.6.4. String types

The predefined string type represents the set of string values. A string
value is a (possibly empty) sequence of bytes. The number of bytes is

58

9.7. Array Types

called the length of the string, which can be found using the built-in
function len.

Strings are immutable. That is, once created, the contents of the string
cannot be changed. The internal bytes of a string s can be accessed
(read-only) by integer indices, @ through len(s)-1.

* A string in Go has a dual nature. It is physically a sequence of
bytes, and it is logically a sequence of runes at the same time. A
string can always be converted to [Jbyte’ whereas not every
sequence of bytes is a valid string.

* The string literal syntax is discussed in the lexical analysis chapter.

* The string concatenation is discussed in the context of arithmetic
expressions.

* The append function can be used to create a new string from
existing strings.

9.7. Array Types

An array type is a composite type comprising a sequence of elements of
a single type (known as the "element type"). The elements of an array
are stored in consecutive space in memory, and they can be indexed.

An array type is denoted with the following syntax:

[Length] ElementType

Note that all builtin collection types, array, slice, and
o map, as well as chan, are essentially generic types
although the (new) generic type syntax is not used.

An array type can be defined by specifying the number of elements in

59

9.7. Array Types

square brackets followed by the array’s element type.

The number of elements is called the length of the array, and it is non-
negative. The length is part of the array’s type. The length of an array
type should be specified with a constant expression.

As an example, the following type definition creates a named type,
Ints, based on an array type, [10]int32, whose element type is int32
and whose length is 10.

type Ints [10]int32

You can create a variable of an array type:

var arr [100]bool

The variable arr is of the type [100]bool comprising 100 bool
elements in a consecutive memory space. All elements are initialized
with false (the zero value of the bool type).

9.7.1. Indexing

The elements of an array a can be addressed by integer indices 0
through len(a)-1. The indices in Go are of the architecture-dependent
int type.

Indexing and slicing are further discussed in the later chapters, index
expressions and slice expressions.

9.7.2. Array literal

An array composite literal is used to create a new instance of a specified
array type. For instance,

60

9.8. Slice Types

arr := [...]int{1, 2, 3} ©)

@ An array literal that creates a 3 element int array is used to
initialize the variable arr. The length of the array literal need not be
explicitly specified (that is, one can use .. in place of the exact
length). The type of arris [3]int.

The composite literals are explained in more detail in the composite
literal expressions chapter.

9.7.3. Multi-dimensional arrays

Go does not have true multi-dimensional arrays. Array types are always
one-dimensional. However, an array type can be composed with an
array element type, whose element type can be another array type, etc.

9.8. Slice Types

Slice types are another class of composite types in Go, built from other
types. A slice is defined over an underlying array, and it represents a
contiguous segment of that array. A slice type denotes the set of all
possible slices over the arrays of its element type.

A slice, once initialized, is always associated with an underlying array
that holds its elements. A slice therefore shares storage with its array
and with other slices of the same array.

The number of elements in a slice s is called its length, len(s). The
elements of an array a can be accessed through a slice s over a, e.g.,
using s := al:].The integer indices runs from 0 to len(s)-1.

The length of the underlying array, in this example, is called the
capacity of the slice. The capacity of a slice over an array, in general,
can be equal to, or less than, the length of the underlying array.

61

9.8. Slice Types

The index and slice operations over slices are discussed later.

A slice type can be defined using an empty pair of square brackets. For
instance,

type s1 []string

The named type s1 is defined based on an anonymous slice type
[]string. Note that the [|string type represents all possible slices
over all different array types whose element type is string, including
[10]string, [100]string, etc.

var i1 [lint

In this example, the variable i1 is of the []int slice type. The value of
an uninitialized variable of a slice type is nil.

9.8.1. Slice construction

Slice literals

A slice composite literal can be used to create a new slice, in a similar
way that an array literal is used to create a new array. For example,

slice := [lint{1, 2, 3} ©)
@ The slice literal on the right hand side of the short variable
declaration creates a 3 element int slice with the underlying array

[3]int{1, 2, 3}.Thetypeofsliceis[]int.

Slice expressions

A new slice can also be created from an existing array or slice, using the

62

9.8. Slice Types

slice expression, which is discussed later in the book.

The make function
In addition, a (zero-initialized) slice can be created using the builtin

function make. For example,

sl :
s2

make([]bool, 10) @
make([]string, 5, 100) @

@ The slice s1 of type []bool has length 10 and capacity 10. All its
elements are initialized with false (the zero value of the bool

type).

@ s2 has a type []string. Its length and capacity are 5 and 100,
respectively. Each element of its underlying array, of type
[100]string,isinitialized with "".

9.8.2. The append function

The builtin function append has the following function signature:

func (slice []T, elements ...T) [IT ©)

@ Although the function is technically not a generic function, it is
nonetheless defined over a type parameter T. The .. syntax signifies
that it is a variadic function.

The append function appends elements to the end of slice. For
example,

sl := [lint{2, &4}
sl = append(sl, 6, 8)
sl = append(s1, [lint{10, 12}...)

® o

63

9.9. Map Types

@ The value of s1 at this point is []int{2, 4, 6, 8}. Reusing the
same variable for the returned value from the append function is
idiomatic.

@ The value of s1 after the assignment is []int{2, 4, 6, 8, 10,
12}.

Note that the underlying array of the resulting slice can be different
from that of the input slice. The append function uses the same
underlying array if the input slice’s capacity is big enough to
accommodate the new elements. Otherwise, it creates a new underlying
array and uses it for the resulting slice.

9.9. Map Types

A map is a group of zero or more values or variables of one specified
type ("element type") indexed by a set of keys of another specified type
("key type").

* The builtin len function returns the number of map elements ("
length").

* Elements in a map are unordered.

* All keys must be unique.

A map type is a composite type comprising the key type and the
element type. Syntactically, a map type is denoted as follows:

map [KeyType] ElementType

In the following type definition,

type Timezone map[stringlint

64

9.9. Map Types
A new named map type Timezone is created, whose key and element

types are string and int, respectively. Likewise,

var daysOfMonth map[rune]uint8

In this example, the daysOfMonth variable is of an anonymous map
type map[rune]uint8, whose key and element types are rune and
uint8, respectively. Since rune is an alias to int32, this type is
equivalent to map[int32 Juints.

9.9.1. Key types

The types which do not fully support the comparison operators == and
I'=, including functions, maps, and slices, cannot be used as a key type
of a map.

If the key type is an interface type, these comparison operators must be
defined for the dynamic key type at run time. Otherwise, it will cause a
run-time panic.

Note that, since Go 1.18, the predeclared comparable interface can be
used to constrain permissible key types.

9.9.2. Map construction

The make function

A new, empty map value can be created using the built-in make
function. The make function takes a specific map type as an argument.
An optional capacity hint can be provided as a second argument.

For example,

var ml = make(map[stringlint) @)

65

9.9. Map Types

var m2 = make(map[int]byte, 100) @

@ m1 is an empty map of type map[stringlint.

@ m2 is an empty map of type map[int]byte, whose initial capacity is
100.

Map literals
A map can also be constructed using a composite literal syntax with

colon-separated key-value pairs. For instance,

var daysOfMonth = map[stringlint {
"January": 31,
"February": 28,
"March": 31,

In this example, the variable daysOfMonth has type map[string]lint
and it has 3 elements.

9.9.3. Indexing

Each element can be addressed using the index notation. For instance,
daysOfMonth["January"] evaluates to 31 (of type int) in the above
example.

The index expression can also be used on the left hand side of
assignment statement. For example,

daysOfMonth["February"] = 29

A new element can also be added this way:

66

9.10. Channel Types

daysOfMonth["April"] = 30

At this point, len(daysOfMonth) will return 4.

One can iterate over all elements in a map, e.g., using the for - range
statement. For instance, using the same example,

for k, v := range daysOfMonth {
fmt.PrintLn(k, "\t", v)

This will print out the following output:

January 31
February 29
March 31
April 30

9.9.4. Deleting elements

Elements of a map may also be removed using the builtin delete
function. For example,

delete(daysOfMonth, "February")

len(daysOfMonth) at this point will return 3.

9.10. Channel Types

A channel holds values of a specific element type that can be accessed
across multiple concurrently executing functions. A function can "send"

67

9.10. Channel Types

and/or "receive" values to/from a channel.

A chan T type specifies its element type T and optionally the
"direction". The <- operator specifies the channel direction, send
(chan<-) or receive (<-chan). If no direction is given, the channels of a
given chan type are bidirectional. That is, they can be read from and
written to.

The zero value of a chan type is nil.

The following type definition creates a new named chan type:

type IntBuf chan int

The IntBuf type defines a set of bidirectional channels with int as its
element type. In contrast, chan<- int and <-chan 1int represent
channels for only sending and only receiving int values, respectively.

var sender chan<- int64 @
var receiver <-chan float32 @

@ sender is a variable of type chan<- int64. sender is write-only.

@ receiver is a variable of type <-chan float32. receiver is read-
only.

9.10.1. Channel capacity

Although a channel is not technically a collection type, e.g., like an
array, it behaves more or less like one. A FIFO queue, in particular. The
size of a channel, or the size of the buffer in the channel, is called the "
capacity".

A new channel value can be created using the built-in function make,
which takes the chan type and capacity as its two arguments. For

68

9.11. Pointer Types

example,

ch := make(chan int, 100)

The newly created, and initialized, channel ch of type chan int has a
capacity 100. Up to 100 int values can be sent to this channel without
retrieving any values from it. The channel will "block” when the
number of items in the buffer reaches the channel’s capacity, that is,
when the channel is full.

When we "receive" a value from a non-empty channel, the value is
removed from the channel. Channels indeed behave like a queue data
structure.

One can also create an unbuffered channel, by specifying the 0 capacity,
or by omitting the second argument in the make function call. For
example,

unbuff := make(chan int)

For an unbuffered channel, like unbuff in this example,
communication succeeds only when both a sender and receiver are
ready to send a value and receive, respectively.

A channel can be closed with the built-in function close. Neither
sender nor receiver can send/receive values on the closed channel.

9.11. Pointer Types

A pointer is an address to a variable (of a non-pointer type). The value
of an uninitialized pointer is nitl.

A pointer type denotes the set of all pointers to variables of a given

69

9.12. Struct Types

type, called the base type of the pointer. For instance, for non-interface
type T, =T is its pointer type. For =T, its base type is T.

Note that

» For a non-pointer type T, its base type is T itself.

* A base type cannot be a pointer or interface type.

Pointers provide reference semantics for the corresponding base type
variables. For instance,

package main

func main() {
i, j =1, 2
swap(&i, &j)
println(i, j)
}

func swap(a, b *int) {
*a, *b = xb, =*a

This program will print out, 2, 1.

9.12. Struct Types

A struct is a collection of a finite number of elements, called fields.
Each field has a name and a type, and their order is significant in a
struct.

Field names may be specified explicitly or implicitly (through
embedding). Within a struct, non-blank field names must all be unique,
regardless of their positions, and whether they are explicitly or
implicitly named.

70

9.12. Struct Types

A struct type, named or otherwise, denotes a set of all structs that have
the same field declarations, that is, the field names, their corresponding
types, and their orders.

Syntactically, a struct type is defined by the keyword struct, followed
by a sequence of fields, enclosed in angular braces ({ }). For instance,

var x struct { latitude, longitude float32 }

This declaration introduces the name x. The variable x's type is an
anonymous struct type with two fields, latitude and longitude,
whose types are both float32.

type point2d struct { x, y int }

This type definition creates a new named struct type point2d. The
point2d type and the anonymous type struct { x, y int } aretwo
distinct types despite the fact that both denote structs comprising two
int fields with the same names, x and v.

A struct with no fields is a valid struct:

type Huh struct {} @

@ Huh is of the empty struct type.

It is idiomatic in Go to use a named empty struct type to "organize"
(related) functions into a method set. This is further discussed later in
the book, for example, in the Methods chapter.

9.12.1. Embedded Fields

A field declared with a type but no explicit field name is called an

71

9.12. Struct Types

embedded field.

An embedded field must be specified as a type name T or as a pointer to
a non-interface type *T, and T itself may not be a pointer type.

The unqualified type name acts as the field name.

9.12.2. Tags

A field declaration may be followed by an optional string literal tag,
which becomes an attribute for all the fields in the corresponding field
declaration.

For example,

type Point struct {
X float32 “json:"x"°
Y float32 “json:"y"

9.12.3. Generic structs

There is no separate syntax for "generic structs". A named type with
type parameters can be used to create a generic type with structs.

72

10.1. Interface Types

Chapter 10. Interfaces

10.1. Interface Types

An interface in Go defines a type, or more generally, a set of types ("
type set").

* A variable of a basic interface type can be used for any type at run
time (called the "dynamic type") that is in the type set of the
declared interface (called the "static type").

* A general interface can be used to constrain a generic type
parameter to the specified type set in the declarations of types and
functions.

The zero value of an interface type is nil.

An interface type is specified by the keyword interface, followed by a
list of zero, one, or more interface elements, enclosed in a pair of curly
braces. Each interface element can be

* A method specification, e.g., a method name and signature,

* A (non-interface) type or underlying type, or

* A union (|) of two or more non-interface types or underlying types.
Syntactically, the underlying type of a non-interface type is indicated by

the tilde symbol (~) in front of the type name. This syntax ~T can only
be used with type T whose underlying type is T itself.

For example,

interface {
ToFloat() float64 @
}

73

10.1. Interface Types

interface {
int @
}

interface {
~int32 ®
}

interface {
bool | ~int8 @

@ An explicit method name and signature. This interface is a basic
interface.

@ This interface represents the int type.

® This interface represents int32 and all other types whose
underlying type is int32. Note that the underlying type of int32 is
int32 itself.

@ The bool type or all types with the underlying type int8, including
int8.

The type definition can be used to create named interface types,
including generic interface types.

10.1.1. Embedded interface elements

An interface E may be embedded in another interface I. In that case,
the type set of I includes all methods from the type set of E as well as
those explicitly declared in I. Interface embedding can be nested.

For example,

type Animal interface {
Eat()
Sleep()

74

10.2. Type Sets

}

type Man interface {
Animal
Laugh()

In this example, the interface type Man includes the following three
methods, Eat(), Sleep(), and Laugh(). Since the names are not part
of interfaces, this interface declaration, using the embedded interface
syntax, is equivalent to the following:

interface {
Eat()
Sleep()
Laugh()

10.2. Type Sets

The type set of an interface or non-interface type is determined as
follows:

» The type set of the empty interface interface{} is the set of all
non-interface types.

» The type set of a non-empty interface type is the intersection of all
type sets of its interface elements.

* The type set of a method specification is the set of all types whose
method sets include that method.

