
The Art of Go - Basics
Introduction to Programming in Golang -

Beginner to Intermediate

Harry Yoon

Version 2.0.1, 2023-03-15

Copyright
The Art of Go - Basics:
Introduction to Programming in Golang

© 2021-2025 Harry Yoon

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this book.

Published: May 2021

Harry Yoon
San Diego, California

1

Preface
Learn programming for fun.

Go is one of the most popular programming languages. It is primarily used for Web
backend and server side programming. But it is finding broader uses in other areas
as well. Go is an interesting language. It is much simpler than most other modern
programming languages. It is easier to learn.

Go almost has a "retro" feel to it. It does not support an object oriented
programming style well. It does not support a functional programming style. It is
almost like the good ol' "C". But it is easier to use. It is safer to use. It is more fun to
use.

If you are just starting with programming, then Go is the perfect language to learn
programming with. If you are a seasoned developer, and looking to expand your
horizon, then Go is the perfect language to pick up as your next programming
language.

The Art of Go - Basics: Introduction to Programming in Golang - Beginner to
Intermediate is written for a broad audience. It starts from the absolute basics and
moves on to more advanced topics.

There are a lot of books and other resources that teach programming. They are
more or less the same. The Art of Go - Basics: Introduction to Programming in
Golang - Beginner to Intermediate takes a rather unique approach. For one thing,
it emphasizes "reading" before "writing". Readers are encouraged to read the book
through, from beginning to end.

This book, for example, does not start with instructions on how to install the
compiler tools, etc., which probably 99% of the introductory programming books
do. It is an important topic, but it is easy to learn. You can easily figure it out (from
other resources), when needed.

2

There are two kinds of knowledge. In fact, a whole spectrum between the two
extremes. First, there is this "quick knowledge" for the lack of better words.
Suppose that you have bought one of those "furniture kits" from IKEA, those kinds
that are "assembly required". Knowing how to assemble the furniture is very
important. But, it is not something you have to consciously "learn". Nobody studies
the furniture assembly instructions before they buy an IKEA furniture. When you
need it, you learn it (e.g., from the instruction that comes with the furniture). And
then you forget it. That’s a disposable knowledge.

On the other hand, there is a type of knowledge that requires some
"understanding". Why does the Moon not "fall" to the earth while all apples from an
apple tree do? It requires "understanding" to answer this kind of questions.

The Art of Go - Basics: Introduction to Programming in Golang - Beginner to
Intermediate tries to provide this type of knowledge when it comes to
programming and programming in Go. This book emphasizes "concepts" over
details.

Knowledge is largely about familiarity. The "deep knowledge" (the sort that requires
understanding) is no different. Over time, with enough exposure to related facts
and examples, you will feel like you know them, you understand them.

Throughout this book, we will introduce certain terms or concepts without
precisely defining them first and then we will elaborate on them later in the book.
You do not have to learn, understand, or memorize, everything on your first
encounter. This book teaches programming in Go through repetitions.

There are a lot of programming "technicians". Hope that the readers of this book
strive to become "artists". Artists in programming.

Good luck!

3

Table of Contents
Copyright. 1

Preface . 2

Introduction . 11

I: First Steps . 14

1. The Simplest Go Program. 15

1.1. Agenda . 15

1.2. Code Reading. 15

1.3. Summary . 18

1.4. Questions . 18

What is Programming? . 20

2. Hello World 1 . 23

2.1. Agenda . 23

2.2. Code Reading. 23

3. Hello World 2 . 29

3.1. Agenda . 29

3.2. Code Reading. 29

4. Hello World 3 . 41

4.1. Agenda . 41

4.2. Code Reading. 41

5. Hello World 4 . 53

5.1. Agenda . 53

5.2. Code Reading. 53

5.3. Summary . 64

5.4. Questions . 64

5.5. Exercises. 64

How to Use This Book . 66

4

6. Simple Arithmetic . 68

6.1. Agenda . 68

6.2. Code Reading. 68

6.3. Explanation . 70

6.4. Keywords . 71

6.5. Grammar . 71

6.6. Deep Dive . 73

6.7. Summary . 79

7. A Tale of Two Numbers . 81

7.1. Agenda . 81

7.2. Code Reading - Sum of Two Numbers. 81

7.3. Code Reading - Bigger of Two Numbers . 86

7.4. Code Reading - Difference of Two Numbers . 91

7.5. Code Reading - Average of Two Numbers . 95

7.6. Code Reading - Swap Two Numbers 1. 98

7.7. Code Reading - Swap Two Numbers 2 . 102

7.8. Summary . 106

7.9. Questions . 106

8. Multiplication Table . 108

8.1. Agenda . 108

8.2. Code Reading . 108

8.3. Summary . 121

8.4. Questions . 122

8.5. Exercises . 122

9. Find the Largest Number. 125

9.1. Agenda . 125

9.2. Code Reading I . 125

9.3. Code Reading II. 133

5

9.4. Code Reading III . 136

9.5. Summary . 142

10. Rotate Numbers . 144

10.1. Agenda . 144

10.2. Code Reading . 144

10.3. Summary . 155

10.4. Exercises . 156

11. Leap Years . 157

11.1. Agenda . 157

11.2. Code Reading . 157

11.3. Summary . 168

11.4. Exercises . 168

12. BMI Calculator . 170

12.1. Agenda . 170

12.2. Code Reading . 170

12.3. Summary . 180

13. Birth Date . 183

13.1. Agenda . 183

13.2. Code Reading . 183

13.3. Summary . 194

14. Greatest Common Divisor . 196

14.1. Agenda . 196

14.2. Code Reading . 196

14.3. Summary . 202

15. Reverse a Number . 204

15.1. Agenda . 204

15.2. Code Reading . 204

15.3. Summary . 212

6

15.4. Exercises . 213

Review - Packages, Functions, Variables . 214

Key Concepts . 214

Flow Control . 216

Advanced Types. 217

Error Handling. 218

II: Moving Forward . 219

16. Hello Morse Code. 220

16.1. Introduction . 220

16.2. Code Review . 221

16.3. Pair Programming . 227

16.4. Summary . 234

16.5. Exercises . 234

17. "LED" Clock . 235

17.1. Introduction . 235

17.2. Code Review . 238

17.3. Pair Programming . 242

17.4. Summary . 246

18. Euclidean Distance . 247

18.1. Introduction . 247

18.2. Code Review . 248

18.3. Pair Programming . 251

18.4. Summary . 262

18.5. Exercises . 263

19. Area Calculation . 264

19.1. Introduction . 264

19.2. Code Review . 265

19.3. Pair Programming . 274

7

19.4. Summary . 277

19.5. Questions . 277

20. Rock Paper Scissors. 278

20.1. Introduction . 278

20.2. Code Review . 278

20.3. Summary . 289

21. File Cat . 290

21.1. Introduction . 290

21.2. Code Review . 291

21.3. Pair Programming . 294

21.4. Summary . 301

21.5. Exercises . 301

22. World Time API . 302

22.1. Introduction . 302

22.2. Code Review . 303

22.3. Pair Programming . 305

22.4. Summary . 316

22.5. Exercises . 316

23. Where the ISS at. 318

23.1. Introduction . 318

23.2. Code Review . 319

23.3. Pair Programming . 328

23.4. Summary . 335

23.5. Exercises . 336

24. Simple Web Server . 337

24.1. Introduction . 337

24.2. Code Review . 338

24.3. Pair Programming . 343

8

24.4. Summary . 346

24.5. Exercises . 346

25. TCP Client and Server . 348

25.1. Introduction . 348

25.2. Code Review - Client . 349

25.3. Pair Programming - Client. 353

25.4. Code Review - Server . 356

25.5. Pair Programming - Server . 359

25.6. Summary . 365

25.7. Exercises . 365

Review - Structs, Methods, Interfaces . 367

Key Concepts . 367

Flow Control . 367

Advanced Types. 368

III: Having Fun . 370

26. Folder Tree . 371

26.1. Problem . 371

26.2. Discussion . 372

26.3. Sample Code Snippets. 373

26.4. Exercises . 376

27. Stack Interface . 377

27.1. Problem . 377

27.2. Discussion . 377

27.3. Sample Code Snippets. 378

27.4. Exercises . 385

28. Web Page Scraping . 386

28.1. Problem . 386

28.2. Discussion . 386

9

28.3. Sample Code Snippets. 388

28.4. Exercises . 395

29. QR Code Generator . 396

29.1. Problem . 396

29.2. Discussion . 397

29.3. Sample Code Snippets. 398

29.4. Exercises . 402

30. Producer Consumer . 403

30.1. Problem . 403

30.2. Discussion . 403

30.3. Sample Code Snippets. 406

30.4. Exercises . 411

Review - Goroutines, Channels . 413

Key Concepts . 413

IV: Final Projects . 414

31. Go Fish . 415

31.1. Project. 415

31.2. Design . 416

31.3. Implementation . 419

32. Go Fish Galore . 421

32.1. Project A. 421

32.2. Project B . 422

32.3. Project C . 422

32.4. Project D. 422

Index . 424

Credits . 431

About the Author . 432

Mini Programming Language References . 433

10

Introduction
Premature optimization is the root of all evil.

— Donald Knuth

Learning a programming language is not much different from learning a foreign
language. You learn from examples, primarily by listening and reading.

The speaking and writing abilities follow, more or less in sync with your listening
and reading abilities.

Programming languages are not meant to be spoken, but the same principle applies.
You learn from examples, primarily by reading well-written code.

The Art of Go - Basics: Introduction to Programming in Golang - Beginner to
Intermediate is organized into a series of small lessons.

Each lesson teaches basic concepts of programming, and programming in Go, in
particular, by going through carefully-designed sample code.

All lessons are more or less "self-contained". But it will be best if you go through
them sequentially, especially if you are new to programming.

The lessons gradually progress from basic topics to more advanced subjects. You
can advance at your own pace. If you are just starting out, you can take your time.

If you have some programming experience (e.g., in other languages), then the book
may seem to start too slow. You can skip, or skim through, some of the earlier
lessons.

The book covers a lot of subjects, but it is not meant to be a comprehensive
introduction to the Go programming language. This is not an academic textbook.

11

This is not a reference.

The Art of Go - Basics covers the following topics, among other things:

• The basic structure of a Go program.

• Basic constructs of the Go language such as expressions and statements.

• Primitive types, slices, maps, and functions.

• Custom types, in particular, structs and interfaces, and methods.

• Goroutines and channels.

The examples used in this book are, although small and elementary, all inspired by
the real world use cases, to varying degrees. Readers are encouraged to try to
"read" the code samples first, not just the text in the book, before diving into the
main part of each lesson.

Much of the code may not make much sense at the first reading. But, that’s how we
learn a new language. That’s how we learn a new skill.

There is a Chinese saying, which can be translated into something like this:

If you read a book a hundred times, then the meaning of its
content will eventually seem obvious to you.

The lessons are organized into four parts: First Steps, Moving Forward, Having Fun,
and Final Projects.

This division is somewhat arbitrary, but the first part, Part I: First Steps, is mostly
focused on general programming. If you are coming from a different programming
language, especially C-style languages, then you will feel comfortable with lessons
in this part. As stated, you can probably just skim over much of this part.

The second part, Part II: Moving Forward, focuses on some Go-specific topics like

12

Go structs and interfaces. We will also go over some basic examples of Web
programming in Go as well in this part.

In Part III: Having Fun, we will cover a few independent topics, ranging from file
system-related programming to Web scraping. We introduce "goroutines" in this
part, which is often omitted in introductory books on Go.

Finally, in Part IV: Final Projects, we will work on a few complete projects, from
beginning to end. We will design and implement a card game, "Go Fish", as a
command line game. The readers are encouraged to tackle all the problems in this
part. They are excellent projects for beginning programmers.

Exercises are optional. They may require knowledge on some subjects that we do
not thoroughly cover in this book.

Regarding the sample programs, one thing to note is that we do not include
comments in the code. Comments will mostly add clutter in books like this. The
content of the book serves as code comments. And, more.

In practice, writing good comments, and documentations, is a very important skill
to learn.

As stated, Go is a language "easy" to learn, and "easy" to start programming with.
But, it has some quirks as well. The Go’s language grammar is relatively simple, but
there are a few exceptions to the general rules, and there are some "gotchas".

It will take time and effort to become really proficient in Go. Hope you find this
book helpful in your journey into the programming world, in Go.

Let’s get started!

13

Part I: First Steps
A journey of a thousand miles begins with a single step.


The code examples in this book are meant to be read. You do not
have to type them on computer to get "hands-on" experience.

14

Lesson 1. The Simplest Go Program

1.1. Agenda
We will review our first Go program together.

1.2. Code Reading
Here’s a small Go program.

smallest-program/main.go

1 package main
2
3 func main() {}

1.1. Agenda

15


The label indicates that the source code is copied from a file
main.go under a folder named smallest-program.


The line numbers, printed on the left-hand side, are not part of
the program. They are included for easy reference.

1.2.1. Explanation

This is the simplest Go program that compiles and runs, in a single file (named
"main.go" in this example). It does nothing.

You can run this program as follows on command line.

go run main.go

1.2.2. Keywords

This simple program includes two Go language "keywords".

A keyword in a programming language is a word or identifier that has special
meaning to the language and the language tools such as compilers. Programmers
cannot use language keywords for other purposes, e.g., as variable names, etc.

Go comprises 25 keywords. This example program uses the following two:

• package: The package line is a declaration indicating that this source file
belongs to a certain package, main in this example.

• func: The keyword func declares a function and introduces its definition to the
program. main() is a special function, and the func declaration has a slightly
different semantics.

1.2. Code Reading

16



The book gradually introduces important concepts through
repetitions. You do not have to try to understand everything in
your first encounter, especially if you are new to programming.
Remember, knowledge is mostly about familiarity.

1.2.3. Grammar

A Go program is written in one or more source files. Each source file must start
with the package line. This is called a "package declaration".

A package is a basic unit of organization in the Go language. In many programming
languages, a file is typically a basic unit. In Go, however, it is the package, which
can include one or more files.

An executable Go program has to include a special package "main", as in this
example.

A go program comprises a set of packages. Each package can include a certain top
level declarations, and most importantly, function definitions. Functions are
essential components of Go programs. We will get back to the topic of functions in
later lessons.

Empty lines, such as the second line of this example code, are ignored by the
compiler.

1.2.4. Deep Dive

In some program languages, an empty program is a perfectly valid one. In Go,
however, an empty program (or, an empty source code file) does not exist.

Every runnable program has to include at least one (and no more than one) main
function, which should be part of the main package.

1.2. Code Reading

17

If you run the above program, then you’ll see the following output:

That is, nothing. The fact that the program runs and does not produce an output
does not necessarily mean that the program has done nothing. But, in this case, the
program itself does literally nothing.

A Go program can be clearly more complex than this simple example. A program
can include many lines of code and it can include a large number of packages and
source files, etc. But, there is one commonality across all different Go programs,
from the simple to the most complex.

Each Go program starts running from the main function. The definition of a
function, e.g., a set of statements to be run, is to be included inside a pair of curly
braces, {…}.

In this example, the main function just happens to be empty. We can clearly see that
there is nothing between the opening and closing curly braces in the source code.
This means that we are telling the computer to do nothing. And, it will do nothing, if
it runs successfully (other than the basic work done by the operating system to load
the program into memory, etc.).

1.3. Summary
We introduced the important concepts of packages and functions in this lesson.
They will be discussed in more detail in later lessons.

1.4. Questions
1. What is the first line of a Go program source file?

2. What is a main() function?

1.3. Summary

18

Author’s Note

Development Environment Setup
We are not going to discuss how to install Go tools in this book. That is a
"trivial" (albeit important) task, which you can figure out using various
resources (e.g., Web search).

Having a Go development environment on your computer is not a
prerequisite to reading this book.

If you haven’t installed the Go tools, and if you would like to do so, then there
is a quick instruction on the golang website: golang.org/doc/install.

You can also use the online Go Playground [https://play.golang.org/] to try out
simple code.

Most of the sample code in Part I that fits, or can fit, into a single source file
can be run on the Playground.



There are many different types of resources that can help
you learn programming in Go. The Art of Go - Basics:
Introduction to Programming in Golang - Beginner to
Intermediate is designed to be read. This book is not meant
to be used as a stand-alone be-all and end-all book.

1.4. Questions

19

https://golang.org/doc/install
https://play.golang.org/

What is Programming?
This section is for readers who have never done programming before. You can skip
this section if you have some (hands-on) experience with programming.

If you are completely new to coding, then it can be rather daunting. You may not be
sure what we are doing here.

A program is essentially a series of instructions that a computer is to read and
execute. The problem is that computers do not understand human languages like
English.

We use specially created programming languages, like Go, to write programs.
Computers, however, do not understand any of these programming languages
either. We will have to go through a certain process to convert a program written in
one of these "high-level" programming languages to an instruction set in the
language that a particular computer understands, which is essentially in 0's and 1's.

This process, or at least the most important part of this process, is known as
compilation. The details of this process varies from language/runtime to
language/runtime.

Now, focusing mostly on the Go programming language, the Go compiler toolchain
converts a "program" (e.g., a set of source code files, as we will discuss in more
detail in the coming lessons) into an executable for a particular computer
architecture.

By default, the executable is generated for the architecture of the computer where
the build is done. But, you can also "cross build", that is, you can build executables
for different target architectures.

This is one of the most interesting things about Go. Other high level programming
languages comparable to Go such as Java or Python compile the source program

20

into "byte code" or "intermediate code", not directly to the machine code. These byte
code run on a virtual machine, or an intermediate language runtime or interpreter.

Go does not have such virtual machines or runtimes. Go code is always compiled to
an executable of a target architecture(s).

The "Go runtime" is embedded/linked into each executable/binary. The Go runtime
includes a "garbage collector".

When a program runs, it uses/consumes various host computer resources such as
memory. Some of the allocated memory may have to be cleaned, while the program
is running, because they are no longer used. Otherwise, the program may run out of
usable memory space. This is especially important for long running programs. The
Go runtime periodically checks the memory and cleans up the space. This is called
garbage collection.

To sum, a programmer creates a program, a set of source files, which is written in
the Go programming language. The programmer then compiles/builds, or converts
the source program into a binary/executable for a target computer architecture.
The executable, or "the program", generated this way can be distributed and
"installed" on other computers with the same architecture.

"Programming" may broadly refer to this whole process of creating an
executable(s). Or, more typically, programming refers to a process of writing these
source code, which are to perform a certain desired task, when compiled and built
into a machine code.

A program may include various instructions (or, "statements"). It may include
conditional statements and repetitions, or "loops", among other things.

Programmers use various tools to do programming. For example, they may use text
editors or IDEs (integrated development environment). They also need to use
certain tools, e.g., "compilers", that convert the given set of source files into a
binary. When programming in Go, we use a suite of command line tools, "go", that

21

provide such functionalities. For example, we use go build to compile/build a Go
source program.

We will look into these concepts in more detail throughout this book.

22

Lesson 2. Hello World 1

2.1. Agenda
We will review a few simple Go programs which do basic input and output in this
and the following few lessons.

2.2. Code Reading
Here’s a simple "hello world" program in Go:

hello-world-1/main.go

1 package main
2
3 func main() {
4 println("hello world!")
5 }


Throughout this book, the label of a source code snippet indicates
that the example code is taken from a certain file in a certain

2.1. Agenda

23

folder (on the author’s computer). The source file names, and the
file paths, are largely irrelevant to the execution of a Go program.

2.2.1. Explanation

This program is not much more complicated than the one from Lesson 1. The code
includes essentially one more line (excluding braces), println(…). The println()
function prints out its argument to the console output.

We can run this program as follows:

go run main.go

It produces the following output:

hello world!

2.2.2. Keywords

This "hello world" example code in Go includes the following two keywords:

• package: The package keyword declares a package that this source file belongs
to, main in this particular example.

• func: The func keyword generally declares a function and introduces its name
and definition into the program. The main() function is special in a Go
program, and any executable program should include one and only one main()
function.


As stated, there will be (deliberately) a fair amount of repetitions
across different lessons. You can skip any part of the book (not

2.2. Code Reading

24

just the keyword sections) which you are already familiar with. As
for the keywords, there is an appendix that includes all Go
keywords, [appendix-section-go-keywords], at the end of the book.

2.2.3. Built-in Functions

println() (with a lowercase p) is a "built-in" function.

It takes one or more string arguments (e.g., "hello world!"), and it prints out the
arguments to stdout (e.g., the console or terminal output). A newline is
automatically added after the argument is printed (as the suffix ln indicates).

The Go programming language includes a few built-in functions which you can use
in your programs without having to refer to any particular libraries.

Builtin functions may be considered "more important" or "more essential" in
writing a program. The println() function is, however, an exception. There are
"better" functions in other libraries that do what println() does, and more. This
built-in function may be deprecated or removed in the future releases of Go
(although unlikely).

This is the only lesson in which we use println() in this book.

2.2.4. Grammar

A Go program is organized into one or more packages. A package in Go is a
fundamental building block, which plays an essential role in many different aspects
of the language.

A package can be written in one or more source code files. Each source file must
start with the package declaration (excluding white spaces and comments):

2.2. Code Reading

25

package <package_name>

This statement means that this source file (in which this source code is written)
belongs to the named package.

In this example, the package name happens to be a special word "main", indicating
that this source code file is part of the special main package of this program. Any
executable Go program must include one, and only one, main package.

A package can include zero or more function definitions, among other things. A
runnable Go program must include a special main() function as part of the main
package. When the program is executed, the operating system invokes the main()
function of the Go program as an entry point. The main function has the following
syntax:

func main() {
 // A series of statements goes here
}

The middle line is a program comment, which is included here for illustration.
Comments are (mostly) ignored by the compiler. If you are new to programming,
the important part of this syntax is the keyword func, main, (), {, and }, in this
particular order.

The body of a function, from right after the opening bracket “{” to just before the
closing bracket “}”, can include any number of statements. A "statement" in a
program is an instruction to the computer as to what needs to be done.

The main function of the example program above includes one statement (one
more than the first example),

2.2. Code Reading

26

println("hello world!")

It is a "function call". This statement is an instruction to "call a function", the builtin
println() function in this example, with an argument "hello world!".

The text "hello world!" (including the opening and closing double quotes "") is
an example of a "string literal".



As stated, we will briefly introduce certain concepts or topics in
earlier lessons and elaborate on them later in the subsequent
lessons. Many of the explanations given in this book, especially
those in the earlier lessons, are, by necessity, incomplete.

2.2.5. Deep Dive

In some programming languages, it requires only one line of code to print "hello
world" (or something similar) to the console.

In Go, it requires 4 or 5 lines (depending on how you define a "line"). Different
programming languages have different tradeoffs in their language designs.

A Go program starts when the system calls the main function. The Go program
executes the statements in a function from top to bottom, more or less. (Not all of
them may end up being executed, however.) When a function has no more
statements to run, the function returns. When the main function of a program has
no more statements to run, the program exits.

In this example, the program has only one function, the main() function, and the
function includes only one statement println("hello world!"), which is a
function call.

When the println() function does its job (i.e., printing "hello world!" to the

2.2. Code Reading

27

standard output), it returns to the caller, which is the main() function. Since there
is no more statement after println(), the program terminates.

Author’s Note

Why Hello World?
Doing "Hello World" is now almost a rite of passage for beginning
programmers.

So, why do we do it? One of the important roles which this type of simple
programs play is, in fact, to verify your development environment setup.

Suppose that you have just installed the go tools from the golang.org website.
How do you know that they "work"? How do you know that your installation
was successful? A quick way to test the dev env setup, including the build
tools, is to test the build system using a simple program.

That’s where the Hello-World program comes in. When you install the Go
tools (if you haven’t already done so), try to build and run your hello world
program, and make sure that it compiles and runs.



This is like a chicken-and-egg problem. 

If you don’t have the tools, you cannot create a program. If
you don’t have a program, you cannot test the tools.

2.2. Code Reading

28

Lesson 3. Hello World 2

3.1. Agenda
We will review another simple Go program in this lesson.

3.2. Code Reading
Here’s a slightly more complicated version of the "hello world" program.

hello-world-2/main.go

 1 package main
 2
 3 import "fmt"
 4
 5 const name string = "Joe"
 6
 7 func main() {
 8 var greeting string = "Hello"

3.1. Agenda

29

 9 fmt.Println(greeting + " " + name)
10 }

This source code file has the same name "main.go", but it is stored in a different
directory, "hello-world-2".

The file name "main.go" has no special significance. A source file that includes the
main function of the program is typically, but not always, named "main.go".

3.2.1. Explanation

This example program includes a bit more components, and a few more lines of
code. You can run the program as before:

go run main.go

It produces the following output:

Hello Joe

3.2.2. Keywords

This program includes three new keywords:

• import: import declares that the source file depends on the functionality of the
imported package, which is specified by an identifier for finding and accessing
the package.

• const: const declares a list of constant names. The const declaration binds
those names to the values of a list of constant expressions. The number of
identifiers must be equal to the number of expressions.

3.2. Code Reading

30

• var: var declares one or more variables. The var declaration binds the given
identifiers to those variables, and gives each a type and an initial value.

3.2.3. Grammar

In Go, packages serve as basic components for code sharing. If you know how to
find a package anywhere on the Internet, and if you have permission to access the
source code of the package, then you can use it in your program, or more precisely
in your package.

In many programming languages, code reuse is often based on special constructs
like "libraries" (e.g., C/C++, …) or "packages" (e.g., Node.js, Python, DotNet, … not to
be confused with Go packages), or just simple archive files like "jars" or "wars"
(e.g., Java).

In Go, no special "packaging" is needed. If you know how to access the source code
of a package, then you can use it.

Likewise, if anybody knows where you keep your source code (of a certain
package), and if they have a permission to do so, then they can use your code (of
that package).

We will discuss this code sharing aspect of packages further throughout the book,
but one thing to note here is that you cannot share your main packages. The sole
purpose of the main package, along with the main function, in a program is to make
the program executable. The main packages cannot be shared with other Go
programs.

Go comes with a set of special packages known as the "standard library" (just like
any other programming language). The "fmt" package is one of them. And, the
import "fmt" statement of the example code lets you use the fmt package in your
code.

The Go language specification does not specify, or dictate, how exactly you specify

3.2. Code Reading

31

the location of somebody else’s packages.

In the case of the standard libraries, you simply use the name of the package in the
import declaration. The go compiler knows where to find them.

import "<package_name>"

The pair of double quotes around the package name is part of the syntax.

Once you “import” an package into your program, you can use the imported
package just like it is a part of your own program. (We will cover the access control
aspect of a package in later lessons.)

The import statement introduces the names, such as those of functions or other
declarations, in the package into your program so that you can use them.

Line 9 of the "hello-world-2" example shows how to use Println() function from
the "fmt" package. You just use the imported package name as a prefix with a dot,
“.”.

fmt.Println("Hello!")

The fmt package’s Println() (with a capital P) is very similar to the builtin
println() function. It prints out its string arguments to stdout.

In the example code, the argument happens to be an "expression", greeting + "
" + name.

An expression is a fancy term for a "value" (as the compiler sees it) or anything that
evaluates to a value. "Hello!" (a string literal) is a value, and hence it is an
expression. A number 5 is an expression as well as 2 + 3 since it evaluates to 5,
which is a value.

3.2. Code Reading

32

In this example, the argument of the Println() function is a string concatenation
(denoted by “+”), which evaluates to a value, i.e., another string. For example,
"hello" + "world" is "helloworld".

The expression, greeting + " " + name, includes two other Go programming
constructs. Namely, "constants" and "variables".

In this case, the name greeting is a variable, as declared by the var keyword in
line 8.

var greeting string = "Hello"

And, the name, name, is a constant, as declared by the const keyword in line 5.

const name string = "Joe"

Both declarations have more or less the same syntactic structure.

There is an equal sign = in the middle. On its left hand side, there is the keyword
var or const followed by a name, or an "identifier", and a "type", string in this
case. Note that, in some languages, the type comes before the identifier, and in
other languages, the order is reversed.

On the right hand side of =, there is an expression, string literals in both cases.

In this particular example, const and var declarations are placed in different
places, one inside a function (the main() function in this case) and the other
outside a function. But, that is just incidental.

Both const and var declarations can be used within a function or outside. Their
placement affects the constant/variable’s "scope". "Scoping" is a big topic, and we
will cover scoping throughout this book.

3.2. Code Reading

33

The difference between const and var is that const can declare names which do
not change during the execution of a program. In fact, the value of a const name
should be known at compile time. The right hand side of the const declaration
should be a "constant expression".

On the other hand, the value of a var name can change. One can "assign" a different
value, or it can change as a result of other operations.

Go is a statically typed language. All consts and vars have specific types, known to
the compiler, at compile time (there are exceptions), and their types do not change
during the execution of a program.

Clearly, type is a very big, and important, subject, and we will have to defer its full
coverage to later lessons.

Just to give a quick explanation, however, a type defines what a const/var is, how
to interpret its values in memory, and what kind of values the const/var is allowed
to have, among other things.


Not to repeat the same points, but whatever doesn’t make sense to
you at this point, you can just ignore and move on. You can always
come back later, if necessary.

3.2.4. APIs

Being familiar with common libraries, especially the standard libraries, is an
important part of becoming a proficient programmer in a given programming
language.

Although it is not a main focus of this book, we will try to touch as many standard
library functions and types as possible, and we will document some of them in
these special sections, "APIs".

3.2. Code Reading

34

In the example "hello-world-2", we use package "fmt", and one of its exported
functions, Println().

• Package fmt [https://golang.org/pkg/fmt/]: Package fmt implements formatted I/O
with functions analogous to C’s printf and scanf. The format "verbs" are derived
from C’s but are simpler.

◦ func Println [https://golang.org/pkg/fmt/#Println]: Println formats using the
default formats for its operands and writes to standard output. Spaces are
always added between operands and a newline is appended.


This information is taken from the official Go documentation
pages.

3.2.5. Deep Dive

The example code, however simple it may be, illustrates one of the most important
structures in a Go program.

A Go source file follows this structure:

1. package declaration (line 1),

2. one or more import declarations (line 3), if needed, and

3. "the rest" (lines 5~10).

Every Go source file has to follow this structure, in this particular order.

We have not fully explained what you can put in "the rest" part. But, we have seen
some examples like function definitions. You cannot put arbitrary statements like
fmt.Println(…) here. Many of the general kind statements are only allowed
inside a function definition.

Other types of statements that can be put at the top-level, or in the "package scope",

3.2. Code Reading

35

https://golang.org/pkg/fmt/
https://golang.org/pkg/fmt/#Println

include const and var declarations, as demonstrated by the example code.

As indicated, both kinds of declarations could have been put in the package-level
scope. Or, both inside the main() function ("function scope").

A name can be used only within a valid scope, that is, (typically) within a block
where the name is introduced, including its inner blocks, if any. In case of a
const/var, its scope starts from the point where the name is first introduced and it
ends at the point where the enclosing block ends. The "package scope" is a little bit
different from other scopes (e.g., functions, blocks), but essentially the same rules
apply. Any name that is included outside a function in a source file is in the package
scope (which includes all source files within the same package).

As an example, the following code will be valid. The const name can be used within
the main() function, or outside.

const name string = "Joe"
func main() { /* ... */ }
func anotherFunction() {
 fmt.Println("Again, my name is", name)
}

On the other hand, the variable greeting is in the main function’s function scope.
After the closing bracket } of the function, it cannot be used. In fact, this variable
cannot be used before the declaration even within the same block. In this small
example, there is nothing else before the declaration (line 8), but even if there were
any statements, they could not have used greeting. In case of variables, the
"scope" starts from the line where the variable is declared.


All C-style programming languages have more or less the same
scoping rules.

In Javascript, if you have used Javascript before, one can declare

3.2. Code Reading

36

variables in two different ways, using var and let. (Or, one can
just declare variables globally, which is not generally
recommended.) Variables declared with let follows the same
scoping rule, whereas those declared with var have slightly
different scopes. They can be used even before their declarations.
Their values are undefined if they are accessed before their
declarations.

In Go, trying to use a const/var before its declaration will cause a
compile time error.

Note also that we could have used either const or var for both name and
greeting, in this particular example.

As a program gets larger and more complex, the choice of const vs var, and their
scope, will be important. As a general rule, it is a good practice to prefer constants
to variables whenever it makes sense. It is also a good practice to declare
consts/vars within the smallest possible scope.

In this particular example of "hello-world-2", both names should have been const
and both should have been declared within the main() function before we use
them (e.g. before fmt.Println()).

But, choice of const and var also conveys certain information (to the compiler as
well as to the human readers).

For example, suppose that your name happens to be "Joe". This fact will not change
even if the program grows bigger and if the program ends up including more
functions, etc. Putting the name name in a package scope as const would make
more sense in that case.

On the other hand, suppose that your intention was trying out different greeting
phrases within the program. In such a case, it would make sense to make greeting
a variable. We could assign a different value to it, if needed.

3.2. Code Reading

37

For example,

var greeting string = "Hello" ①
fmt.Println(greeting + " Joe!") ②
greeting = "Hi" ③
fmt.Println(greeting + " Joe!") ④



Many of the code snippets we use in this book may not be a
complete program, as in this example. This should be obvious
from the context or from other cues. For instance, this code
snippet does not follow the general structure of a Go source file,
and hence it cannot be a complete program, or even a package.

① is the now-familiar var declaration.

② the Println() will print out Hello Joe!

③ is an "assignment" statement. The assignment changes the value of the variable.

④ the output will now be Hi Joe!.

The first line of the code snippet declares a variable, greeting, and it initializes its
value to "Hello". One can also just declare a variable first and assign a value later
in two different statements.

var greeting string
greeting = "Hello"

If a var is declared without an explicit initial value, then the type’s "default value",
or "zero value", is automatically assigned. In the case of the string type, the default
initial value is an empty string ("").

When a const/var is declared with an initial value, as in our lesson example, the

3.2. Code Reading

38

compiler may be able to easily infer the type of the constant/variable. In that case,
the type specification in a const/const declaration may be omitted.

For example,

var greeting = "Hello"

The type of the variable greeting can be easily inferred, say, based on the type of
the expression/value on the right hand side, i.e., a string literal in this example.
Hence the variable greeting is of type string. This is called "type inference", and
the type is normally omitted in const/var declarations unless necessary.

In the example program, the fmt.Println() function takes a single argument,
which is a string concatenation of three strings. We could have assigned the result
of the concatenation to a new variable and used that result as an argument to
Println().

For example,

var helloGreeting = greeting + " " + name
fmt.Println(helloGreeting)

There is really no difference. It’s very likely that the compiler will generate more or
less the same code.

In simple cases like this, it’s just a matter of taste. As a program grows, there might
be other requirements/constraints to consider and one style may be preferred to
the other.

In this particular example, the variable greeting, which is var not const, may be
reused for this purpose. For example,

3.2. Code Reading

39

greeting += " " + name
fmt.Println(greeting)

The += operator is a shorthand for

greeting = greeting + " " + name

In the assignment statement in Go, the right hand side is always computed first
before the assignment. Hence, when the right hand side expression is evaluated, the
greeting variable holds the value "Hello". After the assignment, however,
greeting becomes "Hello Joe", the concatenation of all three strings, including
the "old" greeting.

Most functions take a fixed number of arguments, including zero. For example, the
main() function takes no arguments. You cannot pass an argument of any kind.

The fmt.Println() function (as well as the builtin println()) takes a variable
number of arguments. From zero to as many as you would like.

Another way to print out the desired text to the console, therefore, is something like
this:

fmt.Println(greeting, name)

A space " " is automatically added between the arguments in case of
fmt.Println(), and hence the output will be the same as the original, that is, Hello
Joe.

3.2. Code Reading

40

Lesson 4. Hello World 3

4.1. Agenda
One more "hello world" program in Go.

4.2. Code Reading
Now we are moving beyond a simple "Hello World" program. (Well, just a little bit.)
Let’s take a look at the following sample code.

hello-world-3/main.go

 1 package main
 2
 3 import (
 4 "fmt"

4.1. Agenda

41

 5 "os"
 6)
 7
 8 func main() {
 9 var greeting = "Hello"
10 var name string
11
12 if len(os.Args) > 1 {
13 name = os.Args[1]
14 } else {
15 name = "you"
16 }
17 greeting += " " + name
18
19 fmt.Println(greeting)
20 }

4.2.1. Explanation

This program takes an (optional) argument. If you run the program in the usual
way,

go run main.go

It produces the following output:

Hello you

If you run the program as follows, with an extra text "Joe" in the command line,

4.2. Code Reading

42

go run main.go Joe

It produces a different output:

Hello Joe

4.2.2. Keywords

This program includes two more new keywords which we have not discussed yet.

• if: The if keyword is used to create a conditional statement. An if statement
has a Boolean expression and one or two branches of execution. If the
expression evaluates to true, then the if branch is executed. Otherwise, if the
else branch is present, then that branch is executed.

• else: The else keyword is used to define an (optional) branch, which is
executed when the if expression evaluates to false.

4.2.3. Built-in Functions

len() is a builtin function, which takes one argument. It returns the length of its
argument based on its type.

As we will discuss shortly, in the case of an argument with a "slice" type (which
happens to be the type of os.Args), len() returns the number of elements in the
slice. If the argument is nil, then the length is zero.

All builtin functions are listed in the Appendix, [appendix-section-builtin-
functions], at the end of the book.

4.2. Code Reading

43

4.2.4. Grammar

This example program introduces a few new constructs of the Go programming
language.

The keywords if and else are used for a conditional statement. if is followed by a
Boolean expression (i.e., an expression that evaluates to a bool value, true or
false) and a "block" (from the opening bracket { to the closing bracket }).

If the Boolean expression (len(os.Args) > 1 in this case) is evaluated to true,
the statements in this block is executed, if any.

An optional else can be used, as in this example. The statements in this block is
executed if the value of the Boolean expression is false.

For example, in the following example,

if false {
 fmt.Println("hello")
 fmt.Println("joe")
}

None of the strings will be printed. Neither "hello" nor "joe".

Go’s if-else statements are similar, or equivalent, to those of other C-style
languages.

One thing to note is that Go has a particular set of formatting rules. Note that the
Boolean expression is not enclosed in parentheses (()) as in most other languages.
The brackets are required even if there is only one statement in the block. The
opening bracket ({) must be in the same line as the end of the Boolean expression.
The else keyword, if present, must be in the same line as its opening bracket and
`if’s closing bracket, as shown in the example code of "hello-world-3".

4.2. Code Reading

44

This formatting rules are not limited to if-else statements. We have not
mentioned it yet, but functions have to follow certain formatting rules as well. By
the way, where are the semicolons (;)?

These rules can be confusing, especially to programmers coming from other C-style
language background. Not just the specific rules but the very fact that these rules
exist and that they are tightly integrated into the language (or, more precisely, into
the compiler tool chain). We will get back to this topic later in the book, but for now,
we learn by examples.

All operating systems allow passing some kind of arguments to a starting program.
These are generally known as the "command line arguments". The C programming
language started using a convention where the command line arguments are
passed in to the main() function as the function’s parameters.

The exact function signature is not important, but C’s main() function accepts the
command line arguments (say, multiple arguments separated by space) as a list of
values or, an "array". Most C’s descendant languages follow this convention, with
minor variations.

Go does it slightly differently. Instead of using the main() function’s arguments, Go
stores the command line arguments into global variables when the program starts
up.

This is where os.Args comes in. os is a standard library package, and it defines a
package-level variable Args (just like we do with var or const in our programs).

os.Args is of a type "slice" of strings. We will discuss the slice type in more detail
in later lessons, but for now it suffices to say that a single variable os.Args slice
can store a list of values, strings in this case.

By the C convention, the first element of os.Args, os.Args[0] using the index
notation (0-based), is the name of the program (used to start the program).

4.2. Code Reading

45

Go is a compiled language. The source code (from one or more packages, each of
which can comprise one or more source files) is first compiled into a "binary" (in
the languages that computers of a particular architecture understand). Then you
can run the generated binary/executable (just like any other programs, or "apps",
on your system).

When we do go run main.go, it is a shortcut provided by the go tool. In fact, this
command does a two-step task: First, it compiles main.go into a binary (and stores it
in a temporary location), and then executes the binary as if the program is being
run from the current directory.

Normally, the "build" step is done by the go build command.

go build main.go

Running this command, when successful, generates an executable program, or a
binary. If you do ls -l, then you can see an output like this:

total 1904
drwxrwxr-x 2 harry harry 4096 Apr 14 10:04 ./
drwxrwxr-x 35 harry harry 4096 Apr 5 17:57 ../
-rwxrwxr-x 1 harry harry 1933164 Apr 14 10:04 main*
-rw-rw-r-- 1 harry harry 216 Apr 14 08:22 main.go


This particular output is taken from a Unix/Linux shell (in
particular, BASH), but the explanation given here, and throughout
this book, is not specific to a particular platform.

As you can see, there is an executable program named main, which was generated
by the go build command. The name of the program main was taken from the file
name "main.go". If you use a different file name for a source file that includes the

4.2. Code Reading

46

main() function, then go-build will use that name as the executable name by
default.

For example, if we change the name "main.go" to "hello.go", the executable will be
named hello.

go build hello.go

If you run the program as follows (e.g., in Bash shell):

./hello

It produces the same output as that from go run hello.go:

Hello you

Now, if you pass a command line argument, say, "Joe":

./hello Joe

It produces the same output as that from go run hello.go Joe:

Hello Joe

What happens if we run this program with more than one arguments? Say, how
about ./hello Joe and Jill? It will produce the same output, Hello Joe.

The os.Args would be a 4 element slice in this case, {"./hello", "Joe",

4.2. Code Reading

47

"and", "Jill"}, but our program, hello or main, ignores most of them and only
uses the second element os.Args[1]. (Again, arrays and slices are zero-based,
meaning that the first element has index 0, as in most C-style languages.)

The sample code of "hello-world-3" includes a builtin function len(). The len()
function can take an argument of different types. In this example, the argument is a
slice type, and it returns the number of elements in the slice.

If we run ./main, then len(os.Args) will return 1 (the name of the executable is
always the first element, "./main" in this case). If we run ./main Joe, then it will
return 2. In case of ./hello Joe and Jill, len(os.Args) will be 4.

4.2.5. APIs

• Package os [https://golang.org/pkg/os/]: Package os provides a platform-
independent interface to operating system functionality. The design is Unix-like,
although the error handling is Go-like; failing calls return values of type error
rather than error numbers. The os interface is intended to be uniform across all
operating systems.

◦ var Args [https://golang.org/pkg/os/#pkg-variables]: Args hold the command-line
arguments, starting with the program name.


The API information is taken from the official Go documentation
pages.

4.2.6. Deep Dive

You can import more than one packages into your program. This example code of
"hello-world-3" imports "fmt" and "os".

According to the Go language specification, you can have multiple import
declarations:

4.2. Code Reading

48

https://golang.org/pkg/os/
https://golang.org/pkg/os/#pkg-variables

import "fmt"
import "os"

The Go formatter does not like this, however. It is considered a good practice to use
a single import declaration with multiple packages.

import (
 "fmt"
 "os"
)

Note the syntax. It uses parentheses () to include one or more packages within a
single import declaration.

The two are equivalent (as far as the compiler is concerned), but you will most
likely only use the latter syntax.

Each package import spec should be listed in a separate line. You can use this form
of import (with parentheses) even if one package is imported. As stated, in case of
the standard packages, simply the package name is used to specify a package to
include.

This code in "main.go" follows the general structure of a Go source file, as it must:
the package declaration first, the import declaration(s), and then the rest, main()
{} in this case.

Although this is how (a source file of) a Go program is structured, imports are
generally declared while the program’s main part is being written. For example, in
line 12 you end up using the "os" package, and hence you will import "os" at this
point. (Most IDEs can automatically take care of imports without you having to
explicitly declare them.)

4.2. Code Reading

49



"IDE" stands for integrated development environment. An IDE is
essentially a programmer’s editor, in which you can write, test,
and debug a program. If you run into the terms you are not
familiar with in this book, then the best strategy is that you ignore
them, but remember that you have run into something you don’t
know, and then just continue with reading. You can always do a
Web search later when you have a chance.

One other important thing to note about import is that the declaration is "file-
scoped". This is one of the few places where a source file plays a role. Most of other
things that are in the file level are all package-scoped.

The import declarations have effects only within the file in which they are declared.
If you need to use the same imported names (e.g., os.Args) from a different file,
even in the same package, then you will need to use the same import declaration
again in that file.

The main() function declares a couple of variables, greeting and name. Note the
difference. Both are of type string, but greeting is explicitly initialized (with a
string literal), and hence the type specification is omitted. It is of type string and
the compiler can easily infer that.

On the other hand, name does not have an explicit initial value, and hence its type
needs to be explicitly specified. The name's initial value is an empty string ""
because a string type variable’s default "zero value" is "".

In line 12, the os.Args variable (made available via the import) is checked, and, if
its length is bigger than 1 (this example program does not care how long it is as long
as it’s bigger than 1), then it uses the second element (which is guaranteed to exist
since len(os.Args) > 1) as name (line 13). If its length is not bigger than 1 (or, if it
is less than 1 or equal to 1), then the command line argument os.Args is ignored.
The name variable is assigned a generic "you" in this case (line 15).

4.2. Code Reading

50

It should be noted that which branch of the if will be executed cannot be known at
this point, just by looking at the source code. The compiler does not know it either.

Which branch will be executed will be determined only at "run time".

Depending on the result of the conditional statement, greeting may be Hello you
or something else, like Hello Jill, if the first command line argument (after the
program name) happens to be "Jill". This is shown in line 17. The value of the
greeting variable changes through string concatenation (with itself).

Then, the program prints out the result in line 19 using fmt.Println(), and the
program terminates.

Note the if-else statement (including the variable declaration for name) in the
program:

var name string
if len(os.Args) > 1 {
 name = os.Args[1]
} else {
 name = "you"
}

This could have been written as follows:

var name string = "you"
if len(os.Args) > 1 {
 name = os.Args[1]
}

They are equivalent. Depending on whether a user provides an argument or not,
their behavior is exactly the same. Would you prefer one style over the other?

4.2. Code Reading

51

Why?

So, how does a user of this program know that she should provide a command line
argument to get the behavior she desires. How does she know how this program
works?

One way is to read the source code and understand what it does. Clearly, that is not
practical for all but the simplest programs, however. Besides, in many cases, the
users will not have access to the program source code.

This is where the "documentation" comes in. All programs (intended to be used by
other users) should be documented. All source code that can be shared with other
programmers should be documented. All exported names, variables and functions,
etc., of a Go package should be documented. Many of the internal implementations
should be documented, if necessary, for other programmers who may end up
having to read your source code.

We will discuss more about documentation and comments, primarily with regards
to the source code, later in the book.

All functions "return" (to whoever has called them). Even the special main function
returns (to the operating system or the runtime).

When a function has no more thing to do (e.g., since it has reached the end of the
function after executing the last statement, e.g., fmt.Println() in this example), it
automatically returns.

You can explicitly add a return statement at the end of a function, but that should
not be normally needed, as in this example, unless a function happens to return a
value(s). More on this later.

When the main() function of a program returns, the program terminates.

4.2. Code Reading

52

Lesson 5. Hello World 4

5.1. Agenda
One last "advanced" version of the Hello World program. 

5.2. Code Reading
We will deal with simple input handling in a Go program.

hello-world-4/main.go

 1 package main
 2
 3 import (
 4 "bufio"
 5 "fmt"
 6 "os"
 7 "strings"

5.1. Agenda

53

 8)
 9
10 func main() {
11 fmt.Println("What is your name?")
12
13 reader := bufio.NewReader(os.Stdin)
14 name, _ := reader.ReadString('\n')
15 name = strings.TrimSuffix(name, "\n")
16 name = strings.Title(name)
17
18 fmt.Printf("Hello %s!\n", name)
19 }



Readers are encouraged to read the example source code, from
top to bottom, even if it may not make much sense. You will
recognize the things that you already know, and the things that
you do not. That is a very important part of the learning process.

5.2.1. Explanation

The program asks the user for his/her name, and it uses the name to personalize its
greeting.

Let’s try running the program:

go run main.go

It prints out the following "question":

What is your name?

5.2. Code Reading

54

If you "answer" it with, say, "joe", then it prints out the following personalized
greeting to the terminal.

Hello Joe!

The whole "conversation" may look like this:

What is your name?
jill ①
Hello Jill!

① is the input your provided on the terminal. You type, say, "jill", and press Enter
(a newline). Then, the program reads your input and does what it is instructed
to do next.

5.2.2. Grammar

This sample code is mostly based on what we have already covered in this book.

There is a 'package' declaration (line 1). There is an import declaration (lines 3~8).
There is this main() function for the program (lines 10~19). There are function
calls, that is, calling the functions from the standard library packages (line 11, lines
13~16, and line 18).

The empty lines are ignored by the compiler. They are often added to increase the
readability (lines 2, 9, 12, and 17). Sometimes the Go formatter (from the standard
Go tool chain) will insert empty lines to separate important parts, if you haven’t
already done so (lines 2 and 9). The Go formatter does not like more than one
consecutive empty lines.

The statements in lines 13 and 14 use a new syntax, known as the "short variable
declarations". Instead of the normal equal sign (=), these statements use :=.

5.2. Code Reading

55

This is equivalent to a combination of a variable declaration (with var) and an
assignment of an initial value to the variable. This shorthand notation can be rather
convenient in many circumstances.

One thing to note is that this syntax can only be used for "local variables", the
variables defined within a function or other blocks. You cannot use the short
variable declaration outside a function, that is, in the package-level scope.

Lines 13 and 14 are equivalent to the following:

var reader = bufio.NewReader(os.Stdin)
var name, _ = reader.ReadString('\n')

There is really not much difference. But, most experienced Go programmers prefer
the new syntax. You will therefore see more of the short variable declarations in
other people’s code.

There are a few things to note, however. In this new syntax, you cannot specify a
type of a variable (unlike the var declaration). And, related to this, you have to
provide an initial value, which the compiler will use to infer its type, among other
things.

There are some gotchas as well if you are not too careful, due to the variable
scoping and "shadowing" rules, as we will discuss later.

Line 14 has an interesting syntax, if you are new to the Go programming language.
Unlike many C-style languages, a function in Go can return more than one value.
The left hand side of line 14 looks strange, name, _. The comma in the middle
indicates that we are expecting that the function on the right hand side
reader.ReadString('\n') return two values (not 1, not 3).