» The type set of a non-interface type is the set consisting of just that
type.

75

10.3. Implementing Interfaces

* The type set of a term of the form ~T with a non-interface type T is
the set of types whose underlying type is T.

* The type set of a union of two or more terms, t1 through tn,
separated by | (e.g., t1 | t2 | .. | tn)is the union of the type
sets of those terms.

10.3. Implementing Interfaces

A value of a given type is said to "implement an interface" if the type
implements the interface.

* A non-interface type T implements an interface I if it is an element
of the type set of I.

* An interface type T implements an interface I if the type setof Tis a
subset of the type set of I.

For example,

type Drone struct {}
type Airplane struct {}

type Flyer interface {
Fly()
}

type HighFlyer interface {
Flyer
FlyHigh() string

}

func (d Drone) Fly() {}

func (a Airplane) Fly() {}

func (a Airplane) FlyHigh() string {
return "Yay!"

76

10.4. Basic Interfaces

In this example, the type set of the interface Flyer is Drone and
Airplane whereas the type sef of HighFlyer is Airplane. Therefore, a
value of the Drone type implements Flyer, and a value of Airplane
implements both Flyer and HighFlyer.

Furthermore, a value of the interface type HighFlyer implements
Flyer since the HighFlyer's type set is a subset of that of Flyer.

(Or, conversely, the method set of Drone is Fly whereas the method set
of Airplane includes Fly and FlyHigh. Therefore, Drone implements
Flyer and Airplane implements Flyer and HighFlyer.)

10.4. Basic Interfaces

An interface may contain only a list of one or more methods but
nothing else. The type set defined by such an interface is the set of all
types which implement all of those methods. An interface whose type
set can be defined entirely by a list of methods is called the basic
interface.

The "method set" of a basic interface type consists of the methods
specified by that interface.

Only basic interface types can be used as the types of values or
variables, or components of other non-interface types.

A type may implement several different interfaces, which may possibly
overlap. Every type that implements a specific interface is a member of
the type set of that interface. In particular, all types are a member of
the type set of any, which is an alias name for the empty interface,
interface{}.

For instance,

type Human struct {}

77

10.5. General Interfaces

type Martian struct {}

type Player interface {
Play()
}

type Drinker interface {
Drink()
}

func (h Human) Play() {}
func (h Human) Drink() {}

func (m Martian) Drink() {}

In this example, the method set of Human is Play() and Drink(), and
the method set of Martian is Drink(). Hence, the type set of Player is
Human, and the type set of Drinker is Human and Martian.

Therefore, the type Human implements the Player and Drinker
interfaces, and Martian implements Drinker. (And, both types
automatically implement interface{}.)

10.5. General Interfaces

Since Go 1.18, the syntax of interface has been generalized. As we
defined earlier, an interface declaration can now include non-interface
type interface elements.

Furthermore, Go interfaces now correspond to type sets rather than to
single (possibly polymorphic) types as it used to be the case with the
basic interfaces prior to Go 1.18.

Interfaces, which are not basic interfaces, may only be used as generic
type constraints, or as elements of other interfaces used as constraints.

Here’s an example:

78

10.5. General Interfaces

interface {
~int
String() string

This interface represents all types with underlying type int which
implement the String method. (This effectively excludes the builtin
int type since it does not implement the String method.) This
interface is not a basic interface, and it can only used in the context of
generic type constraints.

Go’s generics, as currently designed, has some
limitations. For example, there is no way to specify
generic type constraints that includes ~string types

o or any other types that implement the String()
string method. In the previous example, the interface
elements ~int and String() string are combined
as an intersection, not as a union.

79

11.1. Function Types

Chapter 11. Functions

11.1. Function Types
* A function signature is the list of parameter types and the list of
result types of a function.

* A function type denotes the set of all functions and methods with
the same function signature.

* The value of an uninitialized variable of a function type is nil.

For example,

func (value int, flag bool) int @)

M A function signature that takes int and bool parameters and
returns an int value. Note that a function type/signature starts with
the keyword func, and it is followed by a parameter list and then
the return value types, if any.

func (lhs, rhs float32) (sum float32) @

@ A function signature that takes two float32 parameters and returns
a float32 value. The parameter and return value names are not
part of a function signature/type. That is, this function signature is
equivalent to func (float32, float32) float32.

11.1.1. Variadic functions

The type of the last input parameter in a function can be prefixed with
a token ... A function with such a parameter is called variadic, and it
may be invoked with zero or more arguments for that parameter.

80

11.2. Function Declarations

For example,

func Sum(numbers ...int) int { @D

/* .. %/

@ The function type of this function is func (..int) int.

This Sum function can be called with zero, one, or more int values.

sl := Sum()

s2 := Sum(10)

s3 := Sum(1, 2, 3)
// ...

11.2. Function Declarations

The set of top-level declarations in Go includes function and method
declarations.

A function is essentially a function signature plus a function body
(implementation). A function declaration binds an identifier, i.e., a
function name, to a function. A function body is syntactically a block.
For example,

func First(fst, snd int) int @

{ @
return fst

}

® The func keyword, function name (First), and the function
signature.

@ The function body block (from { to }).

81

11.3. Generic Functions

If the function’s signature declares result parameters, the function
body’s statement list must end with a terminating statement.

func FindSubstring(str, sub string) int {
// Statement list, possibly including return statements.

// If sub is not found in str, just return -1.
return -1 @

@ The final terminating statement is required.

11.3. Generic Functions

If the function declaration specifies type parameters, the function name
denotes a generic function. Generic functions define a set of functions
(or, function templates) parametrized by types, and they must be
instantiated when they are used.

The type parameters of a function appear between brackets, before the
function’s arguments. Generic type constraints are required for all type
parameters.

func min[T constraints.Ordered](x, y T) T @)
{
if x <y { @
return x
}
return y
}

@ The type parameter T is constrained by the Ordered interface.

@ Only the values of x and y in the type set of Ordered can be used for
comparison in this conditional expression.

82

11.4. Function Literals

The min function can be used as follows, for instance:
m := min[int](1, 10)

In this particular example, the arguments are untyped integer literals,
and hence the type argument can be omitted, e.g., as in min(1, 10).T
will be presumed to be int. The type of m will be int as well (since min
returns a value of type T). This is known as the type parameter
inference.

11.4. Function Literals

A function literal represents an anonymous function.

func(a, b int, z float64) bool { return axb < int(z) } @

@ Note that an anonymous function has no function name.

A function literal can be either directly invoked, or it can be assigned to
a variable, which can be invoked later.

f := func(x, y int) int { return x + y }
sum := f(1, 2)
func(ch chan int) { ch <- ACK }(replyChan)

CNCNS)

@ An anonymous function is assigned to a variable f.
@ f is callable.

® An anonymous function can also be called directly.

Function literals are closures. They may refer to variables defined in a
surrounding function.

83

11.4. Function Literals

Those "closed-over variables" are then shared between the surrounding
function and the function literal, and they survive as long as they are
accessible (e.g., even after the stack frame of the surrounding function
is deleted).

Here’s an example code to generate Fibonacci sequence, using an
anonymous function.

package main

import (
n fmt n

)

func fib() func() int { @
a, b :=0, 1

return func() int {
a, b =b, a+b
return a

CNS)

}

func main() {
f := fib()

for x := f(); x < 100; x = f() {
fmt.Println(x)

@ The fib function returns a function of type func() int.

@ The fib function returns an anonymous function, which is a
closure.

® Note that the variables a and b are declared in the enclosing
function.

84

12.1. Method Declarations

Chapter 12. Methods

12.1. Method Declarations

A method is a function with a receiver.

A method declaration binds an identifier, a method name, to a method,
and associates the method with the receiver’s base type.

Here’s the method declaration syntax:

func (ReceiverParameter) MethodName (ParameterlList) Result
FunctionBodyBlock

ReceiverParameter should be one of the following two form:s,

* name T,or

* name *T,

for a non-pointer, non-interface type T. The name can be a blank
identifier (), or it can be entirely omitted, if the receiver’s value is not
referenced inside the body of the method.

The rest of the method syntax is more or less identical to that of
function declarations. For example,

type Ptl1D float32

func (p Pt1D) Dist() float32 { ©)
if p>=0{
return p

}

return -p

85

12.1. Method Declarations

@ The method Dist is defined for the receiver p with type Pt1D, whose
base type is Pt1D.

A method declaration itself cannot introduce type parameters like a
function declaration, however. If the receiver base type is a generic
type, the receiver parameter must include the corresponding type
parameters, but not the type parameter constraint. The receiver type
constraint is implied by the receiver’s base type definition.

For example,

type MapElement[K comparable, V any] struct {

key K ©)
value V

}

func (e MapElement[K, VI) Key() K { @)
return e.key

}

func (e MapElement[T, S]) Value() S { ®
return e.value

@ The fields key and value are not exported, in this example, while
the type itself is exported.

@ The type parameters, K and V, are associated with the receiver e. The
type parameter K is constrained to comparable although it is not
explicitly specified here. Note that the Key method provides a
readonly access to the field key (e.g., from outside the package).

@ Just for illustration, we use different symbols for the type
parameters. The type constraints of T and S are the same, that is,
comparable and any, respectively.

86

12.1. Method Declarations

One important thing to note is that methods must be defined in the
same package as the base type of the receiver. That is, among other
things, you cannot define methods for the types that you do not "own",
including all builtin types.

A method declaration binds the method to its receiver base type. The
method name is visible only within the selectors for receiver type T, or
*T, and for its base type T.

(Note that when the receiver’s type is T (a non-pointer, non-interface
type), the method is available only for T. On the other hand, when the
receiver’s type is *T, the method is available for both T and *T.)

It is a common practice in Go to use a type as sort of a namespace to
organize (related) functions, for example, as alluded earlier in the
context of empty struct types.

Using the same example,

type Huh struct {} @
func (_ Huh) m1() {} @
func (xHuh) M2() {} ®
var h Huh @
h.mM1() ®
h.M2() ®

@ An empty struct type, e.g., with no fields.

@ The name of a receiver is not needed when we do not use it.
® Likewise.

@ The variable h is of the type Huh.

® M1 is available only as a method of a variable of type Huh. M2 is
available only as a method of a variable of type Huh or *Huh.

87

12.1. Method Declarations

® Note that h.M1() and h.M2(), using the method call syntax, are
more or less equivalent to Huh.M1(h) and Huh.M2(h), respectively,
using the function call syntax.

A function signature of a method is that of a function with the receiver
as its first parameter. For instance, for the following method,

func (ship *Ship) Move(speed float32) bool {
// ...

The signature of the method Move is

func (ship *Ship, speed float32) bool

Note that there is no such a thing as a method literal in Go. One can
always use an anonymous function with a receiver as its first argument.

88

13.1. Operands

Chapter 13. Expressions

An expression computes, and returns a value, by applying functions or
other operators to its operands.

13.1. Operands

Operands denote the elementary values in an expression. An operand
may be
A literal,
* A non-blank identifier denoting
o a constant,
o variable, or
o function, or
* A parenthesized expression.

An operand name denoting a generic function may be followed by a list
of type arguments. The resulting operand is an instantiated function.

13.2. Addressable Expressions

The following expressions are deemed "addressable":

A variable,
* Pointer indirection,

* Slice indexing operation,

A field selector of an addressable struct operand, or

* An array indexing operation of an addressable array.

89

13.3. Primary Expressions

13.3. Primary Expressions

Primary expressions are the simplest expressions that can be used as
operands of unary and binary operators.

The following are syntactically primary expressions:

» Type conversion expressions,
» <<[part02-chapter-methods, Method expressions>>, and
* Primary expressions followed by

o Selector,

o Index,

> Slice,

- Type assertion, or

o Function argument.

13.4. Constant Expressions

Constant expressions are evaluated at compile time, and they can only
contain constant operands.

Constants can be untyped:
* Untyped Boolean constants can be used where boolean values can

be used.

* Untyped numeric constants can be used where integer or floating-
point values can be used.

* Untyped string constants can be used in places where strings can be
used.

A constant comparison always yields an untyped boolean constant. Any
other operation on untyped constants results in an untyped constant of

90

13.5. Composite Literals
the same kind.

Constant expressions are evaluated exactly. Untyped numerical
constants are infinite precision in Go, only limited by practical
constraints.

13.4.1. Conversions

A constant value x can be converted to type T if x is representable by a
value of T. Converting an untyped constant yields a typed constant as a
result.

x
n

uint(10) ©)
float32(-1e-100) @

<
1

@ The RHS expression is a constant 10 of the uint type, and hence x is
of type uint.

@ The RHS expression is a constant 0.0 of type float32, and hence y
is float32 as well.

13.5. Composite Literals

Composite literals are used to construct new values for arrays,
slices, maps,and structs.

Each type of literal consists of the relevant type name followed by a list
of elements of the given type enclosed in a pair of matching curly
braces ({ }).

[3]int{1, 10, 100}

@
[1bool{true, false} @

@ An array literal that creates a 3 element array, with elements, 1, 10,
and 100. The number of elements need not be explicitly specified.

91

13.5. Composite Literals

For example, this literal syntax is equivalent to [..]int{1, 10,
100}.

@ A slice literal that creates a 2 element slice, with elements, true and
false. Note that the empty pair of square brackets is used to denote
a slice.

var x = map[stringlint{} @

@ The map literal creates an empty map of type map[stringlint. This
map value is assigned to the variable x through assignment.

type Location struct {
Lat, Lon float64

var loc = Location{37.7, -122.4} ©)

@ The expression on the RHS of the assignment statement is a struct
literal that constructs a new Location value with Lat = 37.7 and
Lon = -122.4.

Each element may be preceded by a corresponding key. The key is
interpreted as

» A field name for struct literals,
* An index for array and slice literals, and

* A key for map literals.

For example,

[...]float32{0: 0.1, 1: 0.2} @

@ An array literal with two elements. This literal is equivalent to

92

13.6. Index Expressions
[2]float32{0.1, 0.2}.
type Coordinate struct {

X, Y uint
}

var position = Coordinate{X: 0, Y: 10} @

@ The RHS struct literal is the same as Coordinate{®, 10} or
Coordinate{Y: 10, X: 0}. When the field names are specified,
the order is not significant.

For map literals, all elements must have keys.

var pop = map[string]float32{ @
"New York City": 8.5,
"Los Angeles": 4.0,

@ The right-hand side map literal creates a new mapof two elements of
type map[string]float32. This map value is assigned to the
variable pop through assignment. The type of pop is
map[string]float32.

13.6. Index Expressions

An index expression, a[i], is used to denote an element of a of type

* Array,

Pointer to array,

Slice,

String, or

* Map.

93

13.6. Index Expressions

The value 1 is called the key in case of maps, or the index otherwise.

fibonacci := [8]int{@, 1, 1, 2, 3, 5, 7, 13} ®
fibslice := fibonacci[:]
ptrfib := &fibonacci

fibonacci[3]
fibslice[4]
ptrfib[5]

Nn T o
n 1}

fibonacci[6] = 8

@ fibonacci is an array of type [8]int. This includes the first 8
elements of (somewhat incorrect) Fibonacci sequence.

@ fibsliceis aslice of type []int.

® ptrfib is a pointer to the array fibonacci, whose typeis [8]int.
@ The type and value of a are int and 2, respectively.

® The type and value of b are int and 3, respectively.

® The type and value of c are int and 5, respectively. Note that the
index expression ptrfib[5] is equivalent to (*ptrfib)[5].

@ After this assignment, the values of fibonacci[6], fibslice[6],
and *ptrfib[6] are all 8 (the correct Fibonacci number).

In case of map indexing, Go provides a special form when an index
expression is used in initialization or assignment. For instance, for a
map m of type map[K]V, and for a key k of type K, m[k] returns two
values.

For example,

v, ok := m[k]

94

13.7. Slice Expressions

The first value v is the usual value of an index expression, of type V. The
second value ok is an untyped boolean constant. The value of ok is
true if the key x is present in the map, and false otherwise.

When the first return value is not needed, the blank identifier () can
be used. When the second boolean return value is not needed, the blank
identifier (_) can be used likewise, or it can be omitted.

For instance,

_, ok := m[k] ©)
@

v := m[k]

@ Depending on whether m contains an element with key k, that is,
depending on the value of ok, we can do further processing.

@ When we are sure that m contains an element with key k, we can
ignore the second return value. This statement is equivalent to v,
:= m[k].

13.7. Slice Expressions

Slice expressions construct a substring or slice from a string, array,
pointer to array, or slice.

13.7.1. Substrings

For a string s, the following slicing operation creates a substring, from
index low (inclusive) to high (exclusive).

s[low : high]

Either low or high, or both, can be omitted. The default values are 0
and len(s), for Low and high, respectively.

95

13.7. Slice Expressions

For example,

str := "hello, world!"

str:4] @

sub :

@ sub is a string "hell".

13.7.2. Slices

For an array, pointer to array, or slice, there are two variants of slice
expressions.

As with the string slice expressions, a slice of an array, a pointer to
array, or another slice, can be taken by specifying a range, from index
low (inclusive) to high (exclusive). For example, the following
expression returns a slice of a with the specified range:

allow : highl]

The new slice has indices starting at 0 and length equal to high - Tlow.
If the Tow and/or high values are omitted, then their default values are
used, 0 for Tow and len(a) for high. For example, a[:] is equivalent to
alo : len(a)l.

n @
1]

[lint{1, 2, 3, 4, 5} ©)
al1:4] @

@ The RHS expression is a slice literal of type []int with 5 elements.

@ The RHS is a slice expression, which returns a slice of type []int
with 3 elements. It includes 3 elements, 2, 3, 4.

In addition, slicing can also be done using the following syntax:

96

13.8. Selectors

allow : high : max]

This expression constructs a slice of the same type, and with the same
length and elements as the simple slice expression a[low : high].
Additionally, it controls the new slice’s capacity by setting it to max -
Llow. In this syntax, only the first index may be omitted, whose default
value is 0.

[5]int{1, 2, 3, 4, 5}
al1:3:5] ©)

@ t refers to a slice of type []int with length 2 (3 - 1) and capacity 4
G - 1.

13.8. Selectors

For a primary expression x that is not a package name, the selector
expression x.f denotes the field or method f of the value x. If x is a
package name, then the dot notation refers to qualified identifiers.

The identifier f is called the field selector or method selector depending
on whether f is a field or method, respectively. The type of the selector
expression is that of f.

For example,

type Point struct {

X, Y float32

}

func (p *Point) Move(dx, dy float32) {
p.X += dx @
p.Y += dy

97

13.9. Function and Method Calls

func (p *Point) MoveHorz(distance float32) {
p.Move(distance, 0.0) @
}

@ The field X of the value p is accessed via the field selector expression,
p.X. The type of p.X is float32, the same as X. Note that the type of
pis *xPoint, and p.X is equivalent to (*p).X.

@ The method Move on the value p is called, in this example, using the
method selector expression, p.Move(distance, 0.0), which is
equivalent to (xp).Move(distance, 0.0) since p is a pointer type.

13.9. Function and Method Calls

Given an expression f of function type F, the following expression calls
f with arguments a1, a2, ... an.

f(al, a2, /* ... %/ an)

Each argument must be a single-valued expression assignable to the
corresponding parameter type of F. All arguments are evaluated before
the function is called. The type of the call expression is the result type of
F.

A method invocation is similar but the method itself is specified as a
selector upon a value of the receiver type for the method.

math.Cos(x, y) @)
var pt *Point
pt.Move(3.5, 5.5) @

@M A function call.

@ A method call with receiver pt.

98

13.9. Function and Method Calls
In a function call,
* The function value and arguments are evaluated in the usual order
first,

» After they are evaluated, the parameters of the call are passed by
value to the function,

* Then the called function begins execution, and

* The return parameters of the function are passed by value back to
the calling function when the function execution ends.

13.9.1. Passing arguments to .. parameters

The final parameter of a function f can be specified as p ..T, for a
parameter name p and a type T. In such as case, the type of p is
equivalent to type []T within the body of f.

First, if the function f is invoked with no actual arguments for p, then
the value passed to pisnil.

Otherwise, the value passed is a new slice of type []T with a new
underlying array with the successive arguments as its elements. The
length, and the capacity, of the slice in a particular call is therefore the
number of arguments bound to p in the call.

As an example, given a function,

func SendMoney(amount float32, names ...string)

The values of names in the calls SendMoney(100.0) and
SendMoney(100.0, "Joe", "Jill") are nil and []string{"Joe",
"Jill"}, respectively.

99

13.10. Conversions

13.10. Conversions

A conversion expression changes the type of a given expression to the
type specified by the conversion. A conversion may be implicitly done
by the context in which an expression appears. Or, a conversion may be
explicitly specified.

An explicit conversion is an expression of the form T(x) where T is a
type and x is an expression that can be converted to type T.

Conversion of constant values is explained in Constant expression
conversions.

A non-constant value x can be converted to type T if any of the
following holds:

* x is assignableto T,

* x's type and T have identical underlying types,

* x's type and T are pointer types that are not defined types, and their
pointer base types have identical underlying types,

* x'stype and T are both integer or floating point types,

* x'stype and T are both complex number types,

* x is an integer or a slice of bytes or runes and T is a string type, or
* x is astring and T is a slice of bytes or runes.

Struct tags are ignored when comparing struct types for identity for the
purposes of conversion.

13.11. Type Assertions

A type assertion x. (T) takes an expression x of an interface type (e.g., a
static type) and a target type T (e.g., a dynamic type), and it asserts that

100

13.12. Operators

e xisnotnil, and

* The value stored in x is of type T.

If the assertion holds, then it return the value stored in x as type T.
Otherwise, a runtime panic occurs.

13.11.1. Type assertions in assignments

A type assertion used in an assignment or initialization returns an
additional untyped boolean value, as its second return value. For
example,

v, ok := x.(T)

When the assertion succeeds, the value of ok is true. When the
assertion fails, no run-time panic occurs in this form of type assertions.
Instead, the value of ok is set to false and the value of v is set to the
zero value for type T.

Either return value can be ignored using the blank identifier (_). When
the second return value is not needed, e.g., because we know that the
type assertion will always succeed, it can be entirely omitted. For
instance, the following is a valid syntax.

v 1= x.(T)

13.12. Operators

Operators combine operands into expressions.

Binary operators combine two expressions into one. Unary operators
take a single operand expression, and convert it into another
expression that can be used with either unary or binary operators.

101

Binary operators in Go can be classified into four groups.
13.12.1. Logical operators

Il &&

13.12.2. Relational operators

13.12.3. Additive operators

13.12.4. Multiplicative operators

* / % << >> & &§"

13.12.5. Unary operators

In addition, the following can be used as unary operators:

+ - 17 % § <

13.12.6. Operator precedence

Unary operators have the highest precedence.

13.12. Operators

There are five precedence levels for binary operators. Multiplication

102

13.13. Arithmetic Operators

operators bind the strongest, followed by addition operators,
comparison operators, &§& (logical AND), and finally | | (logical OR):

Precedence Operator

5 * / % << >> & §"
4 + - 7

3 == l= < <= > >=
2 &&

1 [

Binary operators of the same precedence associate from left to right.
For instance, x / v * zisthesameas(x / y) * z.

Since the increment (++) and decrement (--) operators form
statements, they are not part of expressions and they are not
considered for the purposes of operator precedence. Therefore, for
example, a statement p++ is the same as (p)++ where p is an
expression.

13.13. Arithmetic Operators

Arithmetic operators take two numeric values, and they return a result
of the same type as the first operand.

The four standard arithmetic operators (+, -, *, /) are used with
operands of integer, floating-point, and complex types.

+ Sum
- Difference
* Product

/ Quotient

103

13.14. Comparison operators
% Remainder
The bitwise logical and shift operators can be used with integers only.
& Bitwise AND
I Bitwise OR
" Bitwise XOR
&" Bit clear (AND NOT)
<< Left shift

>> Right shift

13.13.1. String concatenation

Strings can be concatenated using the + operator, or using the +=
assignment statement. String addition creates a new string by
concatenating the two operands.

s := "hello " + "world"

S += and you"

® O

@ The value of s is "hello world".

@ The value of s isnow "hello world and you".

13.14. Comparison operators

A binary comparison operator takes two operands, compares their
values, and returns an untyped boolean value as a result. One operand
must be assignable to the type of the other operand.

Equal to

104

13.15. Logical Operators

1= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
The equality operators == and != apply to operands that are

comparable. The ordering operators <, <=, >, and >= apply to operands
that are ordered.

The values of slice, map, and function types are not generally
comparable except when they are compared to nil. Comparison of
pointer, channel, and interface values to nil is also allowed.

13.15. Logical Operators

Logical operators take boolean values as arguments and they return a
result of the same type as the arguments.

&§& Binary conditional AND
Il Binary conditional OR
! Unary NOT

For the unary logical expression !p, its value is true if p == false.
Otherwise, it is false.

The right operand of a binary logical operator is evaluated
conditionally. This is known as the "short circuiting".

In case of p §& q, qis evaluated only if p evaluates to true.

105

13.16. Address Operators

e Itreturns falseifp == false.

* Otherwise it returns the value of the second expression g.
Incaseof p || g, qisevaluated only if p evaluates to false.

o Itreturn trueifp == true.

» Otherwise, it returns the value of q.

13.16. Address Operators

For an operand x of type T, the address operation &x generates a
pointer to x, whose type is *T.

The operand of the address operator & must be addressable. Or, the
operand may also be a (possibly parenthesized) composite literal
expression.

If the evaluation of x would cause a run-time panic, then so does the
evaluation of &x.

13.17. Receive Operator

A unary receive operator (<-) takes an operand ch of type chan T and
it returns the value received from the channel ch. The type of the r
eceive operation (<-ch) is the element type of the channel (7).

The channel direction must be compatible with the receive operations.

The receive expression blocks until a value is available. Receiving from
a nil channel blocks forever.

vl := <-ch
f(<-ch)

106

13.17. Receive Operator

<-ch @
@ It wait until it receives a value and it discards the received value.

13.17.1. Receive operator in assignments

A receive expression used in an assignment or initialization returns an
additional untyped boolean result as its second value to indicate
whether the receive operation succeeded.

v, ok := <-ch

The value of ok is true if the value received was delivered by a
successful send operation to the channel. It is false otherwise, for
example, because the channel is closed and empty.

The second return value can be ignored. For instance, the following is a
syntactically valid statement:

v := <-ch

107

Chapter 14. Statements

Statements control execution of a program. There are roughly 20
different kinds of statements in Go. The following are classified as
simple statements:

* Empty statements,

» Short variable declarations,

¢ Assignments,

¢ Increment/Decrement statements,

» Expression statements, and

* Send statements.
There are 13 more different statements:

¢ Declarations,

¢ Labeled statements,

o If statements,

e For statements,

o Switch statements,

¢ Select statements,
 Fallthrough statements,
¢ Continue statements,

¢ Break statements,

e Goto statements,

* Defer statements,

e Return statements, and

¢ Go statements.

108

14.1. Empty statements

In addition, a block is syntactically a statement. That is, a block can be
used where a statement is expected.

14.1. Empty statements

The empty statement does nothing.

package main

func main() {

’

® O

1

@ Normally, we do not use semicolons when writing Go programs. The
semicolon here is included for illustration since one cannot see an
empty statement.

@ This line includes two empty statements.

14.2. Assignments

An assignment is a simple statement that binds each operand from a list
of expressions, on the left hand side of an assignment operator, to the
corresponding value in another list of expressions on the right hand
side.

There are two kinds of assignment statements. Here’s an example of a
simple assignment using the assignment operator =:

package main
import "fmt"

func main() {

109

14.2. Assignments

var apple, orange string
apple, orange = "sweet", "sour"

CNCNS)

fmt.println(apple, orange)

@ A variable declaration. Not an assignment.

@ A simple assignment statement, using the assignment operator =.

@ This will print out "sweet sour".

In this type of an assignment, expressions on the RHS are evaluated

first, from left to right, before their values are assigned to the
corresponding expressions on the LHS.

The following are also assignment operators in Go (each treated as a
single token):

4= -= |= M= %= /= %= <<= >>= §= §'=

An assignment statement of this form x op= vy, where op=
schematically represents an assignment operator listed above, is more
or less equivalent to x = x op (y).But, in x op= vy, x is evaluated
only once.

In this kind of assignment operations,

» Each expression list on both sides can contain only one expression,
* The left-hand expression cannot be the blank identifier (_), and

* The left-hand expression is evaluated first before the right-hand
expression.

package main

func main() {

110

14.3. Increment - Decrement Statements

var myFortune, expense = 1000, 999 @

myFortune -= expense @
fmt.printf("My remaining fortune is %d dollars.\n",
myFortune)
}

@ Variable declaration with initialization.

@ An assignment statement of the second kind. This statement is
equivalent to myFortune = myFortune - expense.

14.2.1. The left-hand side operand

In general, each left-hand side operand in an assignment that is not the
blank identifier must be

» Addressable, or

* A map index expression.

X 1= 3
a[x] - "hey"

14.3. Increment - Decrement
Statements

In Go, ++ and -- are not operators unlike in many other C-style
programming languages.

Instead, Go provides the increment (++) and decrement (--) statements,
which can be used to increment and decrement their numeric operands
by the untyped numeric constant 1, respectively.