The first one of the two return values will be assigned to the newly declared
variable name.

5.2. Code Reading

56

The underscore “_” in the second position is a predefined identifier, or a "name",
that signals to the compiler that even though we receive two values from the
function we will ignore the second one. _ is known as the "blank identifier".

In Go, you cannot declare a variable that is not used in a program. Hence, the blank
identifier _ is needed in this case.

By the way, how do you know that this particular function reader.ReadString()
returns two values?

One word. Documentation.

One of the interesting things about the short variable declaration (:=) is that there
should be at least one new variable on the left hand side. Not every variable has to
be new. Just at least one. The name variable in our example satisfies this
requirement.

We are calling 6 different functions from 4 different (standard) packages in this
small example. Note that their names are all capitalized, Println() and Printf()
from the fmt package, NewReader() from buffio, ReadString() on a reader
object of a type *bufio.Reader, which is returned from the NewReader() call, and
TrimSuffix() and Title() from the strings package.

In the Go programming language, any variables, constants, or functions (or, types,
which we have not introduced yet) of a package that are capitalized are "exported".
That means, anyone who knows how to find, and who has access to, the package
can use these variables, functions, etc.

On the other hand, none of the names that are not capitalized is exported. These
variables, functions, etc. can only be used within the package where they are
declared/defined.

Just to be clear, this is not a "convention". It is part of the Go language grammar.

5.2. Code Reading

57

By convention, Go programmers generally use PascalCase for exported names and
camelCase for non-exported names, which satisfy the requirements. (Both
PascalCase and camelCase capitalize each word in a name. In PascalCase, the first
word is capitalized whereas the first letter in a name in the camelCase style has a
lowercase.)

In line 15, a string literal "\n" is used as one of the arguments to
strings.TrimSuffix(). "\n" is a one letter, or character, string. The character
happens to be a newline. Character representation like this \n is known as an
"escape character". Although there appears to be two characters (\ and n), it really
represents one character to the compiler, which could have been unrepresentable
otherwise.

A pair of double quotes (" and ") is used to represent a string literal, as in the
example of line 15. Line 14, however, includes a newline escape character in single
quotes (opening ' and closing '). '\n', or 'a', is a byte literal (or, more precisely, a
rune literal). It is a value of type byte (or rune).

byte is one of Go’s builtin or primitive types, in particular a numeric type. (It
represents a number.) Go has a number of primitive types. Here’s a list of integer
types.

int8

8 bit signed integer

int16

16 bit signed integer

int32

32 bit signed integer

int64

64 bit signed integer

5.2. Code Reading

58

int

signed integer (architecture-dependent, typically 32 or 64 bit)

uint8

8 bit unsigned integer

uint16

16 bit unsigned integer

uint32

32 bit unsigned integer

uint64

64 bit unsigned integer

uint

unsigned integer (architecture-dependent, typically 32 or 64 bit)

In addition, there are a few more integer numeric types. byte is an alias type for
uint8 and rune is an alias type for int32. A rune is more like a character. A rune
can represent a Unicode character.

String is one of the more difficult types to deal with in Go. In fact, in any
programming languages. In Go, the string type has a dual nature. A string can be
viewed as a series of bytes or as a series of runes.


In fact, a string, or the source code itself, in Go is encoded in UTF-
8. A rune is a code point in UTF-8 encoding, which uses 1 to 4
bytes to represent a Unicode character.

Every character in ASCII (English) fits into a byte. It is often more convenient to use
bytes than runes. The function reader.ReadString() of line 14 takes a byte
argument to be used as a delimiter. You can view a byte in this context as a

5.2. Code Reading

59

character. In fact, in C and other similar languages, 'a', for instance, is a literal of
type char.

This example code also includes other important concepts such as "pointers" and
"methods", etc. in the Go programming language. They will be explained in later
lessons. Knowing those concepts is not required to understand this code.

5.2.3. APIs

We have seen fmt.Println() before. In addition, this program includes
fmt.Printf().

• func Printf [https://golang.org/pkg/fmt/#Printf]: Printf formats according to a
format specifier and writes to standard output. It returns the number of bytes
written and any write error encountered.

In our example, fmt.Printf("Hello %s!\n", name), the first argument "Hello
%s!\n" is a format specifier. The %s is a placeholder, known as a "verb", which will
be replaced by a subsequent argument, name in our example, when it is printed to
the output. The s in %s comes from string. To print an integer number, you use %d
(presumably from decimal or digit).

The number of the placeholders and the number of the arguments after the format
specifier should match. For example,

func main() {
 count := 99
 food := "Hamburgers"
 fmt.Printf("I ordered %d %s.\n", count, food)
}

The output will be something like this:

5.2. Code Reading

60

https://golang.org/pkg/fmt/#Printf

I ordered 99 Hamburgers.

fmt.Printf(), and its related functions, is one of the most frequently used
functions when you are learning the Go language (and beyond).

Other functions/methods included in this example are as follows:

• Package bufio [https://golang.org/pkg/bufio/]: Package bufio implements buffered
I/O. It wraps an io.Reader or io.Writer object, creating another object (Reader or
Writer) that also implements the interface but provides buffering and some
help for textual I/O.

◦ func NewReader [https://golang.org/pkg/bufio/#NewReader]: NewReader returns a
new Reader whose buffer has the default size.

◦ type Reader [https://golang.org/pkg/bufio/#Reader]: Reader implements buffering
for an io.Reader object.

▪ func (*Reader) ReadString [https://golang.org/pkg/bufio/#Reader.ReadString]:
ReadString reads until the first occurrence of the delim argument in
the input, returning a string containing the data up to and including the
delimiter. If ReadString encounters an error before finding a delimiter,
it returns the data read before the error and the error itself (often
io.EOF).

• Package strings [https://golang.org/pkg/strings/]: Package strings implements simple
functions to manipulate UTF-8 encoded strings.

◦ func TrimSuffix [https://golang.org/pkg/strings/#TrimSuffix]: TrimSuffix returns
the first string argument without the provided trailing suffix string, the
second argument.

◦ func Title [https://golang.org/pkg/strings/#Title]: Title returns a copy of the
string argument with all Unicode letters that begin words mapped to their
Unicode title case.

5.2. Code Reading

61

https://golang.org/pkg/bufio/
https://golang.org/pkg/bufio/#NewReader
https://golang.org/pkg/bufio/#Reader
https://golang.org/pkg/bufio/#Reader.ReadString
https://golang.org/pkg/strings/
https://golang.org/pkg/strings/#TrimSuffix
https://golang.org/pkg/strings/#Title

5.2.4. Deep Dive

This program of "hello-world-4" is not much more complicated than the previous
one. But, it uses more library functions and other constructs.

This example code reads an input from the console, or "stdin", rather than getting it
from the command line argument.

In line 11, it first prints out a question as a prompt to the user. He/she knows at this
point that an input is expected, in particular, the user’s name. The program then
waits for the user input.

There are a number of ways that a Go program can process user input. This
program uses an API bufio.Reader.ReadString(). In order to use
ReadString(), an object of type bufio.Reader must be instantiated. That is what
a package-level function NewReader() does from the bufio package in line 13. It
creates an instance of type bufio.Reader and it returns its pointer. We will defer
the topic of pointers to later lessons. But, for now you can ignore the difference
between value types and pointer types.

It should be noted that the NewReader() function takes an argument of type
io.Reader from the standard io package (which need not be explicitly imported in
our program). In this example, we pass the predefined variable os.Stdin in the os
package to NewReader(). The type of os.Stdin is io.Reader.

The created object is then assigned to a new variable reader in line 13.

The type bufio.Reader has a number of functions associated with it. These
functions are often called "methods" rather than just functions. And, they are
invoked with a slightly different syntax.

We call a package level function with the package name prefix, for example, as in
fmt.Println(). fmt is a package name. Println() is a package level function
defined in the fmt package.

5.2. Code Reading

62

In the case of methods, we use the variable name as a prefix. In
reader.ReadString() of line 14, reader is the name of the variable (of type
bufio.Reader), as defined in the previous line. ReadString() is a function, or a
method, associated with type bufio.Reader.

bufio.Reader.ReadString() takes an argument of type byte, and returns a
string which it has read when it encounters the given byte.

byte is another builtin type of the Go language. It literally represents a byte (8 bit).
As stated, we can view it as a character in certain contexts.

The statement of line 14, therefore, reads a line of text from os.Stdin (a line
terminates at a newline, by definition), and it stores its read value (a string) into a
variable, name.

When ReadString() encounters an error while reading the input, it returns the
error message as a second return value. For this simple example program, we
ignore the error. Hence, the blank identifier (_).

The strings package include various helper functions to make it more convenient
to deal with strings. strings.TrimSuffix() of line 15 removes the trailing
newlines from the input, if any. strings.Title() of line 16 capitalize the value of
name, if needed.

Notice the pattern. In each of these operations, the old name is being replaced by a
new name. Since we do not need the old values after transformations, we can reuse
the same variable.

Now, the last statement of the main() function prints out the personalized greeting
to the console, ending with a newline (\n).

5.2. Code Reading

63

5.3. Summary
In this lesson and the preceding three lessons, we covered some basics of handling
input and output in a Go program.

This kind of user interaction is often known as "command line interface", or CLI for
short.

Although there are still a lot that we need to learn, these "hello-world" lessons
introduce some of the most important and essential concepts of the Go
programming language so that you can start programming in Go on your own.

5.4. Questions
1. What is the general structure of a Go program source file?

2. What is the role of a main() function in a Go program?

3. How do you use exported variables from another package in your program?

4. How do you use a function imported from another package?

5.5. Exercises
1. Write a version of Hello World program with the following requirements:

◦ If the program is run with a command line argument, use it as a name as in
"hello-world-3".

◦ If a full name is provided ("first_name last_name"), then use the full name
(including the space).

◦ If the program starts without a command line argument, ask for the user’s
name as in "hello-world-4".

◦ Print "Now <your name> is a Hello World programmer!" to the terminal.

5.3. Summary

64

To clarify, if you run your program this way,

./my-program John Smith

The output should be something like this:

Now John Smith is a Hello World programmer!


All exercises in this book are optional. In fact, it is best to skip
exercises in your first reading, especially, if you are new to
programming.

5.5. Exercises

65

How to Use This Book
The Art of Go - Basics: Introduction to Programming in Golang - Beginner to
Intermediate is written for broad audience, from absolute beginners to more
seasoned developers with experience in other programming languages who want to
get a quick taste of Go.

This first part, First Steps, in particular, is primarily for beginners who are new
to programming, or at least new to programming in Golang. Depending on your
experience, you may find some of the lessons too easy or trivial. Or, too slow or
boring. You can skip, or skim through, certain portions of the book.

Each lesson starts with a sample code, in the "code reading" or "code review"
sections. Some lessons include multiple such sections. Learning a new
programming language is not much different from learning a second/foreign
language We will primarily emphasize "reading comprehension" skills in this book.

Through gradual exposure to many sample programs, from simple to more
complex, you will get familiar with the Go language, without even touching a
keyboard.

Here’s a good way to use this book. For each lesson, read the sample program(s) first.
If you understand what the overall program does, and know what each part of the
program means syntactically, then you can skip the lesson. Go to the next lesson.

If you are new to programming, however, some parts of the book might be rather
difficult or more or less incomprehensible. That is perfectly all right. Read the book
through. Then, come back to the beginning, and read the book again. This time, test
your knowledge by reading the sample code first. Do you understand what the
program does? If so, then you can skip this particular lesson and go to the next one.
If not, that’s all right. Read the lesson again.

Eventually, you will end up "understanding" all sample code in this book regardless

66

of where you started in the first place.

Then, this book will have served its purpose.

67

Lesson 6. Simple Arithmetic

6.1. Agenda
We will learn how to do simple calculations in Go in this lesson.


If you are familiar with basics of programming (in any language),
and if you find any of the lessons too slow moving, then you can
skip them.

6.2. Code Reading
This sample code illustrates various operations using primitive types.

simple-arithmetic/main.go (lines 1~19)

 1 package main
 2

6.1. Agenda

68

 3 import "fmt"
 4
 5 func main() {
 6 str := "go" + "lang"
 7 fmt.Printf("go + lang = %s\n", str)
 8
 9 sum := 1 + 1
10 fmt.Printf("1 + 1 = %d\n", sum)
11
12 diff := int16(5) - int16(2)
13 fmt.Printf("5 - 2 = %d\n", diff)
14
15 prod := 1.0 * 5.0
16 fmt.Printf("1.0 * 5.0 = %f\n", prod)
17
18 div := 8.0 / 3.0
19 fmt.Printf("8.0 / 3.0 = %.4f\n", div)

simple-arithmetic/main.go (lines 21~39)

21 numer := 7
22 denom := 2
23 quotient, remainder := numer/denom, numer%denom
24 fmt.Printf("%d / %d = %d\n", numer, denom, quotient)
25 fmt.Printf("%d %% %d = %d\n", numer, denom, remainder)
26
27 boolAnd := true && false
28 boolOr := true || false
29 fmt.Printf("t && f = %t; t || f = %t\n", boolAnd, boolOr)
30 fmt.Printf("t || f = %[2]t; t && f = %[1]t; t || f = %[2]t\n",
 boolAnd, boolOr)
31
32 var b1 byte = 0b10 // 00000010
33 var b2 byte = 0b110 // 00000110

6.2. Code Reading

69

34 bitAnd := b1 & b2
35 bitOr := b1 | b2
36 bitShift := b2 << 2
37 fmt.Printf("b1 & b2 = %08b; b1 | b2 = %08b; b2 << 2 = %08b\n",
38 bitAnd, bitOr, bitShift)
39 }

6.3. Explanation
The main() function of the program includes a series of statements which perform
some basic operations. It prints out the results in various formats using
fmt.Printf().

If you run the program as before:

go run main.go

It produces the following output:

go + lang = golang
1 + 1 = 2
5 - 2 = 3
1.0 * 5.0 = 5.000000
8.0 / 3.0 = 2.6667
7 / 2 = 3
7 % 2 = 1
t && f = false; t || f = true
t || f = true; t && f = false; t || f = true
b1 & b2 = 00000010; b1 | b2 = 00000110; b2 << 2 = 00011000

6.3. Explanation

70

6.4. Keywords
The sample code includes three keywords, which we already covered in the
previous two lessons.

• package: The package line should be the first (non-empty) line in any source
file.

• import: If you use functionalities from other packages, they need to be
imported.

• func: The func keyword is used to declare/define a new function.

main is not a Go language keyword although it has a special meaning. In particular,
func main() is special in Go. Every executable program should include one and
only one main() function in the main package.

As stated, you can find the keyword summary in the appendix, [appendix-section-
go-keywords].

6.5. Grammar
A computer is a machine that "computes". At the most fundamental level,
computers deal with numbers. Binary numbers.

Everything the computer stores and processes is 0's and 1's.

So, what does, say, 00110011 mean?

Suppose that we have a series of 0’s and 1’s in a particular location in memory, for
instance. What do these numbers mean?

This is where the "type" comes in. Based on the type of the value at a certain
memory location, we can interpret what those numbers mean. If a byte in memory

6.4. Keywords

71

has a value 01000001 and if its type is byte, then it is A (or, a number 65). If the
byte is a part of a 32 bit integer type value, then it could mean a very different
thing. If this byte is a part of a value of a string type, then it could mean A or
something completely different.

"Types" are of a fundamental importance in programming, especially for "statically
typed" languages like Go.

We deal with a number of different primitive types in this sample code.

• String type: Lines 6~7

• Integer types: Lines 9~13, 21~25, 32~38

• Floating point number types: Lines 18~19

• Boolean type: Lines 27~30

As discussed in the previous lesson, Hello World 4, there are a number of different
integer types, from uint8 and int8 to uint64 and int64 as well as machine-
dependent uint and int.

When an integer literal, e.g., a whole number like 125, is used as an initial value in
a variable declaration (without an explicit type specification), the variable is
inferred as int.

In most cases, without any special requirements, you can just use the int type for
integral numbers.

Go has two builtin types for floating point numbers.

float32

32 bit floating point number

float64

64 bit floating point number

6.5. Grammar

72

If a floating number literal, e.g., a number with a decimal point like 12.3, is used as
an initial value in a variable declaration (without an explicit type specification),
then the variable is inferred as float64.

In an assignment, the types of the left hand side (e.g., a variable) and the right hand
side (e.g., an expression) must match. In fact, their types must be identical.

If their types are "compatible" in some way, then a value can be "converted" to a
desired type. We will cover the topic of type conversion, or casting, in later lessons.

In a multiple assignment (e.g., line 23), the types of each of the corresponding pair
should be identical.

When you need to print variables of different types using fmt.Printf(), different
kinds of "verbs" are used. For string, it’s %s. For integers, it’s %d. For floating point
numbers, it’s %f. For Boolean values, it’s %t, and for bytes, it’s %b, and so forth.

There are other rules governing the formatting specifiers of fmt.Printf() and the
related functions. We will point them out when we encounter them throughout this
book.

Go supports C/C++ style comments. /* … */ is a multi-line comment. Anything
between /* and */ is ignored by the compiler. // … is a single line comment.
Anything after // in a line is ignored.

6.6. Deep Dive
The rules of basic operations in Go, such as addition and multiplication, are
essentially identical to those of almost all of the C-style languages.

If you have been programming in any of these languages, then there is really not
much new to learn in Go, as far as these basic operations go.

One thing to note is that all operands in an expression must have the same type. In

6.6. Deep Dive

73

some C-style languages, including C, some implicit "widening" casting is allowed.
For example, you can assign a value of int32 to a variable of type int64 because
any value of type int32 can be represented by type int64.

In Go, there is no implicit conversion. If the types are "compatible" and one or the
other’s type conversion is considered safe in certain operations, then they still need
to be explicitly converted into one type or another to make their types match.

Line 6 of the sample code declares a variable str of type string (since the right
hand side is an expression involving strings which will evaluate to string). The right
hand side is a string concatenation and its value will be "golang". To print the value
of str, we use the formatting verb %s (line 7).

In line 9, since the right hand side is an expression with integer literals, the new
variable sum is of type int. To print the value of sum, we use the formatting verb %d
(line 10).

In line 12, however, since the right hand side is an expression that evaluates to a
value of type int16, the new variable diff is of type int16. Here, the integer
literals are given specific types (via type_name() syntax).

One can also give a particular type to the variable in the declaration. For example,

var diff int16 = 5 - 2

In this example, diff is explicitly declared to be int16. Hence, the integer numbers
on the right hand side are also assumed to be of type int16. To print the value of
diff, we use the same formatting verb %d (line 13).

Line 15 of the example code introduces a floating point number operation. On the
right hand side, two numbers are multiplied. Since there is no precise type
information from this float number expression, the type of the newly declared
variable prod will be float64, as stated earlier. To print the value of a floating

6.6. Deep Dive

74

point number, we use a formatting verb %f (line 16).

The statement of line 18 follows the same pattern. The type of div is again float64.
In this case, the evaluated value of the expression on the right hand side is
2.666666666666….

For output purposes, we can round off the number at a certain precision.
fmt.Printf() of line 19 uses a formatting verb %.4f. This prints the number
down to 4 decimals below zero.

One thing to note is that floating point number calculations on a computer have
finite precisions. This is generally true, not just in cases like this example. The float
numbers are only approximately correct, and one has to be mindful in floating
number calculations.

Lines from 21 to 25 show other integer expressions, namely integer division and
modulo operations.

In math, an integer division can produce a float number result, as in 3/2 = 1.5. In Go,
an integer division produces an integer number with the same type as their
operands.

Dividing an integer 7 with an integer 2 is an integer 3, as can be seen from the
output of line 24. The modulo operation produces a remainder of an integer
division, which is an integer 1 in this particular example.

In Go, one can declare or initialize multiple variables in one statement. For
example, in line 23, both quotient and remainder are declared and initialized in
one line. The same holds true with assignment.

quotient, remainder := numer/denom, numer%denom

In this particular example, this statement is equivalent to two separate statements.

6.6. Deep Dive

75

quotient := numer/denom
remainder := numer%denom

But, in general, this may or may not hold true. Initialization/assignment generally
depends on the order of the evaluation. In this two-statement example,
numer/denom is evaluated first, and then the value is assigned to quotient. Next
numer%denom is evaluated, and its result is assigned to remainder.

In multiple variable assignment, all expressions on the right hand side are
evaluated first before any assignment. For example, in line 23, both expressions
numer/denom and numer%denom are evaluated before each of their values are
assigned to quotient and remainder, respectively.

In Printf() like functions, the format specifier includes a character %. Formatting
verbs start with this character, and they have special meanings in this context. If
you need to print the % character itself to the output, it needs to be escaped. Line 25
shows an example. The character % is escaped as %% in the formatting string.

Statements in lines from 27 to 30 demonstrate Boolean operations. Namely, Boolean
AND && (line 27) and Boolean OR || (line 28). Boolean operations in Go can be done
only with Boolean type variables and expressions. As stated, there is no implicit
type conversion in Go, and an integer value, for example, cannot be used as an
operand of a Boolean operation.

As the output of fmt.Printf() in line 29 shows, true && false is false whereas
true || false is true.

For completeness, true && true is true and true || true is true. false &&
false is false and false || false is false.

The statement of line 30 shows another interesting aspect of the Printf()-like
functions. So far, we have used the same number of formatting verbs and their
value arguments. They match one to one, from left to right, in the order provided.

6.6. Deep Dive

76

One can use a square bracket notation to designate a particular argument. For
example, %[1]t in the example refers to the first value argument (of type bool)
whereas %[2]t refers to the second value argument, which happens to be boolOr
in this example.

Note that, in this particular example, there are 3 verbs whereas there are 2 value
arguments. This would not have been possible with positional matching only.

The final segment of the main() function (after the last empty line) illustrates
bitwise operations.

First, numbers, or numeric literals, can be represented with decimal numbers or
numbers with a different base. In particular, Go supports binary, octal, and
hexadecimal number literals. Hexadecimal numbers start with 0x. For example,
0x1 is 1. and 0x10 is 16 in decimal representation. Octal numbers start with 0
followed by another number, and Binary numbers start with 0b.

The statements in lines 32 and 33 declare two byte variables, b1 and b2, and
initialize them with two numbers, 2 (0b10) and 6 (0b110), respectively. This could
have been written as follows with multiple variable assignment syntax:

var b1, b2 byte = 0b10, 0b110

Since the values on the right hand side are constant expressions, this statement is
equivalent to the the two statements in the example (lines 32 and 33).

The comments in those lines show the bit patterns of each number (since we are
going to demonstrate the bitwise operations). Since leading zeros are ignored after
the integer base prefix (that is, 0x10 is the same as 0x00010 as far as Go programs
are concerned), we could have written it as follows:

var b1 byte = 0b00000010

6.6. Deep Dive

77

var b2 byte = 0b00000110

Or, even

var b1 byte = 0b_0000_0010
var b2 byte = 0b_0000_0110

Underscores in integer literals are ignored. It’s not entirely obvious from this
simple example, but adding underscores in numbers can increase readability and
reduce a chance of inadvertent errors.

In this particular example, note that a set of 4 digits in a binary number
corresponds to 1 digit in a hexadecimal number.

Lines 34 and 35 demonstrate bitwise AND and bitwise OR operations, respectively.
In bitwise AND or OR operations, corresponding bits of the two numbers, or bytes,
are operated on independently of the other bits. 1 & 1 results in 1. Likewise, 1 & 0
is 0, 0 & 1 is 0, and 0 & 0 is 0. Also, 1 | 1 is 1, 1 | 0 is 1, 0 | 1 is 1, and 0 | 0 is
0.

The statement of line 36 demonstrates a (left) bit shift operation. It shifts each bit of
the given byte (the first operand) to the left by the second operand. That is,
0b_1110_0010 << 1 becomes 0b_1100_0100. Note that it does not "wrap around".
Rather, it fills the right-most positions with zeros.

The same holds true with the right bit shift operator >>. It just moves bits to the
right (with no wrapping).

The resulting bytes are printed with special formatting, %08t. This means that the
argument type is a byte (and treats it as a byte rather than a number) and use 8
spaces. And, if the string representation occupies less than 8 spaces, then fill the
empty spaces with 0s.

6.6. Deep Dive

78

You may think, by now, that there are so many rules in formatting. But you don’t
have to memorize them all. You can always look them up when needed in the API
documentations. You will get more familiar, and they will seem more natural, over
time.

One last thing to note from this example is that a statement can be written in more
than one lines (as in lines 37 and 38). It seems obvious, but it is not. In Go, splitting a
statement into multiple lines has to follow certain (formatting) rules.

On the flip side, in Go, more than one statement is not allowed in a single line,
unlike in many other C-style programming languages such as C++, C#, Java, etc.
More on this later.

6.7. Summary
We learned how to do basic operations in Go. There are integer and float
operations. Boolean operations. And, bitwise operations.

We also learned how to write these values of different types to the console using
fmt.Printf().

Author’s Note

Who is this book for?
Learning programming is hard. Learning a new language is hard. It’s often
frustrating. It’s sometimes discouraging. …

This book is written primarily for beginners who have tried, and tried, and
given up because it was just too hard.

As stated, Go is probably one of the best languages to learn programming

6.7. Summary

79

with. In many ways, Go is a much better choice for beginning programmers
than Javascript or Python, or PHP or Ruby.

This book is also written with more experienced programmers in mind who
want to learn the Go programming language.

There are a lot of resources, but none really explains well what Go really is.
Its apparent similarity to other C-style languages like C/C++, Java, C#, … can be
deceiving. If you want to really use Go, then you really have to learn it as a
new language. Learning just Go syntax will not do. You’ll need deeper
understanding.

Hope you can find some interesting ideas in this book that will help you
become a better Go programmer.

6.7. Summary

80

Lesson 7. A Tale of Two Numbers

7.1. Agenda
We will go over a series of small programs to illustrate various essential features of
the Go programming language.

7.2. Code Reading - Sum of Two Numbers
two-numbers-1/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func main() {
 8 num1, num2 := 10, 999
 9 sum := sum(num1, num2)
10 fmt.Println("Sum is", sum)
11 }

7.1. Agenda

81

12
13 func sum(x, y int) int {
14 sum := x + y
15 return sum
16 }

7.2.1. Explanation

This program adds two numbers, 10 and 999 and prints out its result.

Sum is 1009

7.2.2. Keywords

We are now familiar with keywords, package, import, and func. The example
code uses one more keyword, return.

• return: A return statement is used in a function to terminate its execution. A
return statement can optionally provide one or more result values.

7.2.3. Deep Dive

For the first time (in this book), we write our own (non-main) function.

The func keyword is used to declare a new function.

func sum(x, y int) int { /* ... */ }

The function definition (e.g., a series of statements) is included within the pair of
curly brackets.

7.2. Code Reading - Sum of Two Numbers

82

This function sum(), unlike the main() function, takes two arguments x and y, and
it return a value of type int. That is what the "function signature", func(int,
int) int, indicates. And, its implementation must be compatible with that
declaration.

As with const and var declarations, the types of the arguments are given after the
arguments. In this case, both x and y are int, and x, y int is a shorthand for x
int, y int. Whenever there are multiple consecutive arguments in the argument
list with the same type, all of them can be denoted with a single type name.

This example code follows the general structure of a Go program source file. The
package declaration, the import statements (if needed), and then "the rest". The
rest happens to include two functions in this example, main() and sum(). The
order is largely irrelevant. We could put sum() first and main() at the end. As far
as the Go compiler is concerned, there is little difference.

In some programming languages, most notably C and C++, we have to introduce the
name before we can use it. This is called "forward declaration".

In this example, as written, we use the sum() function in main() before it is
declared. In Go, this is perfectly all right.

The sum() function could have been put into a different file. Like this:

two-numbers-1/sum.go

1 package main
2
3 func sum(x, y int) int {
4 sum := x + y
5 return sum
6 }

And, the main() function, or any other function in the main package, can use the

7.2. Code Reading - Sum of Two Numbers

83

sum() function. There is little difference whether you put function or other
declarations in the same file or in different files. As stated, a package is the basic
unit, not a source file, in Go. (There are some exceptions, however.)

We could have even put sum() into a different package. We will cover multi-
package programs in later lessons.

The sum() function’s "body" includes two statements.

sum := x + y
return sum

The first statement does the addition operation of the given arguments x and y, and
it stores the computed value into a local variable sum. Then, in the second
statement, the value of sum is returned to the caller (the main() function, in our
example), as we promise in the function signature. For this, the return keyword is
used.

The return statement can just return to the caller (with no arguments), or it can
return one or more values (or, "references", which will be discussed further later in
this lesson, as well as throughout this book).

In this example, it returns one value, the value of sum. It should be noted that we
state that the function "returns the value of sum", not it "returns sum".

Go is a "block-scoped" language. We have not really discussed the important topic of
"scoping", but in this example, the lifetime of the variable sum is limited to the
function block. Or, more precisely, from the time when sum comes into existence
(the first statement) to the time when the block ends, or the function sum() ends,
with the closing }.

When the sum() function returns (the value of) sum, the runtime makes a copy of
the value of sum. And the copied value is used in the context of the caller. In our

7.2. Code Reading - Sum of Two Numbers

84

example,

sum := sum(num1, num2)

The value of the right hand side expression sum(num1, num2) is the copied value
of sum (which does not exist outside the sum() function). This copied value is used
as an initial value for a new sum variable, which is a local variable in the main()
function.

Syntactically, main()'s sum has nothing to do with the sum variable of sum().



Using the same names in different places may sound like a bad
idea, which can cause confusion. But, it is natural to do so in
many cases. There is no reason to use var sum1, var sum2, func
addition() etc., as long as they do not "conflict" with each other.
Using the same names in the same scope, or in the nested scopes,
can have unintended consequences. One needs to be more careful
in those circumstances.

One thing to note is that the sum local variable of the sum() function is mostly
unnecessary, in this example. We could have done away with it:

func sum(x, y int) int {
 return x + y
}

These two implementations are mostly equivalent. Modern compilers will most
likely generate the same machine code from these two different function
definitions.

Some people prefer the shorter version, for example, because it’s slightly more

7.2. Code Reading - Sum of Two Numbers

85

concise. Some people prefer the original version, for example, because it’s slightly
more readable. (That is, because the variable is called a "sum" although the function
name "sum()" is a dead giveaway in this particular example.)

In this simplest example, there is really no difference. But, in general, it should be
noted that there is always a tradeoff between "simple" and "verbose". There is no
absolute rule to prefer one style over the other.

Finally, the program writes the result to the console using the fmt.Println()
function. As stated, this function can take an arbitrary number of arguments, and it
prints out all of them, separated by space.

7.3. Code Reading - Bigger of Two Numbers
two-numbers-2/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func main() {
 8 num1, num2 := 10, 999
 9 max := bigger(num1, num2)
10 fmt.Println("Max is", max)
11 }
12
13 func bigger(x, y int) int {
14 if x > y {
15 return x
16 }
17 return y

7.3. Code Reading - Bigger of Two Numbers

86

18 }

7.3.1. Explanation

This program finds the bigger of the two numbers, 10 and 999 and prints out the
result.

Max is 999

7.3.2. Deep Dive

We define a new function bigger() using the func keyword.

func bigger(x, y int) int { /* ... */ }

bigger() has the exact same function signature as the sum() function from the
previous example, func(int, int) int. It accepts two int arguments and
returns an int value.

The function names or the argument names have no real significance. We could
have defined this function as follows:

func biggerOfTwo(n1, n2 int) int { /* ... */ }

It has the same signature.

This new program "two-numbers-2/main.go" has exactly the same structure as the
previous example.

7.3. Code Reading - Bigger of Two Numbers

87

It starts with the package declaration, and then the import statement. "The rest"
follows next, which happens to comprise two functions as before. As stated, the
order of these functions has no real significance to the execution of the program.

Every Go program starts by executing the first statement of the main() function in
the main package. Other functions are invoked as long as the statements in the
main() function call those functions, either directly or indirectly.

We sometimes use phrases like a "call chain" or "call stack", in various contexts, to
emphasize this aspect of program execution.

A function calls another function. This function calls another function. etc. An
invoked function returns to the caller. This caller function in turn returns to its own
caller. etc. It all starts from main() and ends at main() (in a normal program
execution).

Go is a function-based programming language. Just like C. (Not to be confused with
a functional programming language, however. Go does not support a functional
programming style.)

The bigger() function looks like this:

func bigger(x, y int) int {
 if x > y {
 return x
 }
 return y
}

We introduced the if conditional statement in an earlier lesson. The if statement in
this particular example comprises a Boolean expression (x > y), and an if block {
return x }, but not an else block.

7.3. Code Reading - Bigger of Two Numbers

88

If the expression x > y holds true for the given two numbers, it returns the value
of the first of those two numbers. Otherwise, the if block is not executed, and it
goes past the closing } of the if statement.

In this example, that happens to be another return statement, return y. It returns
the value of the second argument, which happens to be equal to the first or bigger.

At first sight, there seems to be an asymmetry. If x == y, then it returns y, not x.

But, that’s just because of the way the program is written. We are not actually
returning "x" or "y". We are returning the value of x, or the value of y. When the
value of x is equal to that of y, the statements return x and return y do exactly
the same. They return a value that happens to be the same as x or y under that
condition (x == y).

We could have used x >= y:

if x >= y {
 return x
}
return y

There will be no difference in the way this program behaves.

These operators, >, >=, and ==, are known as comparison operators. The result of
the comparison is a Boolean value. They compare the two given operands and
determine the result based on the operator used.

> is a "bigger than" operator. If the value of the first operand is bigger than that of
the second, it returns true. Otherwise, it returns false. >= represents "bigger than or
equal to". == compares equality. != is the opposite of ==. It returns true if the values
of the two operands are different. It returns false otherwise. <= is, in general, the
opposite of >. It returns true if the value of the first argument is smaller than, or

7.3. Code Reading - Bigger of Two Numbers

89

equal to, that of the second. Otherwise, it returns false. < is a "less than" operator.

One thing to note is that, in this particular example, the if statement could have
been written as follows.

if x > y {
 return x
} else {
 return y
}

There is semantically no difference between this and the original code in the
sample.


Without formally defining these terms, "syntax" has something to
do with "forms" and "semantics" is related to "meanings".


Go does not have a "ternary operator" (i.e., ?:). This if-else
statement could have been written in one line with a ternary
operator.

In effect, the bigger() function returns the bigger value between the two
arguments. If the two values are the same, then it just returns that value.

The max var in the main() function is then initialized with this value:

max := bigger(num1, num2)

At the risk of stating the obvious, values are "copied". Once the returned value from
bigger() is assigned to the max var in main(), max has the same value. But,
otherwise, the value of max has no memory, so to speak, as to where it came from.

7.3. Code Reading - Bigger of Two Numbers

90

Values are copied.

In the last line of the main() function, the max value is printed to the terminal, and
the program terminates (because there is no more statement in the main()
function).

7.4. Code Reading - Difference of Two
Numbers
two-numbers-3/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func main() {
 8 num1, num2 := 10, 999
 9 d := diff(num1, num2)
10 fmt.Println("Difference is", d)
11 }
12
13 func diff(x, y int) int {
14 if x > y {
15 return x - y
16 } else {
17 return y - x
18 }
19 }

7.4. Code Reading - Difference of Two Numbers

91

7.4.1. Explanation

This program computes the difference between two numbers, 10 and 999 and
prints out its result.

Difference is 989

7.4.2. Deep Dive

Let’s define the "difference" between two numbers as the value of a gap between
two numbers. That is, the difference between 10 and 50 is 40, and the difference
between 50 and 10 is 40.

It is not dependent on the order of the operands, unlike subtraction, for instance.

Based on this definition, we can easily implement a "difference" function:

func diff(x, y int) int {
 if x > y {
 return x - y
 } else {
 return y - x
 }
}

This function has the same signature as the previous two example functions, that is,
func(int, int) int. It takes two int arguments and returns an int value.

If the value of the first argument x is bigger than that of the second y, the function
returns the value of x - y, which will be non-negative.

Likewise, if the value of x is not bigger than that of y, the function returns the value

7.4. Code Reading - Difference of Two Numbers

92

of y - x (through the else block), which will be again non-negative.

As in the previous sample function bigger(), the apparent asymmetry is
incidental. There is no difference whether we use x > y or x >= y for the
conditional expression. When x == y, the value of x - y is the same as that of y -
x, namely, 0.

Note that the Go standard library has a similar function in the math package, func
math.Abs [https://golang.org/pkg/math/#Abs], which takes two float64 arguments and
returns a float64 value.

When the diff() function returns, it return a value equal to x - y or y - x
depending on their relative size. The value is then copied to a local variable d in the
main() function.

d := diff(num1, num2)

As stated, although the diff() function is declared below 'main()', the main()
function can still use diff() at this point. This is a general rule. Forward
declaration is not needed in Go.

The value of d is then written to the console using the fmt.Println() function,
and the main() function returns.

Before moving on to the next example, let’s take a look at the if statement in the
diff() function’s body.

As with the previous example, bigger(), it could have been written one of two
ways. An alternative would be:

func diff(x, y int) int {
 if x > y {

7.4. Code Reading - Difference of Two Numbers

93

https://golang.org/pkg/math/#Abs
https://golang.org/pkg/math/#Abs

 return x - y
 }
 return y - x
}

In this simple example, these two implementations are equivalent. This is a rather
special case. It is a very small function with not much complicated logic, and the if
branch returns.

Now, the question is, which "form" is better, in general? One choice is if bool {}
else {}:

if x > y {
 // Do something
} else {
 // Do something else
}

And, the other is if bool {}; (the rest):

if x > y {
 // Do something
}
// Do the rest

This is really beyond the scope of this book, whose focus is teaching the Go
language syntax, but it is important to think about this type of issues when you start
learning programming.

Why would you prefer one style over the other? In what situations?

7.4. Code Reading - Difference of Two Numbers

94

Note that the if branch and the else branch is "symmetric" in the first case. It can
even be written as follows:

if x <= y {
 // Do something else
} else {
 // Do something
}

The if and else branches are expected to do more or less the same kind of tasks.

On the other hand, in the if bool {}; (the rest) form, the task to be done in
"the rest" part might have intrinsically different characteristics than the task to be
done in the if branch.

7.5. Code Reading - Average of Two
Numbers
two-numbers-4/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func main() {
 8 num1, num2 := 10, 999
 9 avg := average(num1, num2)
10 fmt.Println("Average is", avg)
11 }
12

7.5. Code Reading - Average of Two Numbers

95

13 func average(x, y int) (avg float32) {
14 avg = float32(x+y) / 2.0
15 return
16 }

7.5.1. Explanation

This program computes the average of the two numbers, 10 and 999 and prints out
its result.

Average is 504.5

7.5.2. Deep Dive

Although this code looks rather similar to the previous examples, there are a few
differences worth noting.

As before, the func keyword is used to define a new function average():

func average(x, y int) (avg float32) {
 avg = float32(x+y) / 2.0
 return
}

This function’s signature is func(int, int) float32. Since the average
computation may yield a non-integer number even if the two operands are ints,
the function returns a floating point number.

avg = float32(x+y) / 2.0

7.5. Code Reading - Average of Two Numbers

96

In Go, all operands in an operation must have the same type. x + y evaluates to an
int, and hence it has to be explicitly cast to the desired type, float32(x+y).

The floating point literal 2.0 has no fixed type. Since the type of the left hand side
of the division is float32, it is treated as float32. A mere 2 would have required
an explicit casting since none of the integer number types is compatible with
float32.

Now the computed value of type float32 is assigned to the var avg.

The average() function uses a "named return value". Instead of declaring only the
return type float32, it gives a name avg in the function declaration, (avg
float32). This variable can be used in a function body.

Then, the return statement does not have to explicitly specify the variable name.
Just return suffices (instead of return avg) since it is already known that it is the
value of avg that the function is returning.

As before, the function return value is copied to a new variable avg in the main()
function. And, it is written to the terminal.

avg := average(num1, num2)
fmt.Println("Average is", avg)

This is just an example program for illustration, but if the program’s primary
purpose was to print out the computed value, we could do away with the local
variable avg.

fmt.Println("Average is", average(num1, num2))

As we stated before, this is largely a personal preference in many cases.

7.5. Code Reading - Average of Two Numbers

97

7.6. Code Reading - Swap Two Numbers 1
two-numbers-5/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func main() {
 8 num1, num2 := 10, 999
 9 a, b := swap(num1, num2)
10 fmt.Println("Original:", num1, num2)
11 fmt.Println("Swapped:", a, b)
12 }
13
14 func swap(x, y int) (int, int) {
15 return y, x
16 }

7.6.1. Explanation

This program swaps two given numbers, 10 and 999 and prints out its result.

Original: 10 999
Swapped: 999 10

7.6.2. Deep Dive

This is another simple example to demonstrate features of Go functions. This

7.6. Code Reading - Swap Two Numbers 1

98

function takes two int arguments and returns them in the opposite order.

func swap(x, y int) (int, int) {
 return y, x
}

In fact, this function is so simple that we could have just used it inline. That is,
instead of

a, b := swap(num1, num2)

We could have just done

a, b := num2, num1

That is exactly what the swap() function does. We have seen this before. It is called
"multiple variable assignment" (although this example is really multiple variable
initialization).

This is equivalent to

var a, b int = num2, num1

It is also equivalent to

var a, b int
a, b = num2, num1

7.6. Code Reading - Swap Two Numbers 1

99

Now, that is a multiple variable assignment.

As stated, the expressions on the right hand side of a multiple variable assignment
statement are evaluated first. They happen to be num2 and num1, in this case. Then
the values on the right hand side are assigned to the variables on the left hand side,
in the corresponding order. That is, something like a = num2 and b = num1.

Without using the local variables a and b, the pair num1 and num2 can be swapped
as follows:

num2, num1 = num1, num2

Again, it should be remembered that the right hand side is evaluated first before the
assignment.

Now let’s get back to our original sample code, in particular, the swap() function. It
is equivalent to the following:

func swap(x, y int) (int, int) {
 x, y = y, x
 return x, y
}

Now let’s go through this function in some detail.

First, this function returns more than one value. Two to be exact. We have seen a
function like this. For example, bufio.Reader.ReadString() returns two values,
the second of which is of an error type. This is one of the unique features of the Go
programming language.

When the arguments of a function are passed in, as in this example, their values are
copied. The caller, the main() function in this example, calls swap() with num1 and

7.6. Code Reading - Swap Two Numbers 1

100

num2. They are copied to x and y, respectively.

Conceptually, this is almost like this:

x, y = num1, num2

Clearly, this is not a valid statement since x and y are local variables of swap()
whereas num1 and num2 are variables locally declared in main().

As stated, the names are not that significant. The swap() function could have used
num1 and num2 as argument names instead of x and y.

Then, the values of the variables, x and y, are swapped in x, y = y, x. We have
seen this before, but it is worth repeating. Statements like this may look rather
strange to you if you have not seen much Go code.

An important thing to remember is that the y and x on the right side are values.
More generally, expressions. On the other hand, the x and y on the left hand side
are variables. It is an assignment.

So, the statement x, y = y, x assigns the (old) value of y to the variable x, and it
assigns the old value of x, not the newly assigned value, to the variable y. Hence the
values are swapped.

The swap() function then returns the (swapped) values of the variables x and y to
the caller. Again, the values are copied, and a and b of the main() function now, in
effect, have the values of the swapped values of num1 and num2.

Since the argument values are copied when the swap() function is called, the
original values of num1 and num2 in main() remain intact. When we print out both
pairs of num1 and num2 and of a and b,

7.6. Code Reading - Swap Two Numbers 1

101

fmt.Println("Original:", num1, num2)
fmt.Println("Swapped:", a, b)

Their values are switched. The function does what it is supposed to do, namely,
swapping the argument values.

7.7. Code Reading - Swap Two Numbers 2
two-numbers-6/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func main() {
 8 num1, num2 := 10, 999
 9 swap(&num1, &num2)
10 fmt.Println("Swapped:", num1, num2)
11 }
12
13 func swap(p, q *int) {
14 *p, *q = *q, *p
15 }

7.7.1. Explanation

This program does exactly the same thing as the previous example. It swaps two
numbers, 10 and 999 in this case, and prints out the swapped pair.

7.7. Code Reading - Swap Two Numbers 2

102

Swapped: 999 10

7.7.2. Deep Dive

Depending on your previous experience, this might be one of the most esoteric
examples (so far).

Go has a "pointer" type. It is based on the original C’s pointer. But there are some
subtle, and fundamental, differences.


We will not discuss the "unsafe" features of the Go programming
language in this book.

A C’s pointer refers to a location in memory, or an address, of a value. The pointers
in Go are indeed based on the memory addresses. But, that aspect of pointers are
not of much use, at least in the "safe Go". Go does not even allow "pointer
arithmetic". (It should be noted that the Go runtime uses garbage collection.)

Instead, in this book, we will present an alternative explanation of Go pointers. We
will first introduce some basic concepts in the remaining part of this lesson.

So far in this book, we have only dealt with "values". As stated, values are copied,
e.g., when they are passed to a function. Variables of values follow what they call "
value semantics".

Everything, every action, that we have seen so far follows the value semantics. In
the context of the Go programming languages, the value semantics simply means
"copy" semantics. Values are copied.

Not surprisingly, there is another way to deal with values in programming. The C
language’s pointers more or less behave in this way. It is called "reference
semantics".

7.7. Code Reading - Swap Two Numbers 2

103

In many programming languages, all types but a few are reference types, which
behave according to the reference semantics.

For example, in Java, all custom types are reference types. The primitive types are
the only exceptions, which follow the good old value semantics.

We will look at pointers in Go from this perspective. Go pointers follow the
reference semantics. Go pointers are "references".

Going back to the example code, the swap() function in this example is defined this
way.

func swap(p, q *int) {
 *p, *q = *q, *p
}

The function’s signature is func(*int, *int). It does not return any value.

*int represents an int pointer type. For a value type, there is a corresponding
pointer type. For a value type T, there is a pointer type *T, which follows the
reference semantics.

For a reference, or a variable of a reference type, p, *p is the value associated with
the reference. The * in this context is called a "dereference operator".

Now,

*p, *q = *q, *p

This statement is very much like x, y = y, x in the previous example.

On the right hand side, there are two values. *q is the value associated with the

7.7. Code Reading - Swap Two Numbers 2

104

pointer q. *p is the value associated with the pointer p. *q and *p roughly
correspond to the y and x of the previous swap() function, respectively.

The *p and *q on the left hand side, however, are syntactically different. *X on the
left hand side of an assignment, for instance, means that we are assigning a value to
the associated value of the pointer variable X, say, rather than assigning the value to
the (pointer) variable.

In many cases, we are more interested in the underlying value of a pointer rather
than the pointer itself. A pointer, or a reference, is just a wrapper, or a handle,
which provides the reference semantics for the associated value.

Now the result of this two value assignment is that the values of the underlying
variables end up being swapped.

After calling the swap function,

swap(&num1, &num2)

The values of num1 and num2 are swapped. Note that there are no return values.
Calling this swap() with references, or pointers, directly changes the associated
values of those pointers.

Notice the syntax. The & is a reference operator. (It is also known as an "address of"
operator in C.) &num1 is an int pointer since num1 is an int type. Likewise, &num2 is
an int pointer.

The new swap() function of this example takes two int pointers. Hence,
swap(&num1, &num2) is syntactically correct.

This can be written as follows to make it easier to see the types:

var p1, p2 *int = &num1, &num2

7.7. Code Reading - Swap Two Numbers 2

105

swap(p1, p2)

Not to make things more confusing, but the passed-in pointer arguments to a
function are in fact "copied". The pointer &num1 of main(), for instance, is different
from p of swap(). But they "point" to the same underlying value. That is how the
pointer arguments to a function can change the content of the values which the
pointers are holding, or pointing to.

If you look at the values of num1 and num2 at this point in the main() function, after
calling swap(), their values will have been swapped, as can be verified by the
fmt.Println() statement in the next line.

7.8. Summary
We covered various important aspects of functions in Go in this lesson.

A function can be declared with the func keyword. The order or place of a function
within a package is not important. A Go function can take zero or more arguments
and return zero or more values.

We also introduced pointer types in Go.

Pointers in Go are more closely related to references in garbage-collected languages
such as Java and C# rather than to pointers in C and C++. Go’s pointers follow
reference semantics.

We will often use the terms pointers and references interchangeably in this book.

7.9. Questions
1. What is a function signature?

2. What does a return statement do?

7.8. Summary

106

3. How do you return multiple values from a function?

4. What is a pointer in the Go programming language?

Author’s Note

Who is This Book Not for?
Learning new things, or new skills, requires patience, and perseverance.

If you are only interested in getting some quick knowledge on the Go
programming language, then this book may not be for you. There are a lot of
books, and other resources, which claim that they can make you a world-
class programmer in 7 days, or in 24 hours, or even in 5 hours or less.

This book does not make such promises. This book does not make promises
that you will get a job as a Go programmer and make tons of money, after
finishing all the lessons in this book.

If you view learning programming, learning a new programming language,
as something that you’ll have to do to advance in your career, to become rich,
etc., then this book may not be for you.

Learning programming can be fun.

Programming can be fun. And, useful. Not just as a career choice. But as a
pastime, as a hobby. Just as an endeavor to satisfy your intellectual
curiosities.

7.9. Questions

107

Lesson 8. Multiplication Table

8.1. Agenda
We will cover in this lesson basics of slices and for-loops in Go.

8.2. Code Reading
This program is a little bit longer than those we have seen so far. It includes a few
new concepts.

multiplication-table/main.go (lines 1~13)

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 const low int = 2

8.1. Agenda

108

 8 const high int = 9
 9
10 func main() {
11 fmt.Println("Multiplication Table:")
12 printMultiplicationTable()
13 }

multiplication-table/main.go (lines 15~41)

15 func printMultiplicationTable() {
16 axis := make([]int, high-low+1)
17 for i := 0; i < high-low+1; i++ {
18 axis[i] = low + i
19 }
20
21 fmt.Print(" ")
22 for _, v := range axis {
23 fmt.Printf("%4d", v)
24 }
25 fmt.Println("")
26 fmt.Print(" -")
27 for range axis {
28 fmt.Printf("%4s", "--")
29 }
30 fmt.Println("")
31
32 for _, l := range axis {
33 fmt.Printf("%4d", l)
34 fmt.Printf("%4c", '|')
35 for _, r := range axis {
36 m := l * r
37 fmt.Printf("%4d", m)
38 }
39 fmt.Println("")

8.2. Code Reading

109

40 }
41 }

8.2.1. Explanation

We all learned the multiplication table by heart. The code generates a
multiplication table within a given integer range.