An increment statement comprises an expression followed by ++.
Likewise, a decrement statement is an expression followed by --.

111

14.3. Increment - Decrement Statements

package main

func main() {
i, j =0, 0
1++

j__

® e

println(i, j)

@ An increment statement.

@ A decrement statement.

This program is semantically equivalent to the following:

package main

func main() {
i, j :=0, 0

1+=1
j =1

println(i, j)

As with the left-hand expression in the assignment statements, the
operand expression of the increment or decrement statement must be

¢ Addressable, or

* A map index expression.

112

14.4. Expression Statements

14.4. Expression Statements

The following expressions can be appear in statement context, and
their values are ignored:

* Function calls (with the exception of a few builtin functions),
¢ Method calls, and

* Receive operations.

For example,

h(x+y)
f.Close()
(<-ch)

CNCNS)

M h is function.
@ Close is a method defined on f.

® A receive operation <-ch is used as a statement. Note that
expression statements can be (optionally) parenthesized.

14.5. Send Statements

A send statement (channel <- expression) sends a value on a given
channel:
* The left-hand channel expression must be of the chan type,

* The channel direction must permit send operations (e.g., chan T or
chan<- T),and

* The value of the right-hand expression must be assignable to the
channel’s element type, T.

For example,

113

14.6. If Statements

package main

func main() {
chl := make(chan<- int, 10)
ch2 := make(chan int)

chl <- 3
ch2 <- 2 + 5

® O

@ Send a value 3 to channel ch1.

@ Send a value 7 (2 + 5)to channel ch2.

14.6. If Statements

The if statement is a compound statement, and it comprises

* The if keyword,
* A conditional/Boolean expression, followed by
* Ablock.

If the Boolean expression evaluates to true, then the statements in the
if block is executed.

The if clause can be optionally followed by

* The keyword else, and
o Another block of statements, or
o Another if statement with its own optional else clause, and so

forth.

If the conditional expression evaluates to false, then the statements in
the else block is executed, if present.

114

14.7. Labeled statements

The Boolean expression can be optionally preceded by a simple
statement. This statement, if present, executes before the expression is
evaluated.

package main

func main() {

X := 0

if x <= 10 { ©)
println("x is small")

} else if max := 100; x > max { @
println("x is big")

} else { ®

println("x is perfect")

@ An if statement.

@ Another if statement in the else clause, which is part of the
first/outer if statement. The conditional expression x > max in the
second/inner if statement is preceded by a simple statement, max
:= 100 followed by a semicolon ;, in this example.

® Syntactically, the else clause in this line belongs to the second if
statement.

14.7. Labeled statements

A labeled statement is a composite statement. It is syntactically a
combination of

» A label,
* A colon (:), followed by

e Another statement.

115

14.8. For Statements

Any valid identifier can be used as a label.

package main

func main() {

i:=0
begin: @
ifi=1+1; 1<10 {
goto begin
}

@ The label begin, :, and the if statement form a single labeled
statement.

A labeled statement can be used as a target of a goto, break or
continue statement in the same scope. It is illegal to have unused
labels in a block.

14.8. For Statements

A for statement is used for repeated execution of a block of statements.

The for statements can be classified into four different categories
based on how the iteration is controlled.
* First, the iteration condition may not be explicitly specified.
* Otherwise, the iteration can be specified by
o A single conditional expression,
o A "for clause", or

> A "range clause".

116

14.8. For Statements

14.8.1. Infinite for loops

for { /* ... %=/ }

In its simplest form, the for statement repeats execution of the given
block indefinitely. For example,
package main

func main() {
for {
println("I didn't do it.") ©)

@ A reference to Bart Simpson. ©

This program will repeatedly print out I didn’t do it. until it is
terminated (in some way).

14.8.2. For statements with single condition

for Expression { /* ... %/ }

In this form, the Expression must be a Boolean condition. The for
statement executes the block repeatedly as long as the Expression
evaluates to true. The condition is re-evaluated before each iteration.

package main
func main() {

i, sum := 0, 0
for i < 10 { @

117

14.8. For Statements

sum += 1
1++
}
println("sum =", sum) @

@ This use of for is similar to while found in other C-style languages.

@ This program will print out sum = 45.

14.8.3. For statements with for clause

The "for clause" consists of three parts.

for SimpleStatement ; Expression ; SimpleStatement { /% ... */

}

The simple statements before the first semicolon and after the second
semicolon are optional. The two semicolons are required in this
syntactic form of for statements.

The Expression in the middle must evaluate to a Boolean value. The
for clause for statement is controlled by this Boolean condition.

» The first simple statement, if any, is executed once before the first
iteration.
» The Boolean expression is evaluated before each iteration.

» The last simple statement, if present, is executed after each iteration.

package main

func main() {
sum := 0
for i := 0; 1 < 10; i++ { @D
sum += 1

118

14.8. For Statements

}

println("sum =", sum)

@ This is a classic C-style for loop.

14.8.4. For statements with range clause

The range clause for statement can be used to iterate through all
entries in a range expression. It can be an iterable type of array, slice,
map, or string. Or, it can be a channel permitting receive operations.

For each entry, it executes the block, after assigning the iteration values
to the corresponding iteration variables, if specified.

There are three distinct forms:

for range Expression { /* ... %/ }

for ExpressionlList = range Expression { /* ... %/ }

The iteration values are assigned to the respective iteration variables as
in an assignment statement.

for IdentifierList := range Expression { /* ... */ }

In this form, the short variable declaration syntax is used. The
variables' types are set to the types of the respective iteration values.
Their scope is the block of the for statement.

For example,

119

package main

func main() {

arr := []int{1, 3, 5}

length := 0
for range arr {
length++

}

println("length =", length)

e, sum := 0, 0

for _, e = range arr {

sum += e
}

println("sum =", sum)
idx, max := -1, 0

for i, e := range arr {

if max < e {

idx, max = i

}
if idx >= 0 {
println("idx =

(@ We ignore the values of the elements.

14.9. Switch Statements

", max)

@ We ignore the index of each element in this example.

3 The variables i and e are reused in each iteration.

14.9. Switch Statements

A switch statement includes one or more branches of execution, called

cases, based on the switch expression.

120

14.9. Switch Statements

switch Expression { /* case clauses */ }

The Expression can be optionally preceded by a simple statement:

switch SimpleStatement ; Expression { /* case clauses */ }

There are two forms of switch statements, expression switches and
type switches.

Expression switch

The cases contain expressions that are compared against the value
of the switch expression.

Type switch

The cases contain types that are compared against the type of a
specially annotated switch expression.

14.9.1. Expression switches

In an expression switch statement,

» The switch expression is first evaluated, and
* The case expressions are evaluated in order, from top to bottom:

o The first one that equals the switch expression, if present,
triggers execution of the statements of the associated case, and
all the remaining cases are skipped.

o Otherwise, if no case matches, then
= If there is a default case, its statements are executed, and

» If not, no statements are executed.

The case clause has the following syntax:

121

14.9. Switch Statements

case ExpressionlList : StatementList

An expression switch statement can have at most one default case
clause:

default : StatementList

The last non-empty statement of the StatementList of a non-last case
clause may be a fallthrough statement, in which case control should
"fall through" to the next case clause.

Here are a few examples of the expression switch statement.

var result string

switch num {

default: result = "Don't know" @D
case 1, 3, 5: result = "Odd"

case 2, 4, 6: result = "Even"

}

M The default case is always checked last regardless where it is
placed. That is, for example, if num is 4, then result becomes
"Even" at the end of this switch statement.

switch { ©)
case X < 0: return -x
case X >= 0: return x

}

@ A missing switch expression is equivalent to true. That is, switch {
.. }isthe same as switch true { .. }.

122

14.9. Switch Statements

switch x := f(); x - 10 { ©)
case 0: return "10"

default: return "Not 10"

}

@ A simple statement, a short variable declaration x := f() in this
example, can precede the switch expression, x - 10 in this case.

14.9.2. Type switches

A type switch statement compares types rather than values. It is
marked by a special switch expression, expression.(type):

switch x.(type) { /* case clauses */ }
Or, alternatively,

switch v := x.(type) { /* case clauses */ }

In this form, the variable y is bound to the asserted type (which could
be nil).

As with the expression switch statement, the type switch expression
(either form) can also be preceded by a simple statement (and a
semicolon), which is executed before the type switch expression is
evaluated.

The case clause has the following syntax:

case Typelist : StatementlList

where TypeList is a comma-separated list of one or more types.

123

14.10. Select Statements

In this form, cases are compared with dynamic or runtime type of the
expression x. As in type assertions, x must be of an interface type, and
each non-interface type T listed in a case must implement the type of x.

For example,

switch x := f(); t := x.(type) {
case int:
fmt.Printf("Int x = %d\n", x)
case float6s4:
fmt.Printf("Float64 x = %f\n", x)
case func(int) int:
fmt.Println("x is a function of type 'func(int) int'")
default:
fmt.Printf("The type of x is %v\n", t)

14.10. Select Statements

A select statement branches on a set of one or more (send or receive)
channel operations. It is similar to the switch statement, but, in the
select statement, all cases refer to communication operations.

select { /* communication clauses */ }

The communication case clause has the following syntax:

case SendStatement : StatementList

Or,

case ReceiveStatement : StatementList

124

14.10. Select Statements

The SendStatement is one of the compound statement types in Go, send
statement, e.g., ch<- v. The ReceiveStatement can be in one of the
following three forms:

* A receive operation used by itself as an expression statement, e.g.,
<-ch.

A receive operation used in an assignment statement, e.g., arr[2]
= <-ch.

* A receive operation used in a short variable declaration statement,
eg.,x := <-ch.

Similar to switch statements, the select statement can also have an
optional defau'lt case:

default : StatementList

Here’s a simple example use of the select statement:

package main
import "fmt"

func lucasSequence(ch chan int, done chan bool) {

a, b:=2,1 ©)
for {

select { @

case ch <- a: ©)

a, b =b, a+b @

case <-done: ®

return

125

14.11. Fallthrough Statements

func main() {

ch := make(chan int)
done := make(chan bool)
go func() {
for i := 1; 1 <= 10; i++ {
fmt.Println(i, "->", <-ch)
t
done <- true

O

lucasSequence(ch, done)

@ Lucas numbers are generated in the same way Fibonacci numbers
are generated. The only difference is that the first two numbers are
2 and 1 instead of 1 and 1 of the Fibonacci sequence.

@ Note the use of the select statement in an infinite for loop.
® A case clause with SendStatement.

@ The n-th Lucas/Fibonacci number is the sum of (n-1)-th and (n-2)
-th numbers.

® A case clause with ReceiveStatement.

Note the idiomatic use of channels and go routines in
this example. Most modern programming languages
have constructs like generators and coroutines, etc.

o (e.g., the yield statement). Go doesn’t. Go instead uses
channels to accomplish the similar tasks, among other
things. In this example, lucasSequence, for instance,
can be viewed as a generator function.

14.11. Fallthrough Statements

A fallthrough statement transfers control to the first statement of the

126

14.12. Continue Statements

next case (or, default) clause in the expression switch statements. The
fallthrough statement is not permitted in the type switch statements.

In the following example, when x is greater than 100, it prints out three
lines, which are all true statements. When x is greater than 10 but less
than or equal to 100, it prints out two lines. When x is between 1 and
10, it prints out one line, I'm positive.

switch {
case x > 100:
fmt.Println("I'm bigger than 100")
fallthrough
case x > 10:
fmt.Println("I'm bigger than 10")
fallthrough
case x > 0:
fmt.Println("I'm positive")
default:
fmt.Println("I'm NOT positive")

14.12. Continue Statements

A continue statement (without a label argument) begins the next
iteration of the innermost for loop within the same function.

For example,

for i := range lines {
if 1 %2 ==0 {
continue
} else {

println("An odd number")

127

14.13. Break Statements

The continue statement can be used with a label as a target (within the
same function). In such a case, the continue statement transfers
control to the labeled statement with the given label.

14.13. Break Statements

A break statement (without a label argument) terminates execution of
the innermost compound statements, for, switch, or select, within
the same function.

For example,

for i := range lines {
if 1 > 10 {
break
} else {
// the first (up to) 10 lines
println(i)
}
}

The break statement can be used with a label as a target, in which case
it transfers control to the labeled statement with the given label.

14.14. Goto Statements

A goto statement consists of the keyword goto and a label that is
defined elsewhere within the same function. The goto statement
transfers control to the labeled statement with the given label.

func weirdFunc(isWeird bool) {

128

14.15. Defer Statements

if iswWeird {

goto Weird ©)
}
return
Weird:

fmt.println("Something weird happened.") @

@ The goto statement syntactically requires a target label, Weird, in
this example.

@ Note that the label Weird is declared in the scope of the weirdFunc
function.

14.15. Defer Statements

A defer statement comprises:

» The defer keyword, followed by

* A (non-parenthesized) function or method call expression.

func doSomething() {
defer cleanUp()
doHeavyWork()

In this example, the doHeavyWork function is called first, and then
before doSomething returns, cleanUp is called.

As with expression statements, certain builtin functions cannot be used
in the defer statement.

When a defer statement executes in a function, the invocation of the
given function/method is deferred until just before the enclosing

129

14.16. Return Statements
function returns.
More precisely,

« Each time a "defer" statement executes,

o The function value and arguments to the call are evaluated and
saved at the points of the statement execution, and

* Immediately before the enclosing function returns,
o All deferred functions are invoked, in the reverse order they

were deferred, using saved values.

If the deferred function has any return values, then they are discarded.
This behavior is the same as expression statements.

Note that, unlike the deferred function arguments, closed-over
variables are evaluated at the point of the function call, and not at the
point of the defer statement execution.

14.16. Return Statements

A return statement terminates the execution of the enclosing function,
and it returns control to its calling function. The return statement can
optionally provide one or more result values.

14.16.1. Functions without a result type

In a function declared without a result type, a return statement must
not specify any result values.

func noResult() {
return

130

14.17. Go Statements

14.16.2. Functions with a result type

In case of a function declared with a result type(s), the return value(s)
may be explicitly specified in the return statement. For example,

func funcWithResultTypes() (int, int) {
return 2, 10

When the function’s result types specify the names of its parameters,
then the return expression list may be omitted. The result parameters
act as ordinary local variables. The simple return statement (without a
trailing expression list) returns the values of these variables, as
specified in the result parameter list.

func funcWithResultParameters2() (x, y int) {
X, y =0, 100
return @

@ This return statement is equivalent to return x, v.

14.17. Go Statements

A go statement starts the execution of a function call in a separate
goroutine, within the same address space.

Syntactically, the go statement is similar to the defer statement except
that the keyword go is used instead of defer. That is, a go statement
comprises:

* The go keyword, followed by

* A (non-parenthesized) function or method call expression.

131

14.17. Go Statements

For example,

go processSomething()

Goroutines are often used with channels.

132

15.1. The error Interface

Chapter 15. Errors

15.1. The error Interface

Programs may cause errors, during execution, in various parts of the
code.

If a Go function, or a method, encounters an error, or an exceptional
situation, which it cannot handle, it should return some sort of error
indication to the caller.

The caller may be able to handle the error if it has enough contextual
information. Or it may, in turn, decide to return an error indication to
its own caller, through the call chain. By convention, Go functions
typically return errors as one of their return values, often as the last
one.

The Go language includes a predeclared error interface type:

type error interface {
Error() string

Although it is not required, it is generally a good practice to use this
common interface for representing an error condition. In this
convention, the nil error value represents no error. When a non-nil
error is returned, the normal return values are often ignored. When an
error occurs, the function should just return the zero values for the
normal return types.

As an example, a function for reading a file might be declared as
follows:

133

15.2. Run-Time Panics

func Read(f *File, b []byte) (n int, err error) {

// f: File handle
// b: bytes read from the file
// n: the number of bytes read

// err: error
/* Implementation omitted =*/

When a non-nil err is returned, indicating an unexpected/exceptional
condition, the normal return value n, which might be 0, should be
ignored. In such a situation, the err value will describe what went
wrong, which can be examined, e.g., using the error.Error method.

15.2. Run-Time Panics

Execution errors such as attempting to divide a number by 0, or trying
to index an array beyond its legal bounds, trigger a run-time panic. This
is equivalent to calling a builtin function panic with a value of the
Error type from the runtime package.

15.2.1. The builtin panic function

When the error situation is so "severe" that the program execution
cannot continue, we can use the builtin function panic. Calling panic,
in effect, creates a run-time error which will bubble up the call chain
and terminate the program (unless it is handled in some way).

The panic function takes one argument of any type. When the program
terminates, the string value of that argument is printed to the stderr.

15.2.2. The builtin recover function

When the program panics, either through runtime errors or by an
explicit call to the panic function, Go immediately stops execution of

134

15.2. Run-Time Panics

the current function of the current goroutine and begins unwinding the
call stack.

In this process, all deferred functions are called. If any of the deferred
functions, in this call chain, includes a call to the builtin recover
function, then it stops the unwinding process and resumes the normal
execution of the goroutine from that point on. The recover function
returns the argument passed to the original panic.

This concludes the "reference" part of the book.

135

16.1. An Informal Introduction to Generics

Chapter 16. Example Code
(Bonus)

16.1. An Informal Introduction to
Generics

Generics is inherent to the type systems of the statically and strongly
typed languages whether a language officially supports it or not (e.g.,
Go pre-1.18 vs later).

For instance, as we briefly alluded in the earlier chapter, Go’s builtin
collection types, array, slice, map, and chan, are all generic types
regardless of whether we call them such or not.

As an example, let’s consider creating a series of int array types with
the sizes 10, 11, 12, and more.

type intArr10 ... // Type for 10 element int arrays.
type intArrll ... // Type for 11 element int arrays.
type intArr12 ... // Type for 12 element int arrays.
/...

intArrl0, intArrll, and intArri12 are all different and distinct types
in Go, and yet they seem so similar to each other. The only difference is
the number of elements in the array. It will be often too inconvenient to
have to explicitly create a few dozens of, or even just a few, int array
types this way. Go’s builtin array literal syntax supports creating array
types parametrized by their sizes.

type intArr10 [10]int
type intArril [11]int
type intArri2 [12]int

136

16.1. An Informal Introduction to Generics

/l ...

This example is a little bit convoluted, but the point is that we do not
always have to create multiple types like intArr10, intArrill, and
intArri12. Go’s builtin syntax [N]int supports creating this (possibly
infinite) series of related types, e.g., [10]int, [11]int, [1000]int, etc.
(withN == 10,N == 11,N == 1000. etc.). That is generics.

Go allows creating array types with different element types as well.
Syntactically, we can (unofficially) write it as [N]T where T stands for
an arbitrary type. Note that a "generic type" like [100]T is now
parametrized by another type, namely, its element type. (It represents a
set of 100-element array types with their element type T.) Go’s (new)
generic type, or a parameterized type (parametrized by another type),
uses different syntax, but the idea is the same.

A "generic type" defines a set of related (real/concrete) types. Despite
the name, a generic type is not a "real type". It is like a template for
real/concrete types. For example, you cannot use the map type directly
in a Go program. You can only use concrete types like map[int]string.
Go’s built-in "map generic type" can be syntactically denoted as
map[K]V, again unofficially, where K and V represent key and value
types, respectively.

The syntactic difference can be a bit confusing, but unlike the builtin
collection types, Go allows creating a generic type, and a generic
function (that is, a function that uses generic types for its arguments
and/or return values), using the special generic type syntax.

In case of the generic types, a generic type can be created using the
named type definition syntax:

type TypeName[T1 Constraintl, T2 Constraint2, ...] AnotherType

137

16.1. An Informal Introduction to Generics

Here, AnotherType can be a named or anonymous type such as a
struct or interface type, which can depend on the generic type
parameters, e.g., T1, T2, etc.

In case of the generic functions, a function that relies on a generic type
can be created using the generic function declaration syntax:

func FunctionName[T1 Constraintl, T2 Constraint2, ...]
(/* InputParameterList */)
/* ReturnParameterList */

// Function body statement list

In a generic function declaration, the InputParameterList and/or
ReturnParameterList can include generic type parameters, e.g., T1, T2,
etc. in place of the real/concrete types. Likewise, the function body can
use the type parameters as if they are real, concrete types, as long as the
implementation is consistent with their type constraints.

A few things to note:

* A container type is, by definition, a parametrized type. A container
includes elements (of a particular type). Container types are the
simplest, and the most important, use cases of generics.

* The type parameter constraint is always needed in Go’s generics
syntax even if it is just any.

* Note that in the builtin map types, the key values must be
"hashable". This constraint is implicit. On the other hand, if we
define a custom map/dictionary generic type, we can explicitly
specify this requirement (at least in theory).

* Currently, as of Go 1.19, only two interfaces, any and comparable,
are built into the language. It is expected that more interfaces (that
can be used as type constraints) will be included in the standard

138

16.2. A Generic Stack

library in the near future.

* GO’s generics is somewhat limited, in various respects. For example,
you cannot define a generic type that relies on integer values (e.g.,
like the builtin array types).

16.2. A Generic Stack

As an exercise, let’s try and implement a stack. A stack is a container
type that supports two operations, at a minimum:

* A method to add an element to the given container, typically called
add, push, etc., and

* A method to take an element out of the container, typically called
remove, pop, etc.

In addition, the remove/pop operation should remove the elements in
the reverse order that they were added/pushed. This is called FILO, that
is, First In - Last Out, or LIFO, Last In - First Out. This property defines
the stack abstract data type.

A stack can be implemented in many different ways, including using
Go’s builtin slice. In this example, we will use a linked list data
structure, for illustration.

16.2.1. Workspace setup

First, let’s create a go module for our "stack library".

$ mkdir stack-demo &§& cd $_ ©)
$ mkdir stack &§& cd $_ @
$ go mod init gitlab.com/.../stack-demo/stack ®
$ cd .. @

@ stack-demo is our project folder. $_ refers to the last argument

139

16.2. A Generic Stack

used in BASH.
@ The stack library’s module folder.

® The full path is omitted, as indicated by ... The go mod init command
creates a new go.mod file in the current directory.

@ At this point, we are back in the stack-demo directory (under some
unspecified parent folder/path).

Although it is not really necessary for a simple project like this, we will
create a separate module fo the "driver/test" program, e.g., for practice,
and we will use the go workspace to manage these two modules.

$ go mod init gitlab.com/.../stack-demo

$ go mod edit -require \
gitlab.com/.../stack-demo/stackav0.1.0

$ go mod edit -replace \
gitlab.com/.../stack-demo/stack=./stack

$ go work init

©O®e © o0

$ go work use stack
$ go work use .

@ Although a go module roughly corresponds to a directory hierarchy
with the go.mod file in its root/top directory, go modules need not be
created in mutually exclusive locations. For illustration, we are
creating this new module in the parent directory of the stack
module.

@ The go mod edit -require command is used to specify the
module dependencies.

® This is a common practice during the development so that the local
files are used, which are presumably more up-to-date, rather than
the ones already pushed to the remote repository.

@ A go workspace does not have to be created in a particular location,
e.g., relative to its modules, as explained in the beginning of the
book. But the project directory (which includes other modules, for

140

16.2. A Generic Stack

instance) is often a good choice, if feasible. In this example, the
workspace and the driver module are located in the same folder.

® The go work use command is used to add modules to the given
workspace. In this example, we add stack (a relative path under ...
/stack-demo) for the stack library and . (.../stack-demo) for the
driver program.

At this point, the project directory may look like this:

$ tree . ©)

|— go.mod
|— go.work

L— stack
L go.mod

1 directory, 3 files

@ tree is a Unix/Linux shell command that lists contents of directories
in a tree-like format.

The go.work file:

go 1.20

use (
./
./stack ©)

@ Note that it is specified as ./stack, not just as stack. It is beyond the
scope of this book, but just as a note, you will need to pay attention
to this kind of conventions when you use the modern go toolchain. It
should be noted, among other things, that the GOROOT and GOPATH
environment variables are (still) used by the go command.

141

16.2. A Generic Stack

The go.mod file for the driver module:

module gitlab.com/.../stack-demo @
go 1.20
require gitlab.com/.../stack-demo/stack v0.1.0 @

replace gitlab.com/.../stack-demo/stack => ./stack ®

@ ".." is not a valid syntax for the module path/name.

@ This line is the result of running the go mod edit -require command,
as illustrated above. It is not necessary to always use the go
commands. You can manually edit the go.work and go.mod files.

® Ditto. This is the result of running the go mod edit -replace command.

The go.mod file for the stack library module:

module gitlab.com/.../stack-demo/stack

go 1.20

16.2.2. The stack library

Now that we are done with the "administrative" task, let’s start working
on our stack library. First, let’s define a generic stack type.

stack-demo/stack/stack.go

package stack ©)

type Pusher[E any] interface { @
Push(item E)

}

type Popper[E any] interface { ®

142

16.2. A Generic Stack

PopOrError() (E, error)

}

type Stack[E any] interface { @
Pusher[E]
Popper[E]

}

@ By convention, the name of the package for the source files in ...
/stack-demoy/stack is chosen to be stack, the last path segment.

@ This generic Pusher[E any] interface includes one generic function
Push(item E). It is also a convention to name a single-method
interface with the er suffix, e.g., Pusher for Push in this example.

® In Go, unlike in some other languages, it is idiomatic to use many
small interfaces, e.g., rather than (more complete) big interfaces
with many methods. This generic Popper interface includes one
method PopOrError() (E, error).

@ We do not have to define a Stack type. For illustration, we define
Stack as a combination of Pusher and Popper in this example,
using the interface embedding syntax. In fact, we do not even have
to explicitly define Pusher and Popper interfaces in this simple
example. See below.

As stated, a stack type includes push and pop methods.
But, that is not the definition. The LIFO property is

o essential in defining a stack. Note, however, that there
is no simple way to specify this requirement using the
language constructs like interfaces, not just in Go, but
in any other programming languages.

Now let’s implement a linked list [https://en.wikipedia.org/wiki/Linked_list].

143

https://en.wikipedia.org/wiki/Linked_list

16.2. A Generic Stack

stack-demo/stack/node.go

package stack

type node[E any] struct { @
item E
next *node[E] @
}

® A (non-exported) generic struct type named node.

@ A field of a pointer type that points to the "next node", if any.
stack-demo/stack/linked-list.go

package stack

type list[E any] struct { @
head *node[E]

t

func newList[E any]() *list[E] { @
return §list[E]{

head: nil, ®

}

t

func (1 *list[E]) addToHead(n #*nodel[E]) { ®
n.next = 1l.head

l.head = n
}
func (1 *1ist[E]) removeHead() (n #*node[E]) {
n = l.head
if n == nil { ®
return
}
l.head = 1.head.next
return

144

16.2. A Generic Stack

}

@ A separate type for a linked list is not generally needed. One can just
use node for a linked list.

@ A function that returns an instance of a type is often called "
constructors”. They are conventionally named as "New" or some
phrase that starts with "New" such as NewRocket (e.g., for a type
named Rocket).

® The zero value of a pointer type (e.g., *node[E] in this example) is
nil. We use nil to represent "no head"”, or "no node" more
generally.

@ A (singly) linked list type supports two main operations, among
others. Adding a node to the head of the list, and removing the head
node and resetting the head, called addToHead and removeHead in
this example, respectively.

® We just return a nil value when there is no head node to remove.
This is just one API design. We could have used an extra return value
of the error interface type, for instance, to indicate the empty list
situation.

Now let’s create a type that "implements the Stack interface", using the
linkedList data structure that we just created.

stack-demo/stack/liststack.go

package stack

import (
"errors"
"fmt"

)

type ListStack[E any] struct { @
*1ist[E]

145

func New[E any]() =*ListStack[E] {
s := ListStack[E]{
list: newList[EI(),
}
return §&s

}

func (s xListStack[E]) Push(item E) {
n := nodel[E]{
item: item,
}
s.addToHead(&n)
}

func (s xListStack[E]) PopOrError()
(E, error) {

n := s.removeHead()
if n == nil {
var e E

@

®

®

return e, errors.New("Empty list")

}

return n.item, nil

16.2. A Generic Stack

(@ We call this generic type ListStack, an arbitrary name.

@ A constructor function, for illustration. Constructor functions are not
normally needed for simple types. One can just use the composite

literal syntax to create a new value.

® Note the "generic method" syntax. The type parameter (e.g., E in this
example) is associated with the method receiver (e.g., s for the

*xListStack[E] type in this example).

@ The same with the PopOrError method. Note that the Pusher's
PopOrError method return an "error" when the stack is empty.

® It should be noted that Go does not (yet) have a syntax for creating
the default or zero value for a type. This var declaration statement

146

16.2. A Generic Stack

initializes the variable e with the zero value of type E (whatever the
concrete type happens to be). We just use this e variable for a
placeholder when we return an error.

Note that there is no reference of Pusher or Popper interfaces in this
code. Go is rather unique in this regards. As explained earlier, a type
implicitly implements an interface, by implementing relevant methods.

In this example, we did not even have to define explicit Pusher and
Popper interfaces to define a type that implements these (possibly non-
existing, implicit) interfaces. An explicit interface definition is needed
when we use the type that implements the interface, e.g., as a function
parameter, etc. For instance,

func PushToStack[E any](s Pusher[E], items ...E) { ©)
for _, e := range items {
s.Push(e) @

@ An explicit interface is needed here. Note that we just use
Pusher[E] instead of Stack[E]...