If you build and run the program from command line, it produces the following
output:

 2 3 4 5 6 7 8 9 ①
 - -- -- -- -- -- -- -- -- ②
 2 | 4 6 8 10 12 14 16 18 ③
 3 | 6 9 12 15 18 21 24 27
 4 | 8 12 16 20 24 28 32 36
 5 | 10 15 20 25 30 35 40 45
 6 | 12 18 24 30 36 42 48 54
 7 | 14 21 28 35 42 49 56 63
 8 | 16 24 32 40 48 56 64 72
 9 | 18 27 36 45 54 63 72 81

① "Header".

② Divider between the header and the body.

③ Actual multiplication values start from this line.

8.2.2. Keywords

This program includes a few keywords that we have already seen and that we are
more or less familiar with by now, package, import, func, and const.

It also includes the following two new keywords:

8.2. Code Reading

110

• for: The for keyword is used to create a compound statement that specifies
repeated execution of a block.

• range: A for loop can be controlled by a range clause.

Although it is not a keyword, nil is a globally defined constant in Go, which is
comparable to Null in other garbage collected language.

8.2.3. Builtin Functions

• make(): The make built-in function allocates and initializes a value of a
reference type. The first argument is a type. Its return type is the same as the
type of its argument.

8.2.4. Grammar

We have discussed const and var variables before.

In programming in general, a variable is something that holds a value. A const can
be viewed as a variable as well. In Go, the value of a constant is fixed at build time,
and it cannot change.

In some programming languages, there are different kinds of variables, like
"immutable variables" and "mutable variables", etc. But, in Go, all variables are
mutable. The values of all variables in a Go program can potentially change during
the execution of a program, e.g., through an assignment or in other ways. You
cannot make Go variables immutable (like a constant).

Using const constants is generally preferred over var variables whenever possible.
But, in Go, you can only use const for values that are known at compile time.
const is limited to number types and strings.

Constants and variables can be declared globally, that is, within a "package scope",
or in a function or in a block.

8.2. Code Reading

111

The constants of the example code are declared in a package scope, and they are
available to any functions or expressions within the main package.

Note that these values are "hard-coded" in this example. If these numbers have to
be set via a program’s action, e.g., by reading from a user input, then these could
not have been declared as const.

A slice is one of the most important constructs in Go. A slice is a collection type,
so to speak. A variable of a type slice can hold multiple values of the same type. A
slice variable is declared with the following syntax:

var myIntSlice []int

The elements, or items, in a slice are ordered, and they can be accessed via an index
notation ([]). They occupy consecutive spaces in memory.

A slice is defined over an (implicit or explicit) array. An array is a fixed-size type.
Once declared, the length of an array type variable cannot change.

A variable of an array type can be declared as follows:

var myIntArrayWithSize10 [10]int

This declares a variable myIntArrayWithSize10 with a type [10]int. It is a 10-
element array with each element of int type. When an array variable is declared,
all of its elements are initialized by default, 0 in this example.

Note that the size of an array is a part of a type. That is, for example, [10]int and
[11]int are two different types. On the other hand, three is only one int slice
type, namely, []int. There is only one float64 slice type, []float64, etc.

A newly declared slice variable with no explicit initialization has a nil value. Or, a

8.2. Code Reading

112

slice can be initialized with an empty collection. For instance,

var myEmptySlice = []int{}

Since the variable’s type can be inferred from the right-hand side expression, there
is no need to explicitly specify the type ([]int) in this case. This statement declares
a variable myEmptySlice and initializes it with an empty slice (e.g., its length == 0).

The size of a slice can change. A slice can grow as more elements are added to the
slice. A slice has two size-related attributes, len (length) and cap (capacity).

The length is the current size of the slice. The len is always less than, or equal to,
the cap of a slice because a slice may contain an extra "room to grow". The capacity
of a slice is essentially the length of the underlying array (implicit or explicit).

It should be noted that a given slice cannot grow beyond its capacity, which is a
constant.

The builtin functions len() and cap() are used to get the length and the capacity
of a slice, respectively.

The slice type is one of the few "reference types" in Go, which means that
variables of type slice follow the reference semantics. A slice variable is
essentially a pointer to the underlying array, which is incidentally a value type.

As the size of a slice grows, that is, beyond the current capacity, for example, the
runtime may need to allocate new memory and create a different (and larger)
array. A new slice variable may be needed to point to the newly allocated array in
such a case.

The values from the old array are copied to the new one, and the old array may be
garbage collected unless the array is still being used, e.g., by other slices, etc.

8.2. Code Reading

113

You can initialize a slice with a desired length, and a capacity, using builtin function
make(). For example,

var myByteSlice = make([]byte, 10, 20)

The make function on the right hand side accepts 3 arguments, the type of the slice
to be created ([]byte), the initial length (10), and the capacity (20). All values of its
elements are initialized with the element type’s default value, 0b0 in this case.

The capacity argument can be omitted. If the capacity is not provided, the length is
also optional. make([]byte) will create a byte slice of len == 0 and cap == 0.

All programming languages have constructs for facilitating repeated execution of a
statement or a set of statements. It is known as a "loop".

Go supports multiple kinds of loops, with a keyword for.

One of them is a "classic" for loop. Another is a for range loop.

const N = 10
for i := 0; i < N; i++ {
 fmt.Println("i =", i)
}

This "classic" for loop is based on C’s for loop. There are three statements after the
keyword for and before the "for block" ({ … }). The first statement is typically
used for initializing a "loop variable".

The second statement must be a Boolean expression, if present. As long as this
value evaluates to true the statements in the for-block will be repeatedly executed.
If this expression is missing, then it is considered true.

8.2. Code Reading

114

The third statement is executed between iterations. ` is an increment
operator. Unlike in many C-style languages, Go does not have a
prefix version. It only has a postfix version. (The ` operator is
placed after the variable.) One other thing to note is that i++ is a statement, not an
expression.

i++ is equivalent to

i += 1

This is also equivalent to

i = i + 1

That is, i++ adds 1 to the current value of i, and assigns the result back to i. Hence,
the name "increment" operator.

Notice that the loop variable i is initialized with the "short variable assignment"
syntax.

One other thing to note is that, in Go, there is no "comma (,) operator". (You can
ignore this if you don’t know what the comma operator is.) You cannot have more
than one statements in each of these three slots. But, you can have an empty
statement.

For example, the following is a perfectly valid statement.

for ; ; { }

In Go, you can even omit all semicolons, like this:

8.2. Code Reading

115

for { }

There are a few different variations of for loops in Go, but syntactically, you cannot
have a single semicolon. Either both or none should be present.

Another form of for loop is so-called "for range loop". The syntax looks like this:

for i, v := range X {
 // Statements here.
}

X must be a type that supports range, e.g., a slice. (And, a map, as we will see in later
lessons.)

Variable i is a (0-based) index. Variable v is a value of the elements from X.

For example,

slice := make([]int, 10)
for i, v := range slice {
 fmt.Println("i =", i, "v =", v, "slice[i] =", slice[i])
}

In this example, an int slice is used for the range. i runs from 0 to 9 in this
example, and values of v will be all zero because the slice has been only initialized
with default values. Likewise slice[i] will all be zero through the range of i.

One thing to note is that v is a "copy" of each element in slice. Although the values
of v and the corresponding slice[i] have the same values, they can behave
differently.

8.2. Code Reading

116

If an element of slice is a value type as in this case (int), you cannot change the
values of slice by manipulating v because it is just copies. That’s value semantics.

If the elements are a reference type (e.g., pointers or other slices), on the other
hand, then the "copies" may actually be pointing to the same underlying values,
according to the reference semantics, and changing the content of v may indeed
affect the content of the slice.

In the range loop, you may end up using only one variables. In Go, unused variables
cannot be declared.

In case you are using only one, you can use the blank identifier (_) for the other.

For example,

for _, v := range X {
 // Use v here
}

If you do not use the second variable, you can just omit it. Like this:

for i := range X {
 // Use i here
}

If you use neither, then you can do away with whole variable declarations:

for range X { }

 Unlike other C-style languages like Java, C#, or JavaScript there

8.2. Code Reading

117

are no parentheses after the for keyword. The braces { } are
always required. This is true even when there is only one
statement in the block.

8.2.5. APIs

The fmt package exports many functions. We have seen fmt.Println() and
fmt.Printf(). This lesson’s sample code includes another function fmt.Print().
fmt.Print() is similar to fmt.Println(), but it does not add a newline at the
end.

• func Print [https://golang.org/pkg/fmt/#Print]: Print formats using the default
formats for its operands and writes to standard output. Spaces are added
between operands when neither is a string. It returns the number of bytes
written and any write error encountered.

8.2.6. Deep Dive

The goal of this program is to print a multiplication table as shown earlier.

You start from the requirements, and go backward. In this case, the desired output
is the requirement.

First, we initialize the range (from low to high). You can use the classic for loop, or
you can do it using range as in the example code of this lesson.

You can assign values to a slice using a loop:

axis := make([]int, high-low+1)
for i := 0; i < high-low+1; i++ {
 axis[i] = low + i
}

8.2. Code Reading

118

https://golang.org/pkg/fmt/#Print

We happen to know the length of the slice which we are going to use, high-low+1.
Hence we use that information when calling make(). (Make sure that you
understand why the length is high-low+1.)



Go functions are "closures". There is little difference for top-level
functions like those from this lesson. (Top level
constants/variables are accessible from a function because their
scope extends into the function.) But when you have a function
defined inside another function, you will have to be mindful of
the use of the outer scope variables (e.g., defined in the enclosing
function) inside the inner function.

None of the examples in this book uses the "closure"
characteristics of Go functions, but the readers are encouraged to
explore further from other resources.

Then, we "initialize" the slice with the values from the integer range. All variables
in Go are initialized by default when declared, and the loop here is really a series of
assignments. But, conceptually, this loop amounts to "initialization".

Once we create this axis variable, we can use it for looping in subsequent
statements. Using the "classic" for loops are generally more error-prone (e.g.,
because one needs to specify more parameters, etc.).

Using this axis slice, we print "headers".

fmt.Print(" ")
for _, v := range axis {
 fmt.Printf("%4d", v)
}
fmt.Println("")

8.2. Code Reading

119

In this example, we use 4 spaces for the width of each "table cell", as indicated by
the formatting verb "%4d".

Then, the "divider":

fmt.Print(" -")
for range axis {
 fmt.Printf("%4s", "--")
}
fmt.Println("")

Again, 4 spaces per "cell". (We could have used a const for this fixed length.)

How does one know if this prints out what one wants? It’s generally done via "trials
and errors". Print out something first and, based the result, change the formatting
slightly, etc.

It sounds tedious. But, a lot of programming tasks involve tedious work in case you
are new to programming and have romantic ideas. 

Because this printing does not involve any numbers from the axis slice, we can just
ignore the loop variables. We just use the for range syntax in this example.

Finally, the body of the table is printed with "row headers" for each row:

for _, l := range axis {
 fmt.Printf("%4d", l) ①
 fmt.Printf("%4c", '|') ②
 for _, r := range axis { ③
 m := l * r
 fmt.Printf("%4d", m)
 }
 fmt.Println("")

8.2. Code Reading

120

}

① "Row header".

② Divider. The verb "%c" is for "characters" or bytes in Go.

③ Inner loop where the actual multiplication numbers are computed and printed.

As in most other programming languages, the for loops in Go can be nested.

The multiplication table is "2-dimensional". One loop goes over the horizontal axis,
or across columns (the inner loop in this example), and the other loop goes over the
vertical axis, or across rows (the outer loop in this example).

The value l corresponds to a number printed on the left hand side. The value r
corresponds to a number printed on top. The value of each "cell", at a given row
and column, is a product of two numbers, one from the row and the other from the
column.

m := l * r

This number is printed with 4 space width. That’s the multiplication table. The
nested loops produce the "two-dimensional" printout.

8.3. Summary
We learned some basic features of slice. A slice is a reference type. A slice
variable is a pointer pointing to the underlying array.

We also reviewed a couple of different forms of for loops. In particular, we used
the nested for … range loops to create a "table" printout.

8.3. Summary

121

8.4. Questions
1. If you change the multiplication table range to a range from 6 to 12, what

happens? How would you change the formatting to make the table look
"regular"?

2. How can you "initialize" values in an int array of 10 elements with non-zero
values?

8.5. Exercises
1. A slice can include elements of a slice type, which makes it sort of a "two-

dimensional" slice. For example,

var my2DSlice = [][]int{}

This statement declares and initializes my2DSlice, whose type is a slice of a
slice of int.

Create a 2-D slice of strings and store the multiplication table printout first.
Then print out the slice using nested loops.

Author’s Note

Many Faces of Go
When you start learning Go, especially if you are coming from other
(backend) programming language background, things can be rather
confusing.

For example, the language specification seems to require semicolons at the

8.4. Questions

122

end of each statement. But, in some contexts, they seem optional. And, in
some other contexts, it seems that you cannot use semicolons at all.

Which is it?

This is not limited to the use of semicolons. In all C-style languages, for
example, white spaces (including tabs and newlines) generally have very
little significance, other than as a token separator. You can put a statement in
two lines, or you can put two statements in one line.

This is also true with Go. At least, in theory.

But, in practice, it does not work that way. You’ll have to follow a particular
style when programming in Go. You cannot, for example, put two statements
in one line. You will have to put opening braces in particular places. And so
forth.

Go uses a formatter, go fmt. It is not mandatory. The Go compiler mostly
does not care (as long as it ultimately receives grammatically correct code).
But, virtually everybody uses it. If you use an IDE or other editor tools that
understand Go (or, gofmt), as most programmers do, then you are bound by
these rules.

This is comparable to using linting in languages like Javascript. This is
reminiscent of programming in Python where white spaces (e.g.,
indentations) are crucial part of the grammar/syntax.

We will not discuss go fmt in this book. As stated, if you use an IDE or a
programmer’s editor, like VSCode, then you will most likely not have to pay
attention to these. As far as the programmers are concerned, the gofmt rules
are part of the grammar.

You cannot, for example, use semicolons at the end of a statement. You
cannot use spaces for indentation. You have to use tabs. And so forth.

8.5. Exercises

123

For some people, this may seem rather strange, but after a bit of initial
resistance, you will end up accepting it.  It will eventually feel natural to
you.

That is Go.

8.5. Exercises

124

Lesson 9. Find the Largest Number

9.1. Agenda
We will learn basics of error handling in Go, among other things.

9.2. Code Reading I
This program comprises two source files, main.go, and findmax.go.

find-largest-1/main.go

 1 package main
 2
 3 import "fmt"
 4
 5 func main() {
 6 sequence := []int{17, 7, 29, 3, 11}
 7 fmt.Println("Input sequence =", sequence)
 8

9.1. Agenda

125

 9 max := findMax1(sequence)
10 fmt.Println("Largest =", max)
11 }

find-largest-1/findmax.go

 1 package main
 2
 3 func findMax1(s []int) int {
 4 max := s[0]
 5 for _, v := range s {
 6 if v > max {
 7 max = v
 8 }
 9 }
10 return max
11 }

As stated before, the file names are of little consequences in Go.

There is a source code file which contains the main function, named main.go in this
example, and there is another file which contains a function findMax1(), whose
name is findmax.go.

Both files belong to the same package, main.

9.2.1. Explanation

This is the first example in this book where a program includes more than one file
(albeit both being small).

In order to build a program with main package containing more than one source
files, you specify the package location in the build command. For example,

9.2. Code Reading I

126

go build .

The . argument refers to the "current directory" where the main package resides
(e.g., on a Unix shell).

It is not specified in the Go language specification, but the Go compiler tool chain
requires that all source files of a package live in a single folder.

Another requirement is that you cannot have more than one packages in the same
folder. (There are exceptions, as we will see shortly.)

Therefore, there is roughly a one-to-one correspondence between the physical
construct, a folder/directory, and the Go’s language construct, package.

In this example, you could not have put findmax.go in any other directory. It has to
be in the directory where the other files reside that belong to the same main
package.

go build ., by default, uses the directory name, find-largest-1 in this case, as a
default executable name when the build succeeds.


Try go help build to get more information on the "go build"
command. You can also use just go help to list all available go
commands.

As a shortcut during the development, one can use "go run" as well, which builds
and runs the program in one go.

go run .

Again, you provide the location of the main package as an argument, “.” in this case.

9.2. Code Reading I

127

Running this program produces the following output:

Input sequence = [17 7 29 3 11]
Largest = 29

9.2.2. Grammar

A slice is essentially a sequence of values. Or, more precisely, a pointer to a
sequence of values.

A variable of a slice type can be initialized in a number of different ways. Creating a
slice with builtin make() function initializes all elements with a default value of the
element type.

Another way is to initialize each element with explicit values:

hello := []byte{'h', 'e', 'l', 'l', 'o'}

This statement declares a new variable hello of type []byte (a byte slice) of length
5, and initializes the values with 'h', 'e', 'l', 'l', 'o'. That is, after the
initialization, hello[0] == 'h', hello[1] == 'e', hello[2] == 'l', hello[3]
== 'l', and hello[4] == 'o'.

A slice can also be created based on an existing array.

First of all, an array can be initialized in a similar way:

arr := [5]byte{'h', 'e', 'l', 'l', 'o'}

Notice the difference in syntax. This statement creates a new array arr of type

9.2. Code Reading I

128

[5]byte (5 as in 5 elements). The length of an array cannot change once it is
created.

Since the number of elements for the array, and hence its type, is clear from the
right hand side expression, we can omit the number of elements in the declaration.
That is,

arr := [...]byte{'h', 'e', 'l', 'l', 'o'}

A pair of empty square brackets ([]) represents a slice type. Square brackets with
three dots ([…]) indicates that it is for an array initialization.

A slice of a "related" type (e.g., []byte from [5]byte) can be created from an array.
Here’s an example:

array := [...]int{101, 102, 103, 104, 105, 106, 107, 108}
slice := array[:]

An array with name array has been declared and initialized as before. A new
variable slice is created based on array using the syntax <array_name>[:] (a
pair of square brackets with a colon inside them).

The type of this slice is []int (since it is based on the array of type [8]int), and
its length is 8 (since it is based on the array of type [8]int). In this example, the
capacity of the slice will also be 8 since it cannot grow beyond the size of the
underlying array.

One can create a slice of a different length as well, by specifying the starting
(inclusive) and/or ending (exclusive) indices. For example,

array := [...]int{101, 102, 103, 104, 105, 106, 107, 108}

9.2. Code Reading I

129

slice := array[0:3]

The length of the slice in this example would be 3, with slice[0] == 101,
slice[1] == 102, and slice[2] == 103. Its capacity is 8.

0 is used for a missing starting index, and len(array) is used for a missing ending
index. For instance, array[:] would be equivalent to array[0:len(array)], or
array[0:8] in this particular example.

The same syntax can also be used to create a slice variable from another slice. e.g.,
<slice_name>[s:e] where s and e are optional beginning and end indices,
respectively. For example,

array := [...]int{101, 102, 103, 104, 105, 106, 107, 108}
slice1 := array[1:3]
slice2 := slice1[0:5]

Here slice2 is created from slice1. Its underlying array of slice2 is the same
array array.

One interesting thing to note in this example is that len(slice1) == 2 whereas
len(slice2) == 5. We have created a bigger slice from a smaller slice. However,
you cannot create a slice beyond the underlying array’s capacity.

One other thing to note is that because slice1 is a slice starting from index 1 of
array, its starting element slice1[0] refers to the value of array[1]. Therefore
slice1[0:5] is equivalent to array[1:6]. slice2 in this example points to a
"slice" of these 5 elements in array, 102, 103, 104, 105, 106.

Interestingly, in this particular example, there is no way, syntactically, to access
array[0] from the slice variable slice1.

9.2. Code Reading I

130

Although we can access beyond its rightmost element of a slice (up to the last
element of array), Go does not provide a way to access the elements on the left
hand side of its leftmost element of a slice. This is the case as of this writing (version
1.17).


Here’s an interesting puzzle. What would be the capacity of
slice1? Would it be 8? Or, would it be 7? Or, something else? 



As of Go 1.17, now we can get the underlying array from a slice
variable. Here’s the relevant part from the Go language reference:
Conversions from slice to array pointer [https://golang.org/ref/spec#

Conversions_from_slice_to_array_pointer].

9.2.3. Deep Dive

The main() function creates a test slice of 5 elements, sequence, and calls
findMax1() function with this slice as an argument.

The findMax1() function is defined in file find-largest-1/findmax.go in this
example. Note first that this source file does not include any import statements
(because none is needed).

findMax1() has a signature func([]int) int. It takes an argument of type []int
(a slice of int) and it returns an int value.

One thing to note is that we use a slice type (e.g., []int) not an array type value
(e.g., [5]int) as an argument of the function findMax1().

This is very common in Go. Arrays are rarely used (other than as an underlying
storage for a slice).

In this particular example, passing in an array, not a slice, could have limited the
use of the function to a specific size array. The function’s implementation can be

9.2. Code Reading I

131

https://golang.org/ref/spec#Conversions_from_slice_to_array_pointer

clearly more general than that.

The main() function of this example happens to use an array [5]int, but that is
just incidental. That is just for illustration. There is really no reason to write
separate functions for different array types: one for [1]int, another for [2]int,
and another for [3]int, etc.

Using a slice []int can potentially cover all these use cases.



The same, or similar, arguments can be made for functions using
[]int vs []int32 vs []float64, … Unfortunately, Go does not
support "generics", as of this writing. It is, however, expected that
generics will be a part of Go in the near future (version 1.18).

Furthermore, as stated, an array is a value type. Every time we call functions like
this with an array argument, it will need to be "copied", which can be rather
expensive, especially for big arrays.

The function findMax1() goes through each element of the given slice, starting
from the first element s[0], and find the largest value.

Notice how it is done in this example. It checks the value of each element in the
slice, and every time we see a value greater than the "current max" (max) it replaces
the current max with the new largest value.

At the end of the loop, you will end up with the largest value from the given slice.

This is an example of an "algorithm".

This findMax1() function has an issue. If the passed-in argument is nil or if it has
zero elements, then the program will crash. Go programs "panic" in situations like
this.

Here’s an example error message in case the input sequence is empty.

9.2. Code Reading I

132

panic: runtime error: index out of range [0] with length 0
...
exit status 2

One way to deal with issues like this is making it the caller’s responsibility.

For example, in this simple example, the caller can check the size of the argument,
and only if it has at least one element, the caller calls the findMax1() function.

Here’s an example:

// Receive sequence, say, from the user input.
var max int
if len(sequence) > 0 { // check if it
 max = findMax1(sequence)
}
// otherwise do something else.

In general, however, functions, especially the ones designed to be used by other
programs, need to be able to deal with certain "exceptional" cases in some way,
including notifying the caller of the exception.

We will take a look at this issue next.

9.3. Code Reading II
This program also comprises two source files, main.go and findmax.go, under a
folder named find-largest-2 (on the author’s computer).

9.3. Code Reading II

133

find-largest-2/main.go

 1 package main
 2
 3 import "fmt"
 4
 5 func main() {
 6 sequence := []int{17, 7, 29, 3, 11}
 7 fmt.Println("Input sequence =", sequence)
 8
 9 index, max := findMax2(sequence)
10 if index == -1 {
11 fmt.Println("Empty input. No max found.")
12 return
13 }
14 fmt.Println("Largest =", max)
15 }

The findmax.go, file includes one function findMax2().

find-largest-2/findmax.go

 1 package main
 2
 3 func findMax2(s []int) (index, max int) {
 4 if len(s) == 0 {
 5 return -1, 0
 6 }
 7 index = -1
 8 max = s[0]
 9 for i, v := range s {
10 if v > max {
11 index, max = i, v
12 }

9.3. Code Reading II

134

13 }
14 return
15 }

Note that the findMax2() function uses "named return values", (index int, max
int).

9.3.1. Explanation

We can run the program in the same way, using go run.

go run .

We get the same result:

Input sequence = [17 7 29 3 11]
Largest = 29

9.3.2. Deep Dive

In the previous example, there was no easy way to convey the information that
something unusual happened.

The function findMax1() is expecting a non-nil, non-empty slice, and if it gets
something unexpected, what is it supposed to do?

One way to handle situations like this is to return an unlikely, or invalid, value as a
normal return value. Suppose that all input values should be positive integers.
Then, returning a non-positive value like -1 can potentially indicate some kind of
errors.

9.3. Code Reading II

135

In this particular case, however, that is not an option since we are dealing with all
ints, positive or negative, in general.

One possibility is to modify the program to also return the index of the max value.
This is the implementation of findMax2(). It returns a pair of numbers (index
int, max int).

Since the index cannot be negative, returning a negative integer, like -1, could
indicate an error.

The caller can now check the return value and see if the function has worked as
expected, in which case it can use the return value max, or something unexpected
happened, in which case it can deal with the situation in some way.

That is what the main() function does in this example.

This is a usable option, but Go does it better.

9.4. Code Reading III
Go provides a type error for representing an error value. It is an "interface type",
but that is not significant at this point. error is not a builtin type like int or
string. But that distinction is not that significant either.