@ because the Push method is all that we need for the implementation
of this function, PushToStack. Note that, in this example, the type
parameter can be inferred and we do not have to write it as
s.Push[E](e).

Just as a side note, this function can also be declared as follows:

func PushToStack[E any, S Pusher[E]](s S, items ...E) {
// ...

Although these two function declarations are (obviously) different, they

147

16.2. A Generic Stack

are nonetheless roughly equivalent. This is generally true for basic
interfaces. They can be used as generic function type parameter
constraints or simply as function parameters, with more or less the
same effect. Are the two usages really equivalent? Is there a reason why
you would prefer one form to another? If so, in what situations? We will
leave this to the reader as something to think about while
learning/programming in Go. (Hint: There are no "correct" answers.)

Another exercise, if you will, is to write a unit test for this
ListStack[E] type. You can refer to the official doc, Go testing package
[https://pkg.go.dev/testing], if you are new to unit testing in Go.

16.2.3. The driver program
Finally, here’s the main function for simple testing:
stack-demo/main.go

package main

import (
11] fmt 11]

"gitlab.com/.../stack-demo/stack"

)

func main() {
1Stack := stack.New[int]() @
1Stack.Push(1) @

1Stack.Push(2)
1Stack.Push(3)
fmt.Printf("Original Stack = %s\n", 1Stack) ®

for { @
if item, err := 1Stack.PopOrError(); err == nil { ®
fmt.Printf("Popped Item = %v\n", item)
fmt.Printf("Current Stack = %s\n", 1Stack)

148

https://pkg.go.dev/testing

16.3. Exercises

} else {
break ®

@ Since the type parameter cannot be inferred in this case (e.g., no
initial values), it needs to be explicitly specified. In this example, we
are creating a stack of int elements. That is, the type of 1Stack is
xListStack[int].

@ Now that we can only push the elements of the int type to this stack,
the type parameter need not be specified.

® For the print functions to work effectively, ListStack[E], or its
pointer type, will need to implement the fmt.Stringer interface.
We will leave it as an exercise.

@ The infinite for loop.

® The if statement. Note the simple statement before the Boolean
condition.

® The break statement. If the stack becomes empty, we stop the for
loop.

16.3. Exercises
1. Implement a generic sorting function, e.g.,, using the quick-sort
algorithm.

2. Create a generic queue type. A queue is a collection with the FIFO
requirement, First-In First-Out.

3. Create a generic "sorted list" type, which supports adding/removing
elements, and (zero-based) indexing. Indexing the n'th element
returns the n'th "smallest" element, if any.

4. Implement a generic binary tree data structure. A binary tree

149

16.3. Exercises
consists of a root node and its children (and, their children, etc.).
Each node can have up to 2 children.

5. Implement a generic multi-map. A multi-map is a map/dictionary
type in which there can be more than one elements with the same
key.

150

A. How to Use This Book

Tell me and I forget. Teach me and I remember.
Involve me and I learn.

The books in this "Mini Reference" series are written for a wide
audience. It means that some readers will find this particular book "too
easy" and some readers will find this book "too difficult", depending on
their prior experience related to programming. That’s quite all right.
Different readers will get different things out of this book. At the end of
the day, learning is a skill, which we all can learn to get better at. Here
are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some
typos. We go through multiple revisions, and every time we do that
there is a finite chance to introduce new errors. We know that some
people have strong opinions on this, but you should get over it. Even
after spending millions of dollars, a rocket launch can go wrong. All
non-trivial software have some amount of bugs.

Although it’s a cliche, there are two kinds of people in this world. Some
see a "glass half full". Some see a "glass half empty". This book has a lot
to offer. As a general note, we encourage the readers to view the world
as "half full" rather than to focus too much on negative things. Despite
some (small) possible errors, and formatting issues, you will get a lot
out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several
years ago, and it became an instant best seller. There are now many
similar books, copycats, published since then. The book is written for
"laypeople”, and illustrate how computer science concepts like specific
algorithms can be useful in everyday life.

151

Inspired by this, we have some concrete suggestions on how to best
read this book. This is one suggestion which you can take into account
while using this book. As stated, ultimately, whatever works for you is
the best way for you.

Most of the readers reading this book should be familiar with some
basic algorithm concepts. When you do a graph search, there are two
major ways to traverse all the nodes in a graph. One is called the "depth
first search”, and the other is called the "breadth first search". At the
risk of oversimplifying, when you read a tutorial style book, you go
through the book from beginning to end. Note that the book content is
generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially
often corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are
written to cover broad and wide range of topics, and which have many
interdependencies among the topics, it is often best to adopt the breadth
first traversal.

This advice should be especially useful to new-comers to the language.
The core concepts of any (non-trivial) programming language are all
interconnected. That’s the way it is. When you read an earlier part of
the book, which may depend on the concepts explained later in the
book, you can either ignore the things you don’t understand and move
on, or you can flip through the book to go back and forth. It’s up to you.
One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

The best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get
the high-level concepts. At each iteration, you try to get more and more
details. It is really up to you, and only you can tell, as to how many
passes would be required to get much of what this book has to offer.

Again, good luck!

152

Index

@

1,105

1=,105

"defer" statement, 130
"zero values", 22

A

access controls, 41
addition operators, 103
Additive operators, 102
address, 47

"zero", 22 address operator, 106

%, 104 Address Operators, 106

g, 104 address space, 131

&6, 105 Addressable, 111

&",104 addressable, 89

*, 103 addressable array, 89

*T, 48 Addressable Expressions, 89
+,103 addressable struct, 89

+ operator, 104 alias, 56, 65

+= assignment statement, 104 alias declaration, 51-52

-, 103 Alias declarations, 51
/,103 alias declarations, 51-53

= operator, 46 alias for the type, 51

<, 105 aliasto interface{}, 56
<<, 104 allowed types, 55

<=, 105 angular braces, 71
-=,104-105 anonymous function, 83-84, 88
5,105 anonymous interface
>=,105 definition, 55
>>,104 anonymous map type, 65
A 104 anonymous slice type, 62
1,104 anonymous struct type, 71
11,105 anonymous type, 53, 71

.. parameters, 99 any, 56,138

... Syntas, 63 any and comparable, 138

append function, 63-64

153

arguments, 98

Arithmetic Operators, 103

Arithmetic operators, 103

array, 91, 94, 96

array composite literal, 60

array indexing operation, 89

Array literal, 60

array literal, 61-62, 91-92

array type, 59-60

Array Types, 59

array types, 62, 136-137

assertion, 101

assignment, 58, 92-94, 109-111

assignment operations, 110

assignment operator, 109-110

assignment operators, 110

assignment or initialization, 101, 107

assignment statement, 66, 92, 110-
111, 119, 125

assignment statements, 109, 112

Assignments, 109

asterisk symbol, 36

B

back quote, 37

back quotes, 37

backslash, 35

backslash escapes, 37

base name, 16

base type, 70, 85-87

base type of the pointer, 70
base type of the receiver, 87
base type variables, 70
basic interface, 74, 79

basic interface, 77

basic interface type, 73, 77

basic interface types, 77

Basic Interfaces, 77

basic interfaces, 78, 148

bell character, 36

bidirectional, 68

bidirectional channels, 68

binary comparison operator, 104

Binary conditional AND, 105

Binary conditional OR, 105

binary integer literal, 33

binary logical operator, 105

Binary operators, 101-103

binary operators, 102

binary tree, 149

Bit clear, 104

Bitwise AND, 104

bitwise logical, 104

Bitwise OR, 104

Bitwise XOR, 104

Blank Identifier, 40

blank identifier, 18, 40-41, 55, 85, 95,
101, 110-111

block, 38-39, 81, 109, 117

block comment, 31

Block comments, 31

block of statements, 114, 116

block of the for statement, 119

block scoped, 40

Blocks, 39

blocks, 39

body of the method, 85

bool type, 74

154

Boolean condition, 117-118, 149
boolean constants, 43

Boolean expression, 114-115
boolean truth values, 43
boolean type, 57

Boolean types, 57

Boolean value, 118

boolean values, 90, 105
brackets, 54, 82

branches of execution, 120
break statement, 128

Break Statements, 128

buffer, 69

build time, 45

building Go programs, 23
built-in function close, 69
built-in function len, 59
built-in function make, 68
built-in make function, 65
builtin array literal syntax, 136
builtin array types, 139

builtin collection types, 59, 137
builtin delete function, 67
builtin function, 48

builtin function append, 63
builtin function make, 63
builtin function panic, 134
builtin int type, 79

builtin 1en function, 64

Builtin make Function, 48
Builtin new Function, 47
builtin panic function, 134
builtin recover function, 134-135
builtin slice, 139

155

builtin type literals, 33
builtin types, 21, 87

C

C++-Style Line Comments, 31
C++-style line comments, 26
C-Style Block Comments, 31
C-style languages, 31, 39, 118
C-style programming languages, 111
call chain, 133-135

call expression, 98

call stack, 135

calling function, 99, 130
capacity, 48, 61, 63-64, 68-69, 99
capacity hint, 65

capacity of the slice, 61

case clause, 121, 123, 126

case clause, 122

case expressions, 121

cases, 120

cases, 121, 124

chan, 59

chan T, 106

chan type, 68, 113

channel, 67-69, 106-107, 113, 119
Channel capacity, 68

channel direction, 68, 106, 113
channel operations, 124
Channel Types, 67

channels, 68, 126, 132
channel’s capacity, 69
channel’s element type, 113
character sequence, 31
character sequences, 33, 37

characters, 33

closed channel, 69

closed-over variables, 84, 130
closure, 84

closures, 83

collection, 70, 149

collection type, 68

colon, 115

command line arguments, 20
Comments, 31

comments, 31

communication case clause, 124
communication operations, 124
comparable, 56, 86
comparable, 56, 105
comparable, 105

comparable and any, 86
comparable interface, 56, 65
Comparison of pointer, 105
Comparison operators, 104
comparison operators, 65, 103
compile time, 21, 90

compile type, 49

compiler, 21

complex, 103

complex number expression, 35
complex number types, 100
composite literal, 47

composite literal syntax, 66, 146
Composite Literals, 91
Composite literals, 91
composite literals, 61
composite statement, 115
composite type, 59, 64

composite type literals, 49
composite types, 22, 61
compound statement, 114, 125
compound statements, 128
concrete type, 54, 147

concrete type argument, 55
concrete types, 137-138
concurrently executing, 67
conditional expression, 114-116
consecutive memory space, 60
consecutive space in memory, 59
constant, 38, 89

constant comparison, 90
constant declaration, 42-43
Constant Declarations, 42
Constant declarations, 38
constant expression, 60
Constant expression conversions, 100
Constant Expressions, 90
Constant expressions, 90-91
constant expressions, 21, 33, 42-43
constant operands, 90

constant value, 91

Constants, 21, 43, 90

constants, 21, 42

constructor function, 146
Constructor functions, 146
constructors, 145

container type, 138-139
Container types, 138
contiguous segment, 61
continue statement, 127-128
Continue Statements, 127
conversion, 100

156

conversion expression, 100
Conversion of constant values, 100
Conversions, 91, 100

Converting, 91

coroutines, 126

corresponding key, 92
corresponding pointer type, 50
curly braces, 39, 73

current directory, 140

D

data structure, 149

decimal, 34

decimal floating point literal, 34-35
decimal integer literals, 34
decimal point, 34

decimals, 34

declaration, 15, 40, 45, 62
declaration statement, 40, 47
Declarations, 38

decrement, 112

decrement statement, 111-112
default case, 121

default case, 122, 125
default case clause, 122
default package name, 15
default types, 43

default value, 97

default values, 22, 95-96
defer keyword, 129

defer statement, 129, 131
defer statement execution, 130
Defer Statements, 129
deferred function, 130

157

deferred function arguments, 130
deferred functions, 130, 135
defined type, 52

defined type, 52

defined types, 58

defined types, 100

Deleting elements, 67
dependency management, 25
dependency requirement, 25
dependency requirements, 25
dependent packages, 20
Difference, 103

digits, 33-34

dollar symbol, 36

dot notation, 97

double quotes, 37

dynamic key type, 65
dynamic type, 45, 73, 100

E

eceive operation, 106

element, 92

element type, 59-62, 64, 67-68, 137
elements of an array, 59-60

else block, 114

else clause, 115

embedded field, 72

Embedded Fields, 71

Embedded interface elements, 74
embedded interface syntax, 75
embedding, 70

empty interface, 75, 77

empty map, 66, 92

empty map value, 65

empty method set, 50
empty statement, 109
Empty statements, 109
empty statements, 109
empty struct type, 71, 87
empty struct types, 87
enclosing curly braces, 39
enclosing function, 84, 129-130
end of slice, 63
environment variable, 26
environment variables, 20, 141
Equal to, 104

equality operators, 105

err value, 134

error, 133

error condition, 133

error indication, 133

error Interface, 133

error interface type, 133, 145
error situation, 134

Error type, 134
error.Error method, 134
errors, 133

escape sequence, 35
evaluation, 106

exceptional situation, 133
executable Go program, 20
executable go program, 19
Execution errors, 134
execution of a program, 108
existing array or slice, 62
explicit conversion, 100
Explicit conversions, 58
explicit initialization, 22

explicit interface definition, 147
exponent part, 34

exported, 41, 86

exported function declaration, 17
exported identifier, 17

Exported identifiers, 41

exported names, 18

Exporting Identifiers, 41
expression, 41, 45, 89, 96
expression list, 110

expression statement, 125
Expression Statements, 113
expression statements, 129-130
Expression switch, 121
expression switch, 121-123
expression switch statement, 122
expression switch statements, 127
Expression switches, 121
expression switches, 121

expressions, 42, 45, 90, 101, 110, 113

F

fallthrough statement, 126-127
Fallthrough Statements, 126
Fibonacci number, 94
Fibonacci numbers, 126
Fibonacci sequence, 84, 94, 126
field, 71, 98

field declaration, 72

field declarations, 71

field initializers, 47

field name, 71-72, 92

Field names, 70

field names, 71

158

field or method, 97

field selector, 89, 97

field selector expression, 98
fields, 70

FIFO, 149

FIFO queue, 68

file and package blocks, 38
file block, 17, 39-40

file names, 15

file system, 14

file tree, 25

FILO, 139

final terminating statement, 82
First In - Last Out, 139

first index, 97

first operand, 103

First-In First-Out, 149
float6s4 type, 46

floating point literal, 34
floating point literals, 34
floating-point, 103
floating-point literal, 34
Floating-point literals, 34
floating-point number constant, 34
fmt.Stringer interface, 149
for - range statement, 67