The error type is always available just like other primitive types.

This third example uses the error type to convey the unexpected, or unusual,
situations.

find-largest-3/main.go

 1 package main
 2
 3 import "fmt"

9.4. Code Reading III

136

 4
 5 func main() {
 6 // sequence := []int{}
 7 sequence := []int{17, 7, 29, 3, 11}
 8 max, err := findMax3(sequence)
 9 if err != nil {
10 fmt.Printf("Error: %v\n", err)
11 return
12 }
13 fmt.Println(max)
14 }

The findMax3() function returns two values of types (int, error).

find-largest-3/findmax.go

 1 package main
 2
 3 import (
 4 "errors"
 5)
 6
 7 func findMax3(s []int) (int, error) {
 8 if len(s) == 0 {
 9 return 0, errors.New("Empty input")
10 }
11 max := s[0]
12 for _, v := range s {
13 if v > max {
14 max = v
15 }
16 }
17 return max, nil

9.4. Code Reading III

137

18 }

9.4.1. Explanation

If we run the program, we get the same result as before:

Input sequence = [17 7 29 3 11]
Largest = 29

If we run the program with an empty or nil slice, that is, by modifying the value of
sequence in main() to something like []int{}, then we get the following result:

Error: Empty input

9.4.2. APIs

• Package errors [https://golang.org/pkg/errors/]: Package errors implements
functions to manipulate errors. The New function creates errors whose only
content is a text message.

◦ func New [https://golang.org/pkg/errors/#New]: New returns an error that formats
as the given text. Each call to New returns a distinct error value even if the
text is identical.

9.4.3. Deep Dive

Many modern programming languages use "exceptions" for error handling.

Go doesn’t.

Go uses a convention in which one of the return values from a function is used to

9.4. Code Reading III

138

https://golang.org/pkg/errors/
https://golang.org/pkg/errors/#New

convey an error, or unexpected, situation. The error return value should be the last
one in the set of return values, and its type has to be the error type.

That is the convention.

The caller of a function then checks this special return value to see if something
unexpected happened within the function (other than what is expected from calling
the function).

For example, in the main() function, we do the following:

max, err := findMax3(sequence)
if err != nil {
 // Handle the "error" here
}

Returning from main() terminates the program.

The use of this if err != nil {} statement is idiomatic after calling a function
that can potentially return a non-nil error.



Although we use the terms, "errors" or "exceptions", in
programming, they do not necessarily mean that something bad
has happened. Or, some kind of mistakes. As we will see
throughout this book, the caller-callee relationship is complicated.


"Error handling" is essentially a way of communication between
the caller and the callee, in particular, from the called function to
the calling function (or, to everyone upstream in the call chain,
including the system/runtime).

In the findMax3() function, we check the "validity" of the passed-in argument s.

9.4. Code Reading III

139

If the length of s is zero, we simply return with an error value. In this case, the
normal return value, max in this case, is irrelevant since the caller function is
expected to check the error value and if there has been an error, in general, it is not
to use the normal return value. (There are always exceptions.)

In this example, we use a special function errors.New() from the standard library
package errors, for convenience, to create a value of an error type. But, that is not
strictly necessary. As we will cover later in the book, any value of a type which
"behaves" like error will do. In this particular case, the error value has to be of a
type that implements the Error() "method", whose signature is func() string.

In case of a normal execution of the function, without "errors", the findMax3()
function simply returns nil value as an error, in addition to the normal return
value, max.

nil is a predefined constant in Go, which indicates that the value has "no value".
nil cannot be used as a value for a value type. All variables of a value type has real
values. A nil value for a pointer type indicates that the pointer "points to nothing".
A nil value for a variable of an interface type, like error, indicates that the
variable references no real value of any compatible concrete type.

When a called function encounters a situation which it does not know how to
handle, etc., there are a number of options.

It can just terminate the program, for example. It is a valid option. But it may not be
the best option since the caller function has a better context and it may know how
to handle the situation better.

Normally, a better way to handle an unexpected situation which is beyond the
purview of the normal functionality of a function, is just send a signal to the caller
function that indicates such a situation.

In Go, a non-nil error return value signals an "error".

9.4. Code Reading III

140

We will cover Go’s panic (and, recover) in later lessons, which is another way to
handle error situations in Go.

In the main() function of this example, we use a special verb %v to print the error:

fmt.Printf("Error: %v\n", err)

The verb %v (v for verbose, presumably) is mainly used for debugging. The format
%+v, with + in front of v, prints out more information. %#v (with four +'s,
essentially) can print out even more information, if available.

In this example, this is equivalent to

fmt.Printf("Error: %s\n", err)

The returned error has no more information than what we have provided, a string
"Empty input". Or, we can just use Println(), which simply prints the "string
value" of each of its arguments.

fmt.Println("Error:", err)

Incidentally, the error interface type includes a method Error(), which returns a
value of string type. The returned error value can be of any type, in general, as
long as the type implements this Error() method of type func() string. If we
need to get its string-equivalent value, then we can call its Error() method.

fmt.Println("Error:", err.Error())

We will review the interface types in later lessons.

9.4. Code Reading III

141

9.5. Summary
We learned a basic error handling mechanism in Go, which uses the "error return
value" convention.

A function which can potentially run into an unexpected, or exceptional, situation
can return a possible error information as the last return value of type error.

The caller of this function is then expected to check the error return value to see if
it can use the normal return value(s). If the error return value is non-nil, then it
should treat the normal return values with caution. Normally, it should discard the
normal return values if it receives a non-nil error.

Author’s Note

"Thought Programming"
The author loves books. He owns thousands of Kindle books (although he has
read only a tiny fraction of them ).

The Art of Go - Basics: Introduction to Programming in Golang -
Beginner to Intermediate is a book for reading. Keep it on your night stand.
Keep it on your coffee table. Take it to lunch.

You do not need a computer to read this book. Read, and if you need to
practice, then do it in your head. Like "thought programming". As in a
"thought experiment".

Obviously, this is an oxymoron. But, it is possible. And, this is a much better
alternative to making excuses and postponing. You may say, "Oh, I don’t have
access to computer right now. I’ll do it later". And, you may never do it.

9.5. Summary

142

Just do "thought programming" when you need to do programming.

9.5. Summary

143

Lesson 10. Rotate Numbers

10.1. Agenda
We will explore the slice types a little bit more in this lesson.

10.2. Code Reading
Suppose that we have an array or slice of ints, say, 2, 4, 2, 6, 8. We would like
to "rotate" elements by 1, to the left. For example, from 2, 4, 2, 6, 8 to 4, 2,
6, 8, 2.

Here’s an example code to solve this problem:

10.1. Agenda

144

rotate-numbers/main.go

 1 package main
 2
 3 import "fmt"
 4
 5 func main() {
 6 sequence := [7]int{1, 2, 3, 4, 5, 6, 7}
 7 fmt.Println("Original sequence:", sequence)
 8
 9 rotated := rotateBy1(sequence[:])
10 fmt.Println("Rotated sequence:", rotated)
11 }

The rotate1.go file includes two functions, rotateBy1() and rotateByK():

rotate-numbers/rotate1.go

 1 package main
 2
 3 func rotateBy1(s []int) []int {
 4 return rotateByK(s, 1)
 5 }
 6
 7 func rotateByK(s []int, k int) []int {
 8 l := len(s)
 9 if l <= 1 && k <= 0 {
10 return s
11 }
12 k = k % l
13 if k == 0 {
14 return s
15 }
16 rotated := append(s[k:], s[0:k]...)

10.2. Code Reading

145

17 return rotated
18 }

10.2.1. Explanation

In this example, we define a slightly more general function rotateByK() and use it
for the problem at hand, namely, rotating by 1.

If you run the program as before:

go run .

You get the following output:

Original sequence: [1 2 3 4 5 6 7]
Rotated sequence: [2 3 4 5 6 7 1]

10.2.2. Builtin Functions

We have used the builtin len() and cap() functions before. append() is a new
function, which we are going to look at in some detail.

• len(): It returns the length of its argument. In case of an array or slice, it
returns the number of elements in the collection.

• cap(): It returns the capacity of its argument. In case of an array, cap() is
equivalent to len(). In case of a slice, it returns the maximum possible length
of the slice when re-sliced;

• append(): The append() function appends elements to the end of a given slice.
If it has a sufficient capacity, the destination is re-sliced to accommodate the

10.2. Code Reading

146

new elements. Otherwise, a new underlying array will be allocated, and it
returns a slice pointing to this new array.

10.2.3. Grammar

The slice type is one of the most interesting types in Go. But dealing with slices
can get a little bit tricky.

A slice is a reference to an underlying array. A slice "points to" the underlying array.
The underlying array can be implicitly of explicitly defined. By changing values in a
slice, one ends up changing the values in the array as well.

You can "reslice" a slice, or "slice" an array, using the [b:e] syntax, where b and e
are optional beginning and end indices, respectively. But this re-slicing operation is
limited by the size of the underlying array.

In order to add an element to a slice, which may require allocating a new array, we
use the builtin append() function.

func append(slice []Type, elems ...Type) []Type

The append function takes a slice as its first argument, as a destination, and one or
more elements to be added to the slice in the following positions.

append() returns another slice as a return value. For instance,

seq := [...]int{1, 2, 3, 4, 5} ①
before1 := seq[:2]
after1 := append(before1, 11, 12)

Or

10.2. Code Reading

147

before2 := []int{1, 2} ②
after2 := append(before2, 11, 12)

Or

before3 := make([]int, 2) ③
before3[0] = 1
before3[1] = 2
after3 := append(before3, 11, 12)

In all three examples, the slice values have changed. The before1 slice is different
from after1, before2 is different from after2, and before3 is different from
after3. Not only that, all three "after" variables in these examples now point to
completely different arrays than those of the "before" variables.

In the first example, a slice before1 is taken from an array seq. In the second
example, a slice before2 is explicitly initialized (with an implicit underlying array).
In the third example, a slice before3 of length 2 is initialized with default values
using the make() function. before3 will also be implicitly associated with an array
(of length 2). Values are then assigned to each element in before3.

In these examples, all three after slices are associated with arrays, whose values
happen to be all “1, 2, 11, 12”. And, they are all different from initial arrays, explicit
or implicit, “1, 2, 3, 4, 5”, “1, 2”, and “1, 2”, respectively.

This is generally the case. append() may (likely) need to re-allocate a slice’s
underlying array, which can be expensive.

There is an exception though. If you use a "capacity" value when creating a new
slice with make(). The slice can grow up to the capacity without requiring a new
underlying array.

10.2. Code Reading

148

For example,

slice1 := make([]int, 0, 10)
slice2 := append(slice1, 1, 2, 3, 4, 5)
slice3 := append(slice2, 6, 7)
slice4 := append(slice3, 8, 9)

All four slice variables have the same underlying array (implicitly). They are
different variables, and they have different lengths. But they all point to (a part of)
the same array.

This is because make() in this example have created an array with capacity 10,
which is big enough to accommodate all 9 elements, 1 through 9.

Now, if we add a few more elements,

slice5 := append(slice4, 10, 11, 12)

Then the new slice slice5 no longer shares the same underlying array. The
original (implicit) array has only 10 elements (initialized with zero values). slice5
requires 12 elements. The append() operation in this last line, therefore, has to
create a new array.

Why is this important? It is because a slice is a reference type. If we change a value
of an element in slice3 for example,

slice3[0] = 100

Slices, slice2 and slice3, will have the same value in index 0. That is, slice2[0]
== 100 and slice4[0] == 100. (Since the length of slice1 is zero, this element is

10.2. Code Reading

149

not accessible to slice1.)

On the other hand, the zero-th element of slice5 remains unchanged. That is,
slice5[0] == 1.

The Go programming language does not provide a way to tell explicitly which slices
share the same underlying array and which ones do not. Hence, as a programmer,
you have to know what you are doing.

Allocating new memory (and copying old values) can be expensive. Hence, it is a
good practice to use the make function with a specific capacity if the likely size of
the (final) slice is more or less known.

One other thing to note is that Go is a garbage collected language. Every time we
create a new variable (possibly with new allocated memory) and leave the old ones
around, it becomes a work for the Go runtime, potentially decreasing the overall
performance.

One common idiom when using append() is that we use the same variables for the
existing and the new slices.

sliceX :=[]int{100}
sliceX = append(sliceX, 200)
sliceX = append(sliceX, 300)

append() returns a different slice (which may or may not point to the same
underlying array in general). By re-using the variable, sliceX in this case, the old
slice becomes inaccessible in the program. And, if the old slice happens to have a
different array than the new slice (now assigned to the variable sliceX), then the
old array becomes inaccessible, and it can be garbage-collected.

It should be noted that this idiomatic pattern also alleviates the issue mentioned
earlier: the language itself does not provide an explicit way to tell which slices

10.2. Code Reading

150

share the same underlying array.

Also, calling append() as few times as possible is preferred over calling it many
times. For instance, the above example could have been done with one append()
call:

sliceX = append(sliceX, 200, 300)

(In fact, we could have initialized sliceX without calling append() in this
particular example, but it should be noted that these examples are primarily for
illustration purposes.)

The append() function has an interesting signature, func([]int, …int) []int
in case of int slices.

The … notation, before the argument type int, in the function signature indicates
that the function can take an arbitrary number of ints as arguments after the first
[]int argument. This kind of functions are often known as "variadic functions".

The variable number arguments should be in the last position in the function
argument list.

We have seen some examples from the standard library. In particular, the Print
family of functions in the fmt package. We can pass in zero or more arguments to
fmt.Print(), fmt.Println(), and fmt.Printf(), etc. The Printf() function is
even more special in that the verbs in the formatter have to match the arguments.

One interesting thing about variadic functions in Go is that one can use a slice in
place of a list of values (in the variable number argument position). For example,
the above example could be written as follows:

args := []int{200, 300}

10.2. Code Reading

151

sliceX = append(sliceX, args...)

Note the … notation after the variable name (a slice ints in this case).

If you are coming from languages like Javascript/Typescript, you may have seen
similar notations. But, their uses are not exactly the same as … of Go.

10.2.4. Deep Dive

In this lesson, the task is to "rotate" elements of a given slice by 1 to the left.

We tackle a slightly more general problem, rotating the elements by k and use the
general solution for the specific problem, namely, rotating by 1, which is a special
case of the more general problem.

In programming, this is a common practice to tackle a set of related problems,
which are expected to have more or less the same solution.

For example, rotating numbers by 1 might have a similar solution to that of rotating
numbers by 2, and rotating numbers by 3, etc.

We saw a similar situation in the previous lesson, Find the Largest Number, for
instance. We do not implement different functions for [1]int, and [2]int, etc. We
just implement a generic function that can handle all these situations as special
cases. In that case, the solution was using a slice, []int, rather than using fixed size
arrays, when we define, and implement, a function.

In the example of this lesson, we implement the general solution as rotateByK(s
[]int, k int) []int, and use it in our specific problem, rotateBy1(s []int)
[]int.

func rotateBy1(s []int) []int {
 return rotateByK(s, 1)

10.2. Code Reading

152

}

When k == 1, rotateByK(s, 1) is equivalent to rotateBy1(s).

In fact, this is the first example of our non-main function calling another non-main
function in the main package. As stated, a Go program essentially executes through
these call chains, one function calling another, and this in turn calling another, etc.

There can be many different ways to shift elements in a slice (or, an array) by an
integer k. We illustrate one solution using Go’s append() function in this lesson.

The implementation of rotateByK(s, k) starts by checking some edge cases.
When the argument slice s is nil or empty, we cannot rotate the elements. Hence
we just return s.

When len(s) == 1, we can make a similar argument. That is, "rotating" a list of
one element does not make much sense. Hence, we just return the input slice,
without change. For simplicity, we will also ignore the case when k <= 0. We can
either design a function to accept only non-negative k (e.g., by declaring k as uint,
for instance) or we can interpret a negative k as rotating to the right by -k (-k >
0).

l := len(s)
if l <= 1 && k <= 0 {
 return s
}

When k is bigger than l, we are only interested in the "net rotation". Hence we can
set k to its modulo with l. And, if the resulting k is 0, again no rotation. Just return
the same input slice.

k = k % l

10.2. Code Reading

153

if k == 0 {
 return s
}

Note that, as mentioned before, it is a "copy" of the slice that is returned. But they
point to the same array in this special case because slices follow reference
semantics.

At this point, we can make a few assumptions. One of them is the constraints k > 0
and k < l where l = len(s) is bigger than 1.

Now, to rotate the slice of l elements to the left by k, we simply move the first part
(from 0 to k) to the end of the second part (from k to l). That is exactly what the
rotateByK(s, k) function does.

rotated := append(s[k:], s[0:k]...)

As required by the append() function signature (a variadic function), the second
slice argument (the beginning part of the original slice) has been "spread" as ints
using the … notation.

The core of the function happens in this line. But, we know that calling append() is
safe because we already checked the range of possible k values, etc. More
importantly, 0 <= k <= l, which is satisfied by the constraints that we have
imposed through some initial processing.

A new slice which points to a new array that has the "rotated" content is then
returned to the caller, rotateBy1() in this case. Then, the rotateBy1() function
returns its returned value to its own caller, main() in this example.

The main() function then prints the result, and it returns to its own caller, which is
the Go runtime or the operating system. Thus the program terminates.

10.2. Code Reading

154

Go is a somewhat strange language. The apparent simplicity can be deceiving.

For instance, some programmers with background in C/C++, for instance, might find
the implementation of rotateByK() rather strange.

The append() function possibly allocates memory. And, in this case, it does. It
happens in a function scope of the rotateByK() function. And yet, we return its
pointer (a slice, rotated) to the (presumably) locally allocated memory.

Clearly, this is an absolute no-no in C/C++. An yet, you can do this kind of things in
Go. In fact, Go allocates memory globally (on the heap), not locally (on the stack), in
this kind of situations.

If your background is in the garbage collected languages like Java, C#, and Python,
then that is how it works most of the time in those languages.

To repeat, every type in Go but a few are all value types. They follow the value
semantics. (And, to use the reference semantics, we use pointers.) On the other
hand, slice is one of the exceptions. A slice variable follows reference semantics,
and its memory is automatically managed by the Go runtime.

As we will see later in the book, the Go runtime does memory management in other
cases as well. We will see some examples in later lessons.

This "dual" nature of Go can be confusing at first to new comers to Go. In certain
contexts, we have to distinguish value and reference semantics. In certain contexts,
like memory management, Go takes care of it behind the scene.

10.3. Summary
We further explored various aspects of slice types in ths lesson.

In particular, we took a look at the append() function in some detail.

10.3. Summary

155

10.4. Exercises
1. Implement "rotate by 1" without using append(). In fact, without having to use

big new space. (In the example used in this lesson, we essentially needed an
extra space equal to the size of the original slice/array, which may or may not be
feasible in certain situations.) This can be done, for instance, by swapping two
consecutive elements, one at a time, across all pairs of the neighboring
elements.

2. In this kind of implementation, a more general problem "rotate by k" can be a
bit more complicated. Can you solve this problem in a similar manner?

Author’s Note

What You Don’t Know Won’t Hurt You
Throughout this book, we make frequent comparisons of Go with other
programming languages.

This is to the benefit of the readers who have some familiarity with those
languages. Comparisons, and analogies, and contrasts, can be rather useful
when you learn new subjects.

If those comparisons/contrasts do not make sense to you, or if Go is your first
programming language, then you can ignore those comments.

No harm done. 

10.4. Exercises

156

Lesson 11. Leap Years

11.1. Agenda
A little bit more about functions.

11.2. Code Reading
Let’s create a program that checks if a given year is a leap year.

leap-year/main.go

 1 package main
 2
 3 import "fmt"
 4
 5 func main() {

11.1. Agenda

157

 6 isLeapYear := isLeapYear1
 7
 8 answer := isLeapYear(1900)
 9 fmt.Println("Is 1900 leap year?", answer)
10
11 answer = isLeapYear(1984)
12 fmt.Println("Is 1984 leap year?", answer)
13
14 answer = isLeapYear(2000)
15 fmt.Println("Is 2000 leap year?", answer)
16
17 answer = isLeapYear(2021)
18 fmt.Println("Is 2021 leap year?", answer)
19 }

We will look at three different implementations.

The first implementation:

leap-year/leapyear1.go

 1 package main
 2
 3 func isLeapYear1(year int) bool {
 4 var isLeap bool
 5 if year%4 == 0 {
 6 if year%100 == 0 {
 7 if year%400 == 0 {
 8 isLeap = true
 9 } else {
10 isLeap = false
11 }
12 } else {
13 isLeap = true

11.2. Code Reading

158

14 }
15 } else {
16 isLeap = false
17 }
18 return isLeap
19 }

The second implementation:

leap-year/leapyear2.go

 1 package main
 2
 3 func isLeapYear2(year int) bool {
 4 if year%400 == 0 {
 5 return true
 6 } else if year%100 == 0 {
 7 return false
 8 } else if year%4 == 0 {
 9 return true
10 } else {
11 return false
12 }
13 }

The third implementation:

leap-year/leapyear3.go

1 package main
2
3 func isLeapYear3(year int) bool {
4 if year%4 == 0 && year%100 != 0 || year%400 == 0 {
5 return true

11.2. Code Reading

159

6 } else {
7 return false
8 }
9 }

11.2.1. Explanation

The program contains three different implementations of isLeapYear().

In the included example of the main() function, the first version isLeapYear1() is
hard-coded.

If you run the program with go run:

go run .

You get the following output:

Is 1900 leap year? false
Is 1984 leap year? true
Is 2000 leap year? true
Is 2021 leap year? false

If you want to use the second version instead, for instance, then you can assign the
name of function, isLeapYear2, to the variable isLeapYear in the main()
function:

isLeapYear := isLeapYear2

11.2. Code Reading

160

11.2.2. Grammar

A function has a type. Just like any other variables or constants, functions have
types.

You can even declare a function type and use it to declare a new variable of that
function type.

We have seen only simple types like int or string so far, and we have not really
discussed how to define a new type. We will come back to this topic later in the
book. But, for now, it is important to realize that a function has a type.

It may seem a bit confusing, but a function declaration is comparable to any other
variable or literal definitions.

Just the syntax is different.

func isLeapYear(year int) bool {
 // ...
}

In this example, the name isLeapYear has a type func(int) bool (that is, its
function signature). The function definition is given inside the matching curly
brackets.

Compare this, for instance, with the following:

const leapYear bool = false

This statement declares a new name leapYear as a bool type and initializes it with
a boolean value false.

11.2. Code Reading

161

The names isLeapYear and leapYear in these declaration are more or less the
same in that both declarations are introducing these new names and their
definitions. They just have different types. isLeapYear is of type func(int) bool
whereas leapYear is of type bool.

You can use the function names just like any other identifiers in Go programs. Note,
however, that function names are more like literals than variables.

You can create a variable of a function type.

var newVar func(int) bool

In this example, newVar is a variable of type func(int) bool. It is not initialized
with any explicit function definition. The default value for a variable of (any)
function type is nil.

Since the function isLeapYear happens to have the same type, in this case, we can
assign isLeapYear to newVar, or use it to initialize newVar in the first place.

var newVar func(int) bool = isLeapYear

Or, even

var newVar = isLeapYear

Since the type can be inferred from the right hand side expression.

Now, you can use the newVar variable as if it is a function name:

11.2. Code Reading

162

leapYear := newVar(2020)

This will all seem natural to programmers with background in languages like
Javascript/Typescript because they have a similar syntax.

Other languages have different constructs to support similar functionalities. For
instance, C has function pointers. C++ uses "functors" in addition to function
pointers. Java uses interfaces to support function types. C# has a construct called
"delegate", among other things.

In Go, a function is just a type.

11.2.3. Deep Dive

It is hard to explain how to write a program. If it was easy, then we could have just
taught computers to write a program. (Some day. Some day soon, maybe. But, not
yet. )

The best advice to beginning programmers is the same three words that you hear in
any art:

"Practice, practice, practice."

Modern programs are rather complex. We use "frameworks", or other libraries, and
we often write only a part of a program. The rest is sometimes implicit, hidden in
frameworks or runtimes, etc.

Regardless, at the core of a program is an "algorithm". Modern programming does
not really fit well into the classic definition of an algorithm, which can be
represented by a flow chart, for instance. An object-oriented programming style, for
instance, cannot really be described with algorithms, or at least with algorithms
alone.

11.2. Code Reading

163

But, in the broadest possible sense of the word, programming is all about
"algorithms".

Let’s take a look at the "leap year problem" of this lesson: Given a year, determine if
the year is a leap year.

A leap year has 366 days instead of 365. Interestingly, which year is a leap year is
defined algorithmically. For instance, refer to en.wikipedia.org/wiki/Leap_year for
the definition of leap year.

If the year is divisible by 4, continue.
If the year is not divisible by 4, it is not a leap year. End.
 If the year is divisible by 100, continue.
 If the year is not divisible by 100, it is a leap year. End.
 If the year is divisible by 400, it is a leap year. End.
 If the year is not divisible by 400, it is not a leap year.
End.

This is an algorithm. We translate this algorithm into a program in Go. That is the
isLeapYear1() function.

If we write the above algorithm slightly differently, then it is easier to compare:

If the year is divisible by 4, continue.
 If the year is divisible by 100, continue.
 If the year is divisible by 400, it is a leap year. End.
 Else (if the year is not divisible by 400), it is not a leap
year. End.
 Else (if the year is not divisible by 100), it is a leap year.
End.
Else (if the year is not divisible by 4), it is not a leap year. End.

11.2. Code Reading

164

https://en.wikipedia.org/wiki/Leap_year

That is precisely the isLeapYear1() function.

This function can be rewritten in the following way, by changing the order of the if
statements:

func isLeapYear1Alt(year int) bool {
 var isLeap bool
 if year%400 == 0 {
 isLeap = true
 } else {
 if year%100 == 0 {
 isLeap = false
 } else {
 if year%4 == 0 {
 isLeap = true
 } else {
 isLeap = false
 }
 }
 }
 return isLeap
}

Or, this way, by removing the local variable isLeap:

func isLeapYear1Alt(year int) bool {
 if year%400 == 0 {
 return true
 } else {
 if year%100 == 0 {
 return false
 } else {
 if year%4 == 0 {

11.2. Code Reading

165

 return true
 } else {
 return false
 }
 }
 }
}

The nested if-else statements can be written without nesting.

func isLeapYear1Alt(year int) bool {
 if year%400 == 0 {
 return true
 } else if year%100 == 0 {
 return false
 } else if year%4 == 0 {
 return true
 } else {
 return false
 }
}

These two functions are exactly the same. But, this version is "flatter" and it is
easier to read, and this form is generally preferred over the nested version. This is
the version presented earlier, the isLeapYear2() function.

Now, all three Boolean expressions can be combined into a single Boolean
expression.

func isLeapYear1Alt(year int) bool {
 if (year%4 == 0 && year%100 != 0) || year%400 == 0 {
 return true

11.2. Code Reading

166

 } else {
 return false
 }
}

You can easily convince yourself that these two functions behave exactly the same
way for all eight different conditions. (true/false for 3 boolean expressions yields
8. 2 * 2 * 2 = 8.) Hence the two functions are equivalent for all possible input,
year.

The Boolean && operator has a higher "precedence" than the || operator in Go.
Hence the the parentheses around the && expression can be omitted.

That’s the function isLeapYear3() presented earlier, and it is the final version.



Operator precedence determines which parts of an expression get
evaluated first. For example, 2 + 3 * 4 is evaluated to be 2 +
(3 * 4), which is 14. This is because the multiplication operator
(*) has a higher "precedence" than the addition operator (+). The
explicit use of the parentheses can change the evaluation order.
For instance, (2 + 3) * 4 is evaluated to 20.

Unary operators (e.g., - in front of a number) have the highest
precedence. You can refer to the Go language reference for the
complete list of binary operator precedence rules, if necessary.
But, you do not have to memorize these precedence rules. When
in doubt, use the parentheses to make your intentions clear (e.g.,
to the human readers), rather than relying on (possibly obscure)
precedence rules.

Note that multiple binary operators may have the same
precedence. In that case, operators of the same precedence
associate from left to right. For example, 6.0 / 2.0 * 3.0 is the

11.2. Code Reading

167

same as (6.0 / 2.0) * 3.0, which evaluates to 9.0.

11.3. Summary
A function in Go has a type, and functions can be assigned to variables, or they can
otherwise be manipulated.

11.4. Exercises
1. Create a new main() function to accept a value of year as a user input. Write

your own isLeapYear() function without referring to the sample code. Test
your program with a few year values, and verify that your program works as
expected.

2. Create a new main() function to take a value of year as a command line
argument. Do the same tests as the previous exercise.

Author’s Note

"It Does Not Work"
One of the most frequent complaints that we hear from beginning
programmers is "it does not work". "My program does not work", "this
function does not work", etc.

This is not limited to beginners. Even experienced programmers fall into this
trap. For example, many complain, "this API does not work", "this backend
component does not work", etc.

What they really mean by that is that something does not work as he/she has
expected.

11.3. Summary

168

The interesting thing is, in many cases, their expectations are wrong. Not the
programs.

It is often helpful to think carefully what exactly you are doing instead of
jumping into programming right away.

11.4. Exercises

169

Lesson 12. BMI Calculator

12.1. Agenda
We will discuss type conversion in this lesson.

12.2. Code Reading
We accept user inputs and calculate the user’s body mass index (BMI),
en.wikipedia.org/wiki/Body_mass_index.

bmi-calculator/main.go

 1 package main
 2
 3 import (

12.1. Agenda

170

https://en.wikipedia.org/wiki/Body_mass_index

 4 "fmt"
 5 "os"
 6)
 7
 8 func main() {
 9 w, err := readInput("Weight (in pounds)")
10 if err != nil {
11 fmt.Fprintf(os.Stderr, "Error = %v\n", err)
12 os.Exit(1)
13 }
14
15 h, err := readInput("Height (in inches)")
16 if err != nil {
17 fmt.Fprintf(os.Stderr, "Error = %v\n", err)
18 os.Exit(1)
19 }
20
21 bmi := bmi(w, h)
22 fmt.Printf("Your BMI is %.2f kg/m2\n", bmi)
23 }

It is not really necessary to use multiple small files in a package, but for illustration
purposes the main package in this lesson has been divided into 3 files. One for the
"main program", and one for the core calculation (bmi.go), and the other for the
input handling (input.go).

We can even put these files in a different package(s), as we will see in the next
lesson.

bmi-calculator/bmi.go

1 package main
2
3 func bmi(w, h float32) float32 {

12.2. Code Reading

171

4 wInKilos := float64(w) * 0.453592
5 hInMeters := float64(h) * 0.0254
6 bmi := wInKilos / (hInMeters * hInMeters)
7 return float32(bmi)
8 }

bmi-calculator/input.go

 1 package main
 2
 3 import (
 4 "bufio"
 5 "fmt"
 6 "os"
 7 "strconv"
 8 "strings"
 9)
10
11 var reader = bufio.NewReader(os.Stdin)
12
13 func readInput(prompt string) (float32, error) {
14 fmt.Printf("%s: ", prompt)
15 str, err := reader.ReadString('\n')
16 if err != nil {
17 return 0, err
18 }
19 str = strings.TrimSuffix(str, "\n")
20
21 value, err := strconv.ParseFloat(str, 32)
22 if err != nil {
23 return 0, err
24 }
25 input := float32(value)
26

12.2. Code Reading

172

27 return input, nil
28 }

12.2.1. Explanation

We can run the program as before:

go run .

Heres a sample output:

Weight (in pounds): 300 ①
Height (in inches): 75
Your BMI is 37.50 kg/m2

① Numbers 300 and 75 are user inputs.

This is a big person. (Clearly, we are just using arbitrary numbers.) Normally, BMI
of 25 or less, and above 18.5, is considered a healthy weight (although it is not
entirely scientific).

12.2.2. Grammar

There are so many different integer types, from uint8 and int8 to uint64 and
int64. And, even machine architecture dependent uint and int types. Which one
to use?

In general, it is a difficult question to answer. We will show a few examples later in
the book. For now, you can just use int in most cases. (Or, uint, if you are
specifically dealing with unsigned integers.)

12.2. Code Reading

173

For floating point numbers, things are much easier. There are only two floating
point number types to begin with, float32 and float64.

If you are inclined, you can just use float64 for all floating point numbers.

The downside is, though, the values of float64 take up the double amount of space
than those of float32. If there is memory or storage constraint, then you may have
to choose float32 for some, or all, floating numbers. Besides, in most cases, you
won’t need the 64 bit precision. float32 will suffice unless you have special
requirements.

There ia a gotcha, however. All computations should be done using float64. This is
not a must, but highly recommended.

During computations, floating point numbers lose precision, as a general rule. As
you do more calculations, the resulting numbers become less and less precise.

Therefore, it is important to use higher precision numbers during calculations. You
can convert them back to float32 type, if you need to, before storing them, etc.

This is why various functions in the math package use float64.

This is a general rule. But, there is a small twist in Go. Go does not allow implicit
conversion from float32 ("single precision") to float64 ("double precision"). This
implicit "widening" conversion or casting, e.g., for integer and floating point
numbers, is generally allowed in most C-style languages. But not so in Go.

You’ll have to explicitly convert between each and every value which has a
different type. This can be rather cumbersome.

So, going back to our general rule of thumb, just use the float64 type for all
floating numbers, that is, unless you have a particular reason otherwise. As a
matter of fact, memory is cheap. Storage is cheap. Computation is cheap. Your time
spent in writing a program might be the most valuable resources.

12.2. Code Reading

174

Having said that, however, we will try to use float32 as much as possible in this
book. These examples are for illustration purposes, and depending on the context,
they may or may not be as realistic or even practical.

When a program terminates, it returns an "exit code" to the operating system. This
is a convention, or a requirement, on Unix-like systems.

An integer return value of 0 indicates that the program has run successfully. Any
non-zero value indicates some kind of errors.

In many C-style programming languages, the main() function returns the exit code
as its function return value. When no value is returned, it is assumed that the exit
code is 0, that is, "success".

In Go, the main() function does not return any value. Instead, it uses a system
function, os.Exit().

Normally, we do not need to call this function with 0 since that is the normal
termination of a program.

In cases of exceptions, or errors, we call os.Exit(<exit_code>) with a non-zero
value. Unless you are using a particular error code, the convention is just to use 1
or something comparable, as is done in the example of this lesson.

Any non-zero value will do for this purpose, that is, to indicate an unspecified error
to the operating system, or the runtime. As is indicated in the API documentation,
however, a value in the range of [0, 125] is recommended.

12.2.3. APIs

• Package strconv [https://golang.org/pkg/strconv/]: Package strconv implements
conversions to and from string representations of basic data types.

◦ func ParseFloat [https://golang.org/pkg/strconv/#ParseFloat]: ParseFloat converts
the string s to a floating-point number with the precision specified by

12.2. Code Reading

175

https://golang.org/pkg/strconv/
https://golang.org/pkg/strconv/#ParseFloat

bitSize: 32 for float32, or 64 for float64. When bitSize=32, the result still has
type float64, but it will be convertible to float32 without changing its value.

• Package os [https://golang.org/pkg/os/]: Package os provides a platform-
independent interface to operating system functionality. The design is Unix-like,
although the error handling is Go-like; failing calls return values of type error
rather than error numbers.

◦ func Exit [https://golang.org/pkg/os/#Exit]: Exit causes the current program to
exit with the given status code. Conventionally, code zero indicates success,
non-zero an error. The program terminates immediately; deferred functions
are not run. For portability, the status code should be in the range [0, 125].

12.2.4. Deep Dive

The United States is one of the very few countries in the world, where we still use
the "imperial" system of units rather than the metric system.

The BMI index is computed using the numbers in the metric system, in particular,
kilograms and meters. So, we will need to do some conversion.

The user inputs in the command line interface are all strings. They do not have a
type in fact, but we treat them as text, or strings, because CLI is, by definition,
character- or text-based.

The input, the body weight and height, are numbers. So, we will need to convert the
input text to numbers.

We use, in this example, parseFloat() from the strconv package. This package
includes a number of helper functions to convert between strings and other
primitive types.

The parseFloat() function returns an error, as a second return value, if the given
argument string is not convertible to a floating point number. The second argument
parseFloat() decides the precision of the parsed number. The parseFloat()

12.2. Code Reading

176

https://golang.org/pkg/os/
https://golang.org/pkg/os/#Exit

function always returns float64 regardless of the value of this argument.

Here’s a simple function that demonstrates some of the strconv package functions:

func parseDemo() {
 f, e1 := strconv.ParseFloat("12.99", 64)
 fmt.Println(f, e1)

 i, e2 := strconv.ParseInt("1234", 32, 64)
 fmt.Println(i, e2)

 d, e3 := strconv.ParseInt("0xabc", 0, 64)
 fmt.Println(d, e3)

 u, e4 := strconv.ParseUint("0555", 0, 64)
 fmt.Println(u, e4)

 n, e5 := strconv.Atoi("234")
 fmt.Println(n, e5)

 n, e5 = strconv.Atoi("1oo")
 fmt.Println(n, e5)
}

Refer to the API documentation, golang.org/pkg/, for more information.

Reading an input for the weight is more or less the same as reading for the height.
Therefore, it makes sense to encapsulate this functionality of reading inputs in a
separate function. In the example, that is the readInput() function. Then we can
re-use this function in multiple places.

This is a reasonable thing to do, say, to increase readability, even if the function
might not be intended to be used outside of the program, as in this case. The
main() function becomes easier to read.

12.2. Code Reading

177

https://golang.org/pkg/

Although it is not strictly necessary, we put the part of the program that calculates
the actual BMI number in a separate function bmi(), which we could have called
computeBMI() or by some other names. We even put this function in a separate
file, bmi.go. This is not generally necessary in small programs like this.

Now, the main() function becomes much easier to read. If we ignore the error
handling,

func main() {
 w, _ := readInput("Weight (in pounds)") ①
 h, _ := readInput("Height (in inches)") ②
 bmi := bmi(w, h) ③
 fmt.Printf("Your BMI is %.2f kg/m2\n", bmi) ④
}

① Read the user’s weight.

② Read the user’s height.

③ Compute the BMI value.

④ Print out the result.

That’s it. That is the whole program. We could have gone even further. Something
like this:

func main() {
 w, h := readWeightAndHeight()
 bmi := computeBMI(w, h)
 writeOutput(bmi)
}

Or, even

12.2. Code Reading

178

func main() {
 readInputAndComputeBMIAndWriteOutput()
}

Clearly, there should be a sweet spot somewhere in between, depending on the
requirements and based on other considerations and context, etc.

In Go programs, a function is a basic unit of "code reusability".

The implementation of the bmi() function is straightforward. Its function signature
is func(float32, float32) float32.

The body mass index is defined to be a person’s weight divided by a square of the
person’s height, in kilograms and meters, respectively. Since we accept the user
inputs in pounds and inches, we convert them first, and then compute the BMI.

As stated, as a general rule, it is best to use float64 for computation even if the
argument and return values are in float32. The function-like notation,
float64(), represents type conversion to float64. Likewise, float32()
represents type conversion to float32.

We use bufio.Reader to read the user input, which we used in earlier lessons.

Both bufio.Reader.ReadString() and strconv.ParseFloat() can return an
error. It is a good practice to check the error values unless you are sure that it is
safe to ignore them, or that there is little consequence in doing so.

A function can handle the errors, if it knows how to, or it can pass them to its caller.

In this example, the main function has the big picture, and it is probably best to
defer the proper error handling to the main function.

if err != nil {

12.2. Code Reading

179

 return 0, err
}

In this particular example, the main() function simply terminates the program
when any of the input values, weight or height, is invalid. The readInput()
function could have done the same, but normally that is not the function’s job
whose primary responsibility is limited to reading an input text and convert it to
float32.

Incidentally, this function readInput() could have been written in a somewhat
simpler form using fmt.Scanf(), which we have used before.

bmi-calculator/input2.go

 1 package main
 2
 3 import (
 4 "fmt"
 5)
 6
 7 func readInput2(prompt string) (input float32, err error) {
 8 fmt.Printf("%s: ", prompt)
 9 _, err = fmt.Scanf("%f", &input)
10 return
11 }

The readInput2() function uses named return values to further simplify the
implementation.

12.3. Summary
We reviewed basics of type conversion in this lesson, for example, using

12.3. Summary

180

strconv.ParseFloat().

We also reviewed error handling some more.

To terminate a program before the entire program ends in a normal fashion, we use
the os.Exit() function.

Author’s Note

Software Stack
Building software is not unlike building a skyscraper, or a pyramid.

There are things that go near the ground, and there are things that go near
the top. Viewing software as a vertical stack of blocks is a very useful
metaphor. Sometimes we look at things from top to bottom, and sometime we
look at things from bottom to top.

In Go, the building blocks are packages. When you use a package from the
standard library, for example, you are putting your block on top of the
standard package block.

The closer to the ground, the packages do smaller but more generic tasks. The
packages in the higher up do broader but more specific tasks.

At the top of the pyramid is the main package of your program, which
nobody else can use.

In Go, packages cannot have circular dependencies. That is, if a package A
uses/imports package B, and the package B uses/imports package C, then the
package C cannot use/import the package A. Doing so would create a
dependency cycle.

12.3. Summary

181

This is consistent with our "pyramid" view. A package at a higher level may
depend on the packages below, but not the other way around.

12.3. Summary

182

Lesson 13. Birth Date

13.1. Agenda
We will learn how to use more than one packages in a program. That is, we will
start using our first non-main package in this lesson.

We will also introduce "Go modules" for the first time in this book.

13.2. Code Reading
What day of the week was it when you were born?

The program accepts year, month, and day as an input, and prints out the day of the

13.1. Agenda

183

week for the given date.

It uses the Go module.

birth-date/go.mod

1 module examples/birth-date
2
3 go 1.17

The go.mod file is in the same directory as the file that includes the main()
function.

birth-date/main.go

 1 package main
 2
 3 import (
 4 "fmt"
 5 "log"
 6
 7 "examples/birth-date/week"
 8)
 9
10 func main() {
11 fmt.Print("Enter year (e.g., 2000), month (1~12), and date
 (1~31): ")
12
13 var y, m, d int
14 if _, err := fmt.Scan(&y, &m, &d); err != nil {
15 log.Fatalln("Scan for y, m, and d failed:", err)
16 }
17
18 weekday := week.Weekday(y, m, d)

13.2. Code Reading

184

19 fmt.Println("weekday =", weekday)
20 }

The weekday.go file is put in a subdirectory, week.

birth-date/week/weekday.go

 1 package week
 2
 3 import (
 4 "time"
 5)
 6
 7 func Weekday(year, month, day int) time.Weekday {
 8 date := time.Date(year, time.Month(month), day, 0, 0, 0, 0,
 time.Local)
 9 return date.Weekday()
10 }

13.2.1. Explanation

You can run the program as before using go run:

go run .

You get the following output:

Enter year (e.g., 2000), month (1~12), and date (1~31): 2021 5 5
①
weekday = Wednesday

13.2. Code Reading

185

① Numbers 2021, 5, and 5 are user inputs. The date happens to be the day when
this book is first published.

13.2.2. Grammar

Go was originally created to be used uniformly over the Internet. All libraries, or
packages, across the world (with proper permission) can be used just like any other
packages from the standard libraries or those from your own computers.

It was a lofty goal, but it was just an ideal. In practice, the libraries change. Their
code change. They are often released as different versions. For example, instead of
"version 1.0.0", a newer version might be released with "1.1.0" or even "2.0.0", etc.

The dependency management is one of the most important aspects of software
engineering.

Go, as was initially released, did not have a tool for dependency management. From
the early days, the need was obvious, and many developers started using "home
grown" dependency management systems.

Eventually, the Go team released an official tool for dependency management. That
is the "Go modules".

With a bit of over-generalization, if you write more than one programs on your
computer, then you will need to use Go modules. That is, every Go programmer, for
every program, needs to use Go modules.


We will not discuss, in this book, the old system of using the global
GOPATH variable.

Go does not have a concept of a "project" or something similar. The package is the
fundamental unit as far as the Go programming language is concerned.

A Go module provides a higher-level construct, which behaves like a "project".

13.2. Code Reading

186

A Go module can include one or more packages. It includes special files like
"go.mod" in its root directory, and it provides a uniform dependency management
over all packages under that go module directory.

The Go module is comparable to "venv", or other virtual environment tools, in
Python. (But, not to pip packages, which more or less correspond to packages's in
Go.)

It is comparable to solutions and projects in the DotNet framework (e.g., for C#). It is
comparable to a package (e.g., "project.json") in Node.js (Javascript/Typescript). Rust
has a cargo project. Java uses tools like Maven and Gradle to manage their project
dependencies.

Go uses a "module" to manage library/package dependencies, among other things.

You can create a Go module with the "go mod" command.

go mod init <module_name>

The name of a module can be a string with some restrictions. A path- or subpath-
like string works fine in most cases. A URL-like string works fine in most cases. The
module name, however, cannot start or end with a slash /.

The names of the packages within a module are interpreted relative to the module
name.

Here’s an example go.mod file:

module first-steps/example-33 ①

go 1.17 ②

13.2. Code Reading

187

require example.com/other/package v1.0.1 ③

① It declares a module with name "first-steps/example-33".

② It declares the Go language version used in this module.

③ The packages in this module depend on the version "1.0.1" of the library
"example.com/other/package".

You need not include dependencies on the packages in the standard library. Also,
you do not specify inter-dependencies among the packages within the same
module.

Most of the example code used in this book do not have external dependencies, and
hence Go modules are not needed, strictly speaking. However, as indicated, a Go
module does a little bit more than external dependency management. It is still a
good practice to use modules to manage your "projects".

If you have an external dependency in your project, specify the dependencies in the
"go.mod" file, as shown in the require line in the above example, and you can use
the Go command go get to download those dependent packages to your system. You
can then import those packages in your program packages and use their exported
names.

A Go module, or a Go program, can include multiple packages. A runnable Go
program should have one and only one special package, main package. A Go
module can have at most one main package within its subfolder hierarchy,
starting from the module root directory.

Although the language specification does not explicitly specify, a package in Go
corresponds to a folder in a file system. All source files in a folder should belong to
the same package (with one possible exception, as we will see later). All source files
of a package should be in one directory.

This is how it works with the current Go compiler tools.

13.2. Code Reading

188

If you have the main package in a module, then the main package directory should
be the root directory of the module, where the "go.mod" file is.

When you refer to a package in a subfolder of a module root folder, you use the
module name as a prefix to the package name.

If you have a package under a directory "sub", within a module with name "first-
steps/example-33", for instance, then you can refer to that package as "first-
steps/example-33/sub" from other packages in the module.

For example,

import (
 "first-steps/example-33/sub"
)

It is generally a convention to use the subfolder’s name, the last segment in the file
path, as a package name, if possible.

In a Go package, the names (e.g., identifiers of variables, constants, or functions)
that are capitalized are exported. Go does not use special keywords like "export" or
"public" as in other programming languages.

Exported names of a package can be used by other packages by importing the
package.

Names that start with lowercase letters are not exported, and they can be accessed
only within the package in which they are declared.

13.2.3. APIs

• Package log [https://golang.org/pkg/log/]: Package log implements a simple logging
package. It defines a type, Logger, with methods for formatting output. It also

13.2. Code Reading

189

https://golang.org/pkg/log/

has a predefined 'standard' Logger accessible through helper functions
Print[f|ln], Fatal[f|ln], and Panic[f|ln], which are easier to use than creating a
Logger manually. That logger writes to standard error and prints the date and
time of each logged message.

◦ func Fatalln [https://golang.org/pkg/log/#Fatalln]: Fatalln() is equivalent to
Println() followed by a call to os.Exit(1).

• Package time [https://golang.org/pkg/time/]: Package time provides functionality for
measuring and displaying time. The calendrical calculations always assume a
Gregorian calendar, with no leap seconds.

◦ func Date [https://golang.org/pkg/time/#Date]: Date returns the Time
corresponding to yyyy-mm-dd hh:mm:ss + nsec nanoseconds in the
appropriate zone for that time in the given location. The month, day, hour,
min, sec, and nsec values may be outside their usual ranges and will be
normalized during the conversion. For example, October 32 converts to
November 1.

◦ type Time [https://golang.org/pkg/time/#Time]: A Time represents an instant in
time with nanosecond precision. Programs using times should typically
store and pass them as values, not pointers. That is, time variables and
struct fields should be of type time.Time, not *time.Time.

◦ type Month [https://golang.org/pkg/time/#Month]: A Month specifies a month of
the year (January = 1, …).

◦ type Weekday [https://golang.org/pkg/time/#Weekday]: A Weekday specifies a day
of the week (Sunday = 0, …).

▪ func Weekday [https://golang.org/pkg/time/#Time.Weekday]: Weekday()`
returns the day of the week for the given time.

◦ var Local [https://golang.org/pkg/time/#Location]: Local represents the system’s
local time zone. On Unix systems, Local consults the TZ environment
variable to find the time zone to use. No TZ means use the system default
/etc/localtime. TZ="" means use UTC. TZ="foo" means use file foo in the

13.2. Code Reading

190

https://golang.org/pkg/log/#Fatalln
https://golang.org/pkg/time/
https://golang.org/pkg/time/#Date
https://golang.org/pkg/time/#Time
https://golang.org/pkg/time/#Month
https://golang.org/pkg/time/#Weekday
https://golang.org/pkg/time/#Time.Weekday
https://golang.org/pkg/time/#Location

system timezone directory.

13.2.4. Deep Dive

In Go, a package is a basic unit of code sharing.

The program of this lesson include an extra week package in addition to the main
package. The week package includes one source file, weekday.go, in this example.

package week
// ...

The source file includes one function, func Weekday(year, month, day int)
time.Weekday. This function Weekday() is exported from the week package since
its name starts with a capital letter, W, in this case.

The main() function uses this function via import package declaration.

import "examples/birth-date/week"

The import path is a concatenation of the module name, "examples/birth-date", and
the last segment of the directory path, "week", where the source file(s) of the week
package reside. They are combined as if the "week" folder is a subdirectory of a
(hypothetical) folder named "examples/birth-date", the module name.

Through the import statement, all exported names of the week package are now
available in this file, "main.go".