for clause, 116, 118

for clause for statement, 118
for loop, 119, 127, 149

for statement, 116-117

For Statements, 116

for statements, 116, 118

For statements with for, 118
For statements with range, 119

159

For statements with single condition,

117
formal grammar, 31
fractional part, 34
func keyword, 81
function, 38, 40, 80-81, 89, 99
Function and Method Calls, 98
Function and method declarations,
38
Function argument, 90
function arguments, 20
function block, 46
function body, 40, 54, 81, 138
function body block, 81
function body’s statement list, 82
function call, 21, 98-99, 130-131
function call syntax, 88
Function calls, 113
function declaration, 45, 81-82, 86
function declaration syntax, 138
Function Declarations, 81
Function declarations, 38
function declarations, 85, 147
function definition, 39-40
function definitions, 54
function execution, 99
function literal, 45, 83-84
Function Literals, 83
Function literals, 83
function name, 54, 81-82
function or method call, 129, 131
function parameter, 40, 147
function parameter list, 54
function parameters, 148

function parameters and results, 45
function return value type, 54
function signature, 63, 80-81, 88
function signature, 80

function type, 80-81, 98

Function Types, 80

function types, 105

function value and arguments, 99
function with a receiver, 85
functions, 89

functions and methods, 80
Functions with a result type, 131
Functions without a result type, 130
function’s arguments, 82

function’s result types, 131
function’s signature, 82

G

general interface, 73

General Interfaces, 78

generator function, 126

generators, 126

generic, 138

generic binary tree, 149

generic definitions, 57

generic function, 63, 89, 137, 143

generic function, 82

generic function declaration, 138

generic function type parameter
constraints, 148

Generic Functions, 82

Generic functions, 82

generic functions, 138

generic interface types, 74

generic method, 146

generic multi-map, 150
generic queue type, 149
generic sorting function, 149
Generic Stack, 139

generic stack type, 142
generic struct type, 50, 144
Generic structs, 72

generic type, 50, 53, 86, 137-139, 146
generic type constraint, 55
Generic type constraints, 82
generic type constraints, 78-79
generic type or function, 55
generic type parameter, 55, 73
generic type parameter list, 54
generic type parameters, 138
generic type syntax, 59, 137
generic type with structs, 72
Generic Types, 49

Generic types, 53

generic types, 53, 59, 136-137
Generics, 136

generics, 137-138

go build command, 25

go Command, 23
go command, 23, 26, 28-29, 141

go commands, 27

go commands, 142

go directive, 28

go doc command, 31

Go function, 133
Go functions, 133
Go grammar, 39

go help command, 24

160

Go interfaces, 78

go keyword, 131

Go language, 32, 49, 133
Go language specification, 18, 25
go mod command, 25

Go Module, 25

go module, 25, 139-140

Go modules, 25

go modules, 25

go modules, 140

Go package, 14, 38

Go package, 14

Go packages, 14

Go program, 14, 19-20, 32, 38, 137
Go programs, 14, 31

go routines, 126

Go source code, 31

Go source files, 29, 31

Go source text, 39

go statement, 131

Go Statements, 131

Go version, 28

go work command, 27

Go Workspace, 26

go workspace, 27, 30, 140
go workspaces, 25

go.mod file, 25-27, 140, 142
go.mod files, 27

go.mod files, 29

go.work and go.mod files, 142
go.work file, 26-27, 141
go.work file, 30

GOPATH, 141

GOROOT, 141

161

goroutine, 131, 135

Goroutines, 132

goto statement, 128-129

Goto Statements, 128

Go’s builtin collection types, 136
Go’s generics, 79, 139

Go’s generics syntax, 138
Greater than, 105

Greater than or equal to, 105

H
hexadecimal digits, 36

hexadecimal floating point literal, 34-

35
hexadecimal integer literal, 34
hexadecimal notations, 34
hexadecimal prefix, 34
hexadecimals, 34
highest precedence, 102

I

identical underlying types, 100
identifier, 31-32, 38-39, 85, 97
identifier-expression lists, 43
Identifiers, 32, 46

identifiers, 32, 40, 42, 45
Identifiers in a package, 41
if block, 114

if clause, 114

if keyword, 114

if statement, 114-116

If Statements, 114

imaginary literal, 35
Imaginary literals, 35

imaginary number constant, 35
imaginary number literal, 35
immutable, 59

implement an interface, 76
Implementing Interfaces, 76
implements an interface, 76
implicit block, 39

import declaration, 16-18
import declaration, 17

import declaration syntax, 18
import declarations, 14, 16, 19
import path, 16, 18, 25

import path, 16

import path strings, 18
import specification, 16
import specifications, 16, 25, 29
import specifications, 17
import statements, 38
imported package, 16
imported package, 16-18, 38
imported package name, 17
imported packages, 16, 18, 20, 22
imported source files, 17
importing source file, 16-18
increment, 112

Increment - Decrement, 111
increment statement, 111-112
Index, 90

index, 92, 95

index, 94

index expression, 66, 93-95
Index Expressions, 93

index notation, 66

Indexing, 60, 66

indexing, 149

Indexing and slicing, 60
indices, 96

infinite for loop, 126

Infinite for loops, 117

init function, 23

init functions, 23

initial capacity, 66

initial value, 45, 47

initial values, 21, 46
Initialization, 21

initialization, 18, 22, 111
initialization or assignment, 94
initializations, 23

inner block, 38

inner declaration, 38
innermost containing block, 40
input parameter, 80

input slice, 64

instantiated function, 89

int array, 61

int array types, 136

int slice, 62

int type, 60

integer, 103

integer constant, 33

integer constants, 34

integer indices, 59-61

integer literal, 33

Integer literals, 33

integer literals, 34

integer or floating point types, 100
integer or floating-point values, 90
interface, 45, 55, 74-75, 77,79, 124

162

interface, 55, 73, 138
interface declaration, 75, 78
interface element, 73

interface elements, 73

interface elements, 75, 78
Interface embedding, 74
interface embedding syntax, 143
interface type, 56, 65, 73, 75-77, 100
Interface Types, 73

Interface types, 56

interface values, 105

Interfaces, 78

interfaces, 50, 75, 77

internal bytes of a string, 59
Interpreted string literals, 36-37
Tota, 43

iota, 43-44

iterable type, 119

iteration, 116

iteration condition, 116
iteration values, 119

iteration variables, 119

K

key, 92

key, 94

key and element types, 65
key type, 64-65

key type of a map, 65

Key types, 65

key values, 138

key-value pairs, 66
keyword else, 114
keyword func, 80

163

keyword go, 131
keyword goto, 128
keyword import, 16
keyword interface, 73
keyword package, 15
keyword struct, 71
keyword type, 51
Keywords, 32
keywords, 31-32

L

label, 38, 115-116, 128-129

label argument, 127-128

label declarations, 39

Label Scopes, 40

labeled statement, 40, 115-116, 128
Labeled statements, 115

Labels, 40

labels, 40

language specification, 15, 23
Last In - First Out, 139

last path segment, 17

Left shift, 104

left-hand channel expression, 113
left-hand expression, 110, 112
left-hand side operand, 111
length, 48, 60-61, 63-64, 96, 99
length and capacity, 63

length of an array type, 60

length of the array, 60

length of the array literal, 61
length of the string, 59

length of the underlying array, 61
Less than, 105

Less than or equal to, 105
letter, 32

letters and digits, 32
lexical order, 15

lexical tokens, 32

lexically scoped, 39

LIFO, 139

line comment, 31

linked list, 145

linked list data structure, 50, 139
linked list type, 145
linkedList data structure, 145
list of expressions, 109
literal, 37, 89, 91

Literal constants, 43
literal syntax, 92

literal types, 33

Literals, 33

local file system, 29

local files, 140

local packages, 18

local variables, 46, 131
Logical Operators, 105
Logical operators, 102, 105
logical values, 57

Lucas numbers, 126

M

main function, 20

main function, 21, 148

main function invocation, 20
main functions, 20

main modules, 26-27

main package, 20-21, 29-30

main package, 29
main.go, 21

main.go file, 29

make function, 48, 63, 65
make(T, args), 48

map, 59, 64, 66

Map construction, 65
map index expression, 111
map indexing, 94

map literal, 92-93

Map literals, 66

map type, 64

map type, 65, 137

Map Types, 64

map value, 92-93

maps, 94

matching curly braces, 91
method, 38, 85, 87, 98
method call, 98

method call syntax, 88
Method calls, 113

method declaration, 53, 85-87
Method Declarations, 85
Method declarations, 38
method declarations, 81
Method expressions, 90
method invocation, 98
method name, 85, 87
method receiver, 40, 146
method selector, 97
method selector expression, 98
method set, 50, 71, 77-78
method set of a type, 50

method set of an interface type, 50

164

Method Sets, 50

method sets, 75

method specification, 73, 75
method syntax, 85

methods, 87

mian function, 20

missing switch expression, 122
modern go toolchain, 141
module, 25

module dependencies, 140
module directive, 28

module folder, 140

module path, 25, 28-29
module paths, 29

module resolution, 26
modules, 25

Modules and workspaces, 25
Multi-dimensional arrays, 61
multi-dimensional arrays, 61
multi-map, 150

multiple source files, 15
Multiplication operators, 102
Multiplicative operators, 102

N

named boolean type, 57
named empty struct type, 71
named interface types, 74
named new type, 53

named struct type, 71
named type, 49, 52, 60
named type declaration, 49

named type definition syntax, 137

namespace, 87

165

nested function, 40

new, 47

new array, 62

new channel value, 68

new map, 93

new named chan type, 68

new slice, 62, 96, 99

new type name, 54

new underlying array, 64

new values, 91

new(T), 47-48

newline, 37

newline character, 36

newlines, 35

nil, 105

nil channel blocks, 106

nil error value, 133

nitl slice value, 48

no-op statement, 18

non-blank field names, 70

non-blank identifier, 38, 47, 89

non-blank) identifier, 38

non-consecutive underscores, 34

non-constant value, 100

non-empty channel, 69

non-empty interface type, 75

non-interface type, 49-50, 56, 70, 72-
73, 75-76, 78, 124

non-interface types, 56, 73, 75, 77

non-label identifiers, 40

non-negative, 60

non-nil err, 134

non-pointer type, 70

Not equal to, 105

number of elements, 60-61, 91
numeric constants, 43
numeric operands, 111
Numeric types, 57

numeric types, 58

numeric values, 103

(0)

octal digits, 36

octal integer literal, 34
octal number, 36

one expression, 110

one or more packages, 14
operand, 89, 105-106
operand expression, 112
operand name, 89
Operands, 89

operands, 89, 101, 103
operating system, 19-20
Operator precedence, 102
operator precedence, 103
Operators, 101

operators, 33, 89, 111
Operators and Punctuation, 33
operators and punctuation, 32
order, 70

ordered, 105

Ordered interface, 82
ordering operators, 105
orders, 71

P

package, 14-15, 19, 22-23
package, 15

package block, 17, 39-41
package clause, 14-15, 18
package clause, 15-17, 38
package directory path, 17
package doc comments, 31
Package initialization, 22

package initialization process, 23

package level, 40

package level variable, 23
package name, 15

package name, 15-17, 20, 97
package name alias, 18
package to be imported, 16
package-level variables, 22
Package-scope variables, 23
package’s name, 18

pair of curly braces, 39
panic function, 134

parameter and return value names,

80
parameter list, 80
parameter name, 99
parameter of a function, 99
parameter type, 98
parameter types, 80
parameterized type, 137
parameterized types, 49
parameters, 99
parametrized type, 138
parent directory, 26
parentheses, 17
parenthesized expression, 89
passed by value, 99
Passing arguments, 99

166

permissible key types, 65
placeholder identifiers, 55
pointer, 47-48, 69, 94, 106
pointer base types, 100
Pointer indirection, 89
pointer or interface type, 70
pointer to array, 95-96
pointer type, 69-70, 72, 98, 144-145
Pointer Types, 69

pointer types, 100

Pointers, 70

pointers, 69

precedence levels, 102
predeclared, 65, 133
predeclared constants, 43
predeclared identifier, 39, 43
predeclared identifier iota, 43
predeclared interface, 56
predeclared name any, 56
predeclared named types, 56
predeclared numeric types, 58
predeclared type aliases, 58
predeclared type error, 57
Predeclared Types, 56
predeclared types, 49
predefined numeric types, 57
predefined string type, 58
primary expression, 97
Primary Expressions, 90
Primary expressions, 90
primary expressions, 90
Product, 103

program documentation, 31
Program Execution, 20

167

Program execution, 20

program execution, 39, 134
program exit code, 20

program initialization process, 15
Programs, 133

program’s source code, 16
project directory, 140

project folder, 139

punctuation, 33

Q

qualified identifiers, 97
queue, 149

queue data structure, 69
quick-sort algorithm, 149
Quotient, 103

R

range, 96

range clause, 116

range clause for statement, 119
range expression, 119

raw string literal, 37

Raw string literals, 36-37
receive expression, 106-107
receive operation, 107, 113, 125
Receive operations, 113
receive operations, 106, 119
Receive Operator, 106

Receive operator in assignments, 107

received value, 107
receiver, 50, 86, 88, 98
receiver base type, 86-87
receiver parameter, 86

receiver specification, 53
receiver type, 50, 87, 98
receiver type constraint, 86
receiver type of a method, 55
receivers, 50

receiver’s base type definition, 86
receiver’s type, 87

receiver’s value, 85

recover function, 135
redeclaration, 47

redeclared, 46

reference semantics, 70
regular assignment operator, 46
regular identifier, 40

related constants, 43

related Go packages, 25
related packages, 25
Relational operators, 102
Remainder, 104

remote git repositories, 29
remote repository, 140
remote source code repository, 18
repeated execution, 116
replace directive, 29
replace directives, 30
require directive, 29

result parameter list, 131
result parameters, 82, 131
result type, 98, 130

result types, 80

result values, 130

resulting slice, 64

return expression list, 131
return parameters, 99

return statement, 130-131
Return Statements, 130
return value, 101

return value types, 80
return values, 130

return variable, 40

Right shift, 104

right-hand expression, 110, 113
root directory, 25, 29

root node, 150

run time, 45, 65, 73
run-time error, 134
run-time panic, 65, 101, 106, 134
Run-Time Panics, 134
rune, 35

rune literal, 35-36

Rune literals, 35

rune literals, 37

runnable program, 20
runtime errors, 134
runtime package, 134
runtime panic, 101
runtime type, 124

S

scope, 38-40

scope of a constant, 40

scope of a type identifier, 40

scope of an identifier, 39-40

scope of an imported package name,
40

Scoping, 39

scoping, 40

select statement, 124-126

168

Select Statements, 124 single-statement blocks, 39

Selector, 90 single-valued expression, 98
selector expression, 97 size of a channel, 68
Selectors, 97 Slice, 90

selectors, 87 slice, 59

semantic version, 25 slice, 61, 92, 95-97
semicolon, 32, 109, 115, 118 Slice construction, 62
Semicolons, 31 slice expression, 96-97
semicolons, 31, 52,118 Slice Expressions, 95
semicolons ;, 31 Slice expressions, 62, 95
send operation, 107 slice expressions, 96

send operations, 113 Slice indexing operation, 89
send statement, 113 slice literal, 62, 92, 96

send statement, 125 Slice literals, 62

Send Statements, 113 slice of bytes or runes, 100
sequence of bytes, 58-59 slice structure, 48
sequence of fields, 71 slice type, 61-62

sequence of runes, 59 Slice Types, 61

sequences of digits, 34 Slice types, 61

set of permissible types, 55 Slices, 96

shadowing, 38 slices, 62

shift operators, 104 slices, maps, and channels, 48
short, 119, 125 slice’s capacity, 97

short circuiting, 105 slicing, 96

short multi-variable declaration, 46 slicing operation, 95

short variable, 47, 62, 123 sorted list, 149

short variable declaration, 46-47 source code, 39

Short Variable Declarations, 46 source code file, 39

side effects, 18 source code files, 14, 22-23
simple statement, 109, 115, 121, 149 source code sharing, 25
simple statements, 108 source directory path, 16
simple statements, 118 source file, 14-16, 18, 21, 38
single quotes, 35 source file only, 15
single-method interface, 143 source file scope, 15

169

Source files, 14

source files, 14-16, 20, 29
source files in a directory, 17
source files of a package, 14
source files of a package, 15
source text, 39

special entry function, 19
special main package, 19
specified range, 96

square brackets, 55, 60, 62, 92
stack, 139

stack abstract data type, 139
stack frame, 84

stack library, 142

stack library, 139

standard arithmetic operators, 103
standard go build tool chain, 18
standard go toolchain, 15
statement, 115

statement context, 113
Statements, 39, 108
statements, 31, 103
statements in Go, 108

static type, 45, 49, 73, 100
string, 36, 100

String addition, 104

String concatenation, 104
string concatenation, 59
string constants, 43

string literal, 31

string literal syntax, 59
string literal tag, 72

String literals, 36

string literals, 36

String method, 79
string slice expressions, 96
string type, 100
String types, 58
string value, 58
string values, 58
Strings, 104

strings, 90

struct, 70, 138
struct definition, 54
struct literal, 92
Struct tags, 100
struct type, 47, 71
Struct Types, 70
struct types, 100
struct with no fields, 71
structs, 71
substring, 95
Substrings, 95
successive digits, 34
Sum, 103

surrounding function, 83-84
switch expression, 120-121, 123
switch expression, 121, 123
switch or select statement, 39
switch statement, 120, 122, 124

Switch Statements, 120

switch statements, 121, 125

syntactic error, 40

syntax, 46, 59, 85, 96-97, 121, 123-124

syntax of interface, 78
syntax ~T, 73

170

T

T itself, 73

Tags, 72

terminating statement, 82

the element type of the
channel, 106

tilde symbol, 73

token .., 80

Tokens, 32

top level declarations, 38

Top-Level Declarations, 38

top-level declarations, 15, 38,
81

top-level package scope, 38

top-level statements, 19

true and false, 57

type, 38, 45, 77, 87, 94, 99

type, 49

type *T, 47

type alias declaration, 51

type and value, 94

type arguments, 89

Type assertion, 90

type assertion, 100-101

Type Assertions, 100

type assertions, 101, 124

Type assertions in assignments,
101

type comparable, 56

type constraint, 55-56

type constraint interface, 51

Type constraints, 55

type constraints, 54, 86, 138

Type conversion, 90

171

type declaration, 51

type declaration statement, 40

Type Declarations, 51

type declarations, 39, 51

type definition, 51-53, 68, 71, 74

Type definitions, 52

type definitions, 54

type keyword, 51-52

type name, 49, 72-73, 91

type of identifiers, 42

type parameter, 49-50, 54-56,
82,147, 149

type parameter constraint, 86,
138

type parameter inference, 83

Type Parameter Lists, 53

type parameter names, 55

type parameter T, 63

type parameters, 53-55, 82, 86,
138

type sef, 77

type set, 56, 73-78, 82

type set of any, 77

Type Sets, 75

type sets, 75-76, 78

type specifications, 46

Type switch, 121

type switch, 123

type switch expression, 123

type switch statements, 127

Type switches, 123

type switches, 121

type systems, 136

Type/Interface declarations, 38

typed constant, 91

typed or untyped, 43

typed variable, 43

Types, 49

types and functions, 73

types of values or variables, 77

U

unary and binary operators, 90
unary logical expression, 105
Unary NOT, 105
Unary operators, 101-102
unary operators, 102
unary or binary operators, 101
unary receive operator, 106
unbuffered channel, 69
underlying array, 61, 63-64, 99
underlying type, 51-52, 73-74, 76
underlying type of a generic type
parameter, 51
Underlying Types, 51
underlying types, 73
Underscores, 34
underscores, 33-34
unescaped double quote, 37
Unicode code point, 35
Unicode code points, 36
Unicode integer value, 35
uninitialized pointer, 69
uninitialized variable, 62, 80
uninitialized variables, 22
union, 76
unit test, 148
unit testing, 148

universe block, 39

unqualified type name, 72
untyped, 43

untyped, 90

untyped boolean constant, 90, 95
Untyped Boolean constants, 90
untyped boolean result, 107
untyped boolean value, 101, 104
untyped constant, 90-91

untyped constant operands, 43
untyped constants, 43, 90
untyped integer constant, 43
untyped integer constants, 43
untyped numeric constant, 111
Untyped numeric constants, 90
Untyped numerical constants, 91
Untyped string constants, 90
uppercase letter, 36

use directive, 30

A%

valid identifier, 116

valid struct, 71

value, 45, 49

value of a variable, 45

values, 42, 45

variable, 22, 38, 45, 47, 83, 89, 92-93

Variable declaration, 111

variable declaration, 45

variable declaration statement, 125

variable declaration syntax, 119

variable declaration with initializer,
46

Variable Declarations, 45

172

Variable declarations, 38
variable initializer, 21
variable of an array type, 60
Variable Re-Declarations, 46
Variables, 21

variables, 46, 84

variables and types, 32
variables and values, 22
variables of built-in types, 22
variables or values, 22
variables' types, 119
variadic, 80

variadic function, 63
Variadic functions, 80
versioning, 25

W

working directory, 26
workspace, 30, 141
workspace mode, 26
Workspace setup, 139
workspaces, 30

Z

zero value, 45, 60, 73, 101, 145-147
zero value of a chan type, 68

zero value of the bool type, 63
zero value of type, 47

Zero values, 22

zero values, 22, 133

zeroed slice structure, 48

zeroed storage, 47

173

About the Author

Harry Yoon has been programming for over three decades. He has
used over 20 different programming languages in his academic and
professional career. His experience spans broad areas from scientific
programming and machine learning to enterprise software and Web
and mobile app development.

He occasionally hangs out on social media:

* Instagram: @codeandtips [https://www.instagram.com/codeandtips/]

TikTok: @codeandtips [https://tiktok.com/@codeandtips]

Twitter: @codeandtips [https://twitter.com/codeandtips]

YouTube: @codeandtips [https://www.youtube.com/@codeandtips]

Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

Other Go Books by the Author

* The Art of Go - Basics: Introduction to Programming in Golang -
Beginner to Intermediate [https://www.amazon.com/dp/BOSWYNG6YP]

174

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/
https://www.amazon.com/dp/B08WYNG6YP
https://www.amazon.com/dp/B08WYNG6YP

About the Series

We

are creating a number of books under the series title, A Hitchhiker’s

Guide to the Modern Programming Languages. We cover essential
syntax of the 12 select languages in 100 pages or so, Go, C#, Python,
Typescript, Rust, C++, Java, Julia, Javascript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach
you different ways of programming, and more importantly, different
ways of thinking.

All Books in the Series

175

Go Mini Reference [https://www.amazon.com/dp/B09V5QXTCC/]
Modern C# Mini Reference [https://www.amazon.com/dp/BOB57PXLFC/]
Python Mini Reference [https://www.amazon.com/dp/BOB2QJD6P8/]
Typescript Mini Reference [https://www.amazon.com/dp/B0B54537]JK/]
Rust Mini Reference [https://www.amazon.com/dp/B09Y74PH2B/]
C++20 Mini Reference [https://www.amazon.com/dp/BOB5YLXLB3/]
Modern Java Mini Reference [https://www.amazon.com/dp/BOB75PCHW2/]
Julia Mini Reference [https://www.amazon.com/dp/BOB6PZ2BC]/]
Javascript Mini Reference [https://www.amazon.com/dp/BOB75RZLRB/]
Haskell Mini Reference [https://www.amazon.com/dp/B09X8PLG9P/]
Scala 3 Mini Reference [https://www.amazon.com/dp/BOB95Y6584/]

Lua Mini Reference [https://www.amazon.com/dp/B09V95T452/]

https://www.amazon.com/dp/B09V5QXTCC/
https://www.amazon.com/dp/B0B57PXLFC/
https://www.amazon.com/dp/B0B2QJD6P8/
https://www.amazon.com/dp/B0B54537JK/
https://www.amazon.com/dp/B09Y74PH2B/
https://www.amazon.com/dp/B0B5YLXLB3/
https://www.amazon.com/dp/B0B75PCHW2/
https://www.amazon.com/dp/B0B6PZ2BCJ/
https://www.amazon.com/dp/B0B75RZLRB/
https://www.amazon.com/dp/B09X8PLG9P/
https://www.amazon.com/dp/B0B95Y6584/
https://www.amazon.com/dp/B09V95T452/

Community Support

We are building a website for programmers, from beginners to more
experienced. It covers various coding-related topics from algorithms to
machine learning, and from design patterns to cybersecurity, and more.
You can also find some sample code in the GitLab repositories.

» www.codeandtips.com

* gitlab.com/codeandtips

Mailing List

Please join our mailing list, join@codingbookspress.com, to receive
coding tips and other news from Coding Books Press, including free, or
discounted, book promotions. If we find any significant errors in the
book, then we will send you an updated version of the book (in PDF).
Advance review copies will be made available to select members on the
list before new books are published.

Request for Feedback

If you find any errors or typos, or if any part of the book is not very
clear to you, or if you have any general suggestions or comments
regarding the book, then please let us know. Although we cannot
answer all the questions and emails, we will try our best to address the
issues that are brought to our attention.

» feedback@codingbookspress.com

Please note that creating and publishing quality books takes a great
deal of time and effort, and we really appreciate the readers' feedback.

Revision 1.2.3, 2023-05-14

176

https://www.codeandtips.com
https://gitlab.com/codeandtips
mailto:join@codingbookspress.com
mailto:feedback@codingbookspress.com

	Go Mini Reference 2023: A Quick Guide to the Modern Go Programming Language for Busy Coders
	Preface
	Chapter 1. Introduction
	Chapter 2. Packages
	2.1. Source File Organization
	2.2. Package Clause
	2.3. Import Declarations
	2.4. Top-Level Statements

	Chapter 3. Program Initialization and Execution
	3.1. �Program Execution
	3.2. �Initialization
	3.3. The �go Command

	Chapter 4. Go Modules and Workspaces
	4.1. �Go Module
	4.2. �Go Workspace

	Chapter 5. Lexical Elements
	5.1. �Comments
	5.2. �Semicolons
	5.3. �Tokens
	5.4. �Identifiers
	5.5. �Keywords
	5.6. �Operators and Punctuation
	5.7. �Literals

	Chapter 6. Declarations and Scope
	6.1. �Declarations
	6.2. �Top-Level Declarations
	6.3. �Blocks
	6.4. �Scoping
	6.5. �Label Scopes
	6.6. �Blank Identifier
	6.7. �Exporting Identifiers

	Chapter 7. Constants
	7.1. �Constant Declarations
	7.2. �Constants
	7.3. �Iota

	Chapter 8. Variables
	8.1. �Variable Declarations
	8.2. �Short Variable Declarations
	8.3. �Variable Re-Declarations
	8.4. The �Builtin new Function
	8.5. The �Builtin make Function

	Chapter 9. Types
	9.1. �Types (And �Generic Types)
	9.2. �Method Sets
	9.3. �Underlying Types
	9.4. �Type Declarations
	9.5. �Type Parameter Lists
	9.6. �Predeclared Types
	9.7. �Array Types
	9.8. �Slice Types
	9.9. �Map Types
	9.10. �Channel Types
	9.11. �Pointer Types
	9.12. �Struct Types

	Chapter 10. Interfaces
	10.1. �Interface Types
	10.2. �Type Sets
	10.3. �Implementing Interfaces
	10.4. �Basic Interfaces
	10.5. �General Interfaces

	Chapter 11. Functions
	11.1. �Function Types
	11.2. �Function Declarations
	11.3. �Generic Functions
	11.4. �Function Literals

	Chapter 12. Methods
	12.1. �Method Declarations

	Chapter 13. Expressions
	13.1. �Operands
	13.2. �Addressable Expressions
	13.3. �Primary Expressions
	13.4. �Constant Expressions
	13.5. �Composite Literals
	13.6. �Index Expressions
	13.7. �Slice Expressions
	13.8. �Selectors
	13.9. �Function and Method Calls
	13.10. �Conversions
	13.11. �Type Assertions
	13.12. �Operators
	13.13. �Arithmetic Operators
	13.14. �Comparison operators
	13.15. �Logical Operators
	13.16. �Address Operators
	13.17. �Receive Operator

	Chapter 14. Statements
	14.1. �Empty statements
	14.2. �Assignments
	14.3. �Increment - Decrement Statements
	14.4. �Expression Statements
	14.5. �Send Statements
	14.6. �If Statements
	14.7. �Labeled statements
	14.8. �For Statements
	14.9. �Switch Statements
	14.10. �Select Statements
	14.11. �Fallthrough Statements
	14.12. �Continue Statements
	14.13. �Break Statements
	14.14. �Goto Statements
	14.15. �Defer Statements
	14.16. �Return Statements
	14.17. �Go Statements

	Chapter 15. Errors
	15.1. The �error Interface
	15.2. �Run-Time Panics

	Chapter 16. Example Code (Bonus)
	16.1. An Informal Introduction to �Generics
	16.2. A �Generic Stack
	16.3. Exercises

	A. How to Use This Book
	Index
	About the Author
	About the Series
	Community Support