The names in the week package can be accessed using the package name as a prefix.
For example,

13.2. Code Reading

191

day := week.Weekday(y, m, d)

It should be noted that the week in this prefix comes from the package week line of
the source file weekday.go, which belong to the week package, not from the import
"examples/birth-date/week" statement. By convention, we generally use the
name of the package as a folder name of the package, but they could be different.

The import spec syntax is dictated by the Go tool chain, whereas the package
names and the use of their exported names are governed by the Go language
specification.

If you would like to use a different name than the default package name, then you
can add a desired name to the import declaration. For example,

import w "examples/birth-date/week"

Now, the week package can be referred to as w in this source file. For example,

package main

import w "examples/birth-date/week"

func main() {
 // ...
 day := w.Weekday(y, m, d)
 // ...
}

The Weekday() function of the week package essentially "looks up" the given date
(on a calendar), and it returns the day of the week for the specified date.

13.2. Code Reading

192

The Date() function from the time package return a value of type time.Time. The
Time type has a method Weekday(), which returns the day of the week of the given
date.

We have not really discussed "methods" yet, but a method is a function, with a
slightly different syntax. In this example, we call the Weekday() function, or
method, on the variable date (of type Time):

weekday := date.Weekday()

Its returned value, via week.Weekday(y, m, d), is then printed in the main()
function, and the program terminates.

The if statement in Go can have an initialization clause. In this example,

var y, m, d int
if _, err := fmt.Scan(&y, &m, &d); err != nil {
 log.Fatalln("Scan for y, m, and d failed:", err)
}

The statement _, err := fmt.Scan(&y, &m, &d) is executed first before the
Boolean expression, err != nil in this case, is evaluated.

The fmt.Scan() function can return an error. If there is no error, then we proceed
with the read numbers, y, m, and d after the if statement block.

If there is a non-nil error, on the other hand, then we log the error and terminate
the program. The log.Fataln() function outputs the error (just like
fmt.Println()) and then it calls os.Exit() with non-zero error code 1.

A statements like if err := doSomething(); err != nil { /* Do error
handling */} is one of the commonly used "idioms" in Go.

13.2. Code Reading

193

13.3. Summary
We introduced Go modules in this lesson. A module helps manage dependent
external packages, among other things.

A Go module can contain more than one packages. Packages that are in the same
module and are used by the main package should be imported.

Author’s Note

Don’t Be a Parrot
It is not uncommon to see a beginning programmer copy code from a book to
a computer. Or, copy code on the Internet to his/her computer.

Often they type the code, not even just copy and paste, and they claim that
they learn better by actually typing.

There is no evidence for that. If anything, that will be a very inefficient way
to learn programming. While imitation is an important part of learning a
new language, or a new skill, mindless imitation would not enhance your
speaking or writing skills very much.

The author made a conscious decision not to release the sample code of this
book. For one thing, it has little value, really. But, there are other reasons as
well. In his opinion, downloadable code samples do more harm than good.

Often learning students download a code sample and run it on their
computers. And, they think that that’s the end of of it. It works. Now, let’s
move on. In doing so, however, they have learned very little. On the contrary,
they only ended up with the false sense that they were able to "write" the
same code because they compiled the code and ran it. Or, because they even

13.3. Summary

194

"typed" the code.

Obviously, they did not write the code.

Although the author has asserted that this book is "for reading", if you are
inclined to try out some sample code in this book, then here’s a suggestion.

1. Learn the main points of the lesson.

2. Try to understand the sample code, and what it does.

3. Then close the book.

4. Recall the problem which the sample code is trying to solve.

5. Create your solution to the problem.

You may, or more likely may not, end up with the same code. But, that’s
perfectly all right.

If you get stuck, then refer back to the example code. Try to understand what
it does, and how it does it. And then, close the book and try again.

13.3. Summary

195

Lesson 14. Greatest Common
Divisor

14.1. Agenda
We will take a look at recursion in this lesson.

14.2. Code Reading
We will implement a function to find the greatest common divisor of two given
numbers.

14.2.1. "go.mod"

We start by creating a Go module:

14.1. Agenda

196

go mod init examples/greatest-common-divisor

The module names are largely arbitrary unless you are planning to let others use
one or more packages in your module.

greatest-common-divisor/go.mod

1 module examples/greatest-common-divisor
2
3 go 1.17

14.2.2. Package main

We will see two versions of the greatest common divisor functions, one using
recursion and the other using iteration.

We use a constant useRecursive to switch between these two implementations.

greatest-common-divisor/main.go

 1 package main
 2
 3 import (
 4 "examples/greatest-common-divisor/gcd"
 5 "fmt"
 6)
 7
 8 const useRecursive = true
 9
10 func main() {
11 var a, b int64 = 30, 12
12 fmt.Printf("a = %d, b = %d\n", a, b)

14.2. Code Reading

197

13
14 var fn func(int64, int64) int64
15 if useRecursive {
16 fn = gcd.GCD1
17 } else {
18 fn = gcd.GCD2
19 }
20
21 g := fn(a, b)
22 fmt.Printf("gcd = %d\n", g)
23 }

14.2.3. Package gcd

The first implementation using recursion:

greatest-common-divisor/gcd/gcd1.go

1 package gcd
2
3 func GCD1(a, b int64) int64 {
4 if b == 0 {
5 return a
6 } else {
7 return GCD1(b, a%b)
8 }
9 }

The second implementation using iteration:

greatest-common-divisor/gcd/gcd2.go

1 package gcd

14.2. Code Reading

198

2
3 func GCD2(a, b int64) int64 {
4 for b != 0 {
5 a, b = b, a%b
6 }
7 return a
8 }

14.2.4. Explanation

The program includes two different implementations for computing the greatest
common divisor of two integers.

Depending on the value of useRecursive, one or the other implementation is used.

If you run the program with go run ., with either useRecursive == true or
useRecursive == false, you get the following output:

a = 30, b = 12
gcd = 6

14.2.5. Deep Dive

The program uses a Go module, as in the previous lesson. In fact, all the examples
in this book use Go modules although its benefit is not entirely obvious in certain
situations.

You can refer back to the the previous lesson, or you can refer to the official doc, Go
Modules Reference [https://golang.org/ref/mod], for more information.

It includes two packages, main and gcd.

14.2. Code Reading

199

https://golang.org/ref/mod
https://golang.org/ref/mod

Each source file in a directory, which happens to be named "gcd", starts with the
package declaration:

package gcd

The name of the GCD1() function starts with a capital letter G, and hence it is
exported. Its signature is func(int64, int64) int64.

One interesting thing about the GCD1() function is that it calls itself in its function
body.

func GCD1(a, b int64) int64 {
 if b == 0 {
 return a
 } else {
 return GCD1(b, a%b)
 }
}

It is called "recursion" in programming.

The greatest common divisor (GCD) of two positive integers is the largest positive
integer that divides each of the integers. For example, the GCD of 8 and 12 is 4, and
the GCD of 9 and 12 is 3.

The GCD1() function implements what is known as the Euclidean algorithm. Here’s
a link to the Wikipedia article: en.wikipedia.org/wiki/Greatest_common_divisor.

As Euclid first discovered, the GCD of two positive numbers, a and b, is the same as
that of b and the remainder of a divided by b. When the remainder becomes zero,
the other value in the pair, a in this case, is the greatest common divisor.

14.2. Code Reading

200

https://en.wikipedia.org/wiki/Greatest_common_divisor

That is precisely what the GCD1() function implements.


You do not have to "understand" why, or how exactly, an
algorithm works in order to be able to use it. You will just have to
know what the exact steps are to implement the algorithm.

Recursive algorithms, or implementations, say, for a given problem, tend to appear
more natural in many cases. They are not, however, the most efficient
implementations, for the given problem, in general.

The second version of the GCD function, GCD2(), implements the logic in an
iterative way.

func GCD2(a, b int64) int64 {
 for b != 0 {
 a, b = b, a%b
 }
 return a
}

This is the same Euclidean algorithm. It just uses the for loop iteration to find the
greatest common divisor.

Note that, in each iteration of the loop, the pair a, b is replaced by b, a%b.
Eventually, the remainder operation b = a%b will yield 0, and the other value of
the pair, a, is the GCD.

In the main() function, we declare a variable fn of type func(int64, int64)
int64. Both GCD1() and GCD2() functions have the same type, and hence they can
be assigned to this variable, fn.

Calling fn() will be the same as calling GCD1() or GCD2() depending on the value
of useRecursive.

14.2. Code Reading

201

The program then prints out the result, and it terminates.

14.3. Summary
We introduced recursion in this lesson. We also reviewed function types.

Author’s Note

What It Takes to Be a Good Programmer
Programming, or more broadly software development, involves a lot of
different skills and talents.

First, you will need to be an expert in the language you use in programming.
This is actually the easiest skill you can learn. Programming languages have
well-defined grammar, unlike spoken languages, with a finite set of rules.
Resources like this book can help you learn the languages.

Second, you will need to be familiar with commonly used libraries and APIs.
It takes experience. The longer you program, the more familiar you will
become with various libraries. It is not "difficult", but it just takes time.

Third, you will need some problem solving skills. This is not something you
can learn by reading books or anything like that. But, you will get better over
time as you train yourself by working on more problems. It helps to learn
some common algorithms as well. "Familiarity" with diverse set of problems
will be definitely useful when you face a new problem.

And, eventually, you will need to develop system design skills. This is
different from programming skills. Creating a large software is like "building
a pyramid", using the analogy we used before, or building a "starship" using
lego blocks. You can only learn this skill by actually doing it, by building a

14.3. Summary

202

large scale software.

14.3. Summary

203

Lesson 15. Reverse a Number

15.1. Agenda
We will review Go’s testing framework in this lesson.

15.2. Code Reading
This program "reverses" an integer number. That is, given a number 1234, it
produces another number 4321.

15.2.1. Package main

The main() function handles input and output, and it delegates the core logic to

15.1. Agenda

204

another package.

reverse-number/main.go

 1 package main
 2
 3 import (
 4 rn "examples/reverse-number/reverse"
 5 "fmt"
 6 "log"
 7)
 8
 9 func main() {
10 fmt.Print("Enter a number: ")
11
12 var num int64
13 if _, err := fmt.Scan(&num); err != nil {
14 log.Fatalln("Scan for number failed:", err)
15 }
16
17 reversed := rn.ReverseNumber(num)
18 fmt.Printf("Reversed number: %d\n", reversed)
19 }

15.2.2. Package reverse

The core function, ReverseNumber(), of this program is defined in a different
package, reverse.

reverse-number/reverse/reverse.go

 1 package reverse
 2
 3 func ReverseNumber(num int64) int64 {

15.2. Code Reading

205

 4 var reversed int64 = 0
 5 for num != 0 {
 6 reversed = reversed*10 + num%10
 7 num /= 10
 8 }
 9 return reversed
10 }

Note that the main.go file is located in a folder reverse-number (e.g., in a certain
directory path) and the reverse.go file is located in its subfolder reverse-
number/reverse.

15.2.3. Package reverse_test

We have a couple of simple unit tests for the ReverseNumber() function,
depending on how you count the "tests". The test file is put in the same directory as
reverse.go.

reverse-number/reverse/reverse_test.go

 1 package reverse_test
 2
 3 import (
 4 "examples/reverse-number/reverse"
 5 "testing"
 6)
 7
 8 func TestReverseNumber(t *testing.T) {
 9 var number int64 = 1234
10 var expected int64 = 4321
11 got := reverse.ReverseNumber(number)
12 if got != expected {
13 t.Errorf("ReverseNumber(%d) = %d; want %d", number, got,
 expected)

15.2. Code Reading

206

14 }
15
16 number = 24356879
17 expected = 97865342
18 got = reverse.ReverseNumber(number)
19 if got != expected {
20 t.Errorf("ReverseNumber(%d) = %d; want %d", number, got,
 expected)
21 }
22 }

15.2.4. Explanation

You can run the program as before from the main package directory:

go run .

You get the following output:

Enter an integer number: 1235678 ①
Reversed number: 8765321

① 1235678 is a user input.

You can run the test program(s) in the reverse folder as follows:

go test ./reverse

It will output something like this,

15.2. Code Reading

207

ok examples/reverse-number/reverse 0.001s

Or, if the test fails,

--- FAIL: TestReverseNumber (0.00s)
 reverse_test.go:13: ReverseNumber(1234) = 1111; want 4321
FAIL
FAIL examples/reverse-number/reverse 0.001s
FAIL

15.2.5. Deep Dive

Testing is built into the standard Go tool chain. This is one of the nicest features of
Go.

It is beyond the scope of this book to discuss the program testing methodologies in
general. We will do some unit testing in this lesson, and possibly in some future
lessons.

We will try to provide an absolute minimum so that you can start testing your code
right away. There are more resources on the Web if you want more thorough
introduction to testing in Go.

The Go testing framework uses certain conventions.

For example, a file that includes test code should have a name that ends with
_test.go. A function that starts with Test and a capital letter after that is a test
function, which will run with the go test command.

A Go test function has a signature func(*testing.T). The argument of type
*testing.T will be used to manage the test states, and what not, by the testing

15.2. Code Reading

208

framework.

The testing package needs to be imported in all test files.

import "testing"

As for where to put the test files, there are a few different conventions across
different programming communities. Some prefer to put src files and test files in
separate folders, for example.

In Go, it is best to put the test file(s) in the same directory as the file being tested.

You can put the test files in the same package as the source files. Or, you can put the
test files in a different package (but in the same directory).

As mentioned, this is an exception to the "one package - one folder" rule imposed by
the Go compiler tools. You can put test files in a special test package named
<sourcepackage>_test. That is, if the source files belong to a package named
reverse, then you can put the test files in a package named reverse_test.

If you are primarily interested in testing exported names, as if you are an client of
the source package, then it is better to use the xxx_test package.

If you want to test all internal implementations, then the test files should be put in
the same package as the source files.

You cannot mix, however. You can have only one test package in a folder for all test
files, whether it is the source file package or it is the _test package.

Now the type testing.T provides a number of functions and other types to make
testing easier.

One thing to note is that Go testing framework does not provide the "assert" type

15.2. Code Reading

209

APIs.

It is almost universal across different test frameworks, across different
programming languages, to have some kind of "assert" functions, which determine
"pass" or "fail" of a test scenario. But Go does not follow such conventions.

In fact, Go’s standard testing framework is much simpler.

You simply use conditional statements to test, for instance, if a certain evaluation
works as expected.

When you determine that your code does not work as expected, you explicitly call
testing.T.Fail(), or its variations, to let the testing framework know.

In this example,

func TestReverseNumber(t *testing.T) {
 var number int64 = 1234
 var expected int64 = 4321
 got := reverse.ReverseNumber(number)
 if got != expected {
 t.Errorf("ReverseNumber(%d) = %d; want %d", number, got,
expected)
 }
}

The t.Errorf() function first calls t.Logf() to log the error message, and then it
calls t.Fail() to report it as a test failure.


In order to view test log messages even when a test does not fail,
use go test -v.

• Package testing [https://golang.org/pkg/testing/]: Package testing provides support

15.2. Code Reading

210

https://golang.org/pkg/testing/

for automated testing of Go packages. It is intended to be used in concert with
the "go test" command, which automates execution of any function of the form
func TestXxx(*testing.T) where Xxx does not start with a lowercase letter.
The function name serves to identify the test routine.

◦ type T [https://golang.org/pkg/testing/#T]: T is a type passed to Test functions to
manage test state and support formatted test logs. A test ends when its Test
function returns or calls any of the methods FailNow, Fatal, Fatalf, SkipNow,
Skip, or Skipf.

▪ func (*T) Fail [https://golang.org/pkg/testing/#T.Fail]: Fail marks the function
as having failed but continues execution.

The implementation of the example test function above is otherwise
straightforward. Except for the use of type testing.T, it is just a normal Go
function.

As a general comment, you do not have to use testing frameworks to test your code.
In certain cases, you can just manually test your code, and that can be sufficient. As
we have been doing in this book, you can just use the main() function for quick
and dirty testing as well.

Use of testing frameworks is recommended in general, however. For many projects,
automated testing is a must, for example, to catch regressions during an active
development, etc.

If you have multiple packages, e.g., in the same Go module, then you can run go test
for all packages as follows:

go test ./...

The full coverage of testing is beyond the scope of this book, but the testing
package includes a lot of features which will help make your testing easier, among
other things. You can refer to the official documentations for more information. For

15.2. Code Reading

211

https://golang.org/pkg/testing/#T
https://golang.org/pkg/testing/#T.Fail

example, the package doc, golang.org/pkg/testing/, includes all the APIs that you will
need to create/run test cases.

The main() function of this lesson is simple. It uses fmt.Scan() to get an integer
input, and it calls ReverseNumber().

One thing to note is that the source file import statement uses a syntax that we have
not seen before.

import rn "examples/reverse-number/reverse"

This import declaration renames the default package name of reverse to rn. Then,
in this source file, we can refer to the package as rn rather than reverse.

That is what we do when we call ReverseNumber():

reversed := rn.ReverseNumber(num)

15.3. Summary
We reviewed testing in Go.

The Go testing framework uses certain naming conventions. For example, a file that
includes test code should have a name that ends with _test.go. A function that starts
with Test (and a capital letter after that) is a test function.

You use go test command to run the test cases.

15.3. Summary

212

https://golang.org/pkg/testing/

15.4. Exercises
1. The example code of this lesson has minimal error handling. What would you

do if the reversed number overflows (when the input number is a valid int64)?
Modify the code to handle such an error.

2. Implement ReverseNumber() using recursion.

3. Run the unit test for your recursive ReverseNumber() function.

Author’s Note

Request for Review
Congratulations! You just finished the first part of this book. This could have
been the most difficult part, depending on where you are coming from. The
real fun starts from the second part, Moving Forward, where we cover Go’s
unique features like structs and methods as well as interfaces.

If you find this book helpful in any way, then please leave an honest review
for other people, who may find this book useful in learning programming,
and programming in Go.

Now, let’s move forward! 

15.4. Exercises

213

Review - Packages, Functions,
Variables

Key Concepts
Packages

Packages are what Go programs are made up of. Programs start running in
package main. You can import other packages using an import declaration. Your
non-main packages may be imported by other programs as well.

A package comprises one ore more source files. Each source file must begin with
the package declaration and the import statement(s), if needed.

Exported Names

A top-level name in a package that starts with a capital letter is exported. When
importing a package, you can refer only to its exported names. Non-exported
names are not accessible from outside the package.

Functions

A function can take zero or more parameters. Function arguments are declared
with zero or more pairs of a variable name and its type, separated with comma
,. A function can return zero or more results. Functions declare their return
values using their types. Return variables can be optionally declared with names
as well.

Basic Types

Go’s basic types includes the following:

bool string int int8 int16 int32 int64 uint uint8 uint16 uint32

Key Concepts

214

uint64 byte rune float32 float64

All types but a few have fixed widths. int and uint types can be 32 or 64 bit
wide depending on the system architecture.

Variables

The var statement declares a list of variables. In a var declaration, variable
names are followed by their respective types. A var declaration can include
initializers. If an initializer is present, the type can be omitted. The type will be
"inferred" based on the type of the initializer.

A var statement can be at package or function level. Inside a function, the :=`
short assignment statement can be used in place of a var declaration with
implicit type. At a package level, every statement must begin with a keyword
(var, func, …), and the short variable declaration cannot be used.

Zero Values

Variables declared without an explicit initial value are given their zero value, for
example, 0 for numeric types, false for the boolean type, and "" (the empty
string) for strings.

Constants

Constants are declared like variables, but with the const keyword. Constants
can be string, boolean, or numeric values, including bytes and runes. Constants
cannot be declared using the short variable assignment (:=) syntax.

Type Conversions

There is no implicit conversion between items of different types in Go. For
example, an assignment of a value of one type to a variable with another type
requires an explicit conversion. The expression T(v)` converts the value v to
the type T.

Key Concepts

215

Type Inferences

When declaring a variable without specifying an explicit type, the variable’s
type is inferred from the value on the right hand side. When it is typed, the new
variable is of that same type.

Flow Control
For Statement

The classic for loop has three components separated by semicolons, (1) the
(optional) init statement: executed before the first iteration, if present, (2) the
condition expression: evaluated before every iteration, and (3) the (optional)
post statement: executed at the end of every iteration, if present. Both
semicolons are required if either of the init or post statements are present. If
neither exists, both semicolons can be omitted. In this case, the for loop is like
the while loop in other programming languages.

If the condition expression is omitted, then it is equivalent to having a Boolean
value true.

For Range

The for range loop iterates over an array, slice, or map. When ranging over a
slice, two values are returned for each iteration. The first is the index, and the
second is a copy of the element at that index.

If Statement

The if statement can start with a short statement to execute before the
condition. Variables declared by the statement are only in scope within the if
and any of the else blocks.

Flow Control

216

Advanced Types
Pointers

A pointer is a reference type. The type *T is a pointer to a value of type T. The &
operator generates a pointer to its operand. The * operator denotes the pointer’s
underlying value. Pointer’s zero value is nil.

Arrays

An array is a type for a sequence of values of a fixed length. The type [n]T is an
array of n values of type T. An array’s length is part of its type.

Slices

A slice is similar to an array, but it is dynamically-sized. It is a view into the
elements of an underlying array. The type []T is a slice with elements of type T.
A slice is formed by specifying two indices, a low and high bound, separated by a
colon. Slices are like references to arrays. The zero value of a slice is nil.

A slice has both a length and a capacity. The length of a slice is the number of
elements it contains. The capacity of a slice is the number of elements in the
underlying array, counting from the first element in the slice. The length and
capacity of a slice s can be obtained using the expressions len(s) and cap(s).

Slices can be created with the built-in make() function. A new slice can be also
initialized with a slice literal.

To append a new element(s) to a slice, the built-in append()` function is used,
which returns a new slice variable. If the backing array of s is too small to fit all
the given values a bigger array will be allocated. The returned slice will point to
the newly allocated array.

Advanced Types

217

Error Handling
Errors

Go programs use function’s return values to express error states. The error type
is a built-in interface that is used for error values. When a function returns an
error value, the calling code should handle errors by testing whether the error is
nil or not. A nil error denotes success (i.e., "no error"), and a non-nil error
denotes failure.

Error Handling

218

Part II: Moving Forward
There is no royal road to learning.

219

Lesson 16. Hello Morse Code

16.1. Introduction
Morse code is a method for encoding a set of alphabets and numbers used in
telecommunications. It uses a combination of two types of signals, short (or, "dot")
or long (or, "dash"), along with various length "gaps" (e.g., the silent part), to
represent characters, and words.

For more information, refer to other resources on the Web. For example, the
wikipedia page: en.wikipedia.org/wiki/Morse_code

In this lesson, we will write an "encoder" (alphabets to Morse code) and a "decoder"
(Morse code to alphabets) in the Go programming language.

This is not a realistic program, and it is not intended to be a practical example.
However, the concepts presented here could be useful in general programming,
especially in the context of communications and encryption.

The program is primarily written as a "library", and it is included in a package
named morse. The main() function in this example, as in many projects in this
book, is mainly used as a "quick and dirty" test driver. As stated, the main package
is not shareable.

16.1. Introduction

220

https://en.wikipedia.org/wiki/Morse_code

16.2. Code Review

16.2.1. Package main

Here’s a sample solution.

The morse package exports two functions, Encode() and Decode(). The main
function calls these two functions with some sample data, and just prints out the
results for visual inspection.

morse-code/main.go (lines 8-16)

8 func main() {
9 text2 := "Hello, World!"
10 code2 := morse.Encode(text2)
11 fmt.Printf("text: %s => code: %s\n", text2, code2)
12
13 code1 := ".... . .-.. .-.. --- --..-- .-- --- .-. .-.. -..

16.2. Code Review

221

 -.-.--"
14 text1 := morse.Decode(code1)
15 fmt.Printf("code: %s => text: %s\n", code1, text1)
16 }

16.2.2. Package morse

For this example, we simply use strings for both English text and Morse code. We
define a mapping from alphabets (and numbers and punctuations) to Morse code,
and also its reverse mapping.

morse-code/morse/code.go (lines 8-18)

 8 var morseCode = make(map[byte]string, 26*2+10+16)
 9
10 func init() {
11 for k, v := range code {
12 morseCode[k] = v
13 if unicode.IsLetter(rune(k)) {
14 u := []byte(strings.ToUpper(string(k)))[0]
15 morseCode[u] = v
16 }
17 }
18 }

morse-code/morse/code.go (lines 20-26)

20 var reverseCode = make(map[string]byte, 26+10+16)
21
22 func init() {
23 for k, v := range code {
24 reverseCode[v] = k
25 }

16.2. Code Review

222

26 }

Note the special package function, init(), used to initialize two package scope
variables, morseCode and reverseCode.

Here we use an internal variable code of a type map to define the alphabet to (the
string representation of) Morse code.

morse-code/morse/chars.go (lines 3-9)

3 var code = map[byte]string{
4 'a': ".-",
5 'b': "-...",
6 'c': "-.-.",
7 'd': "-..",
8 'e': ".",
9 'f': "..-.",

morse-code/morse/chars.go (lines 54-60)

54 '+': ".-.-.",
55 '-': "-....-",
56 '_': "..--.-",
57 '"': ".-..-.",
58 '$': "---.--.",
59 '@': ".--.-.",
60 }

In principle, characters in Go are runes, and using the rune type for the English
alphabets, and numbers and punctuation symbols, would have been more
appropriate. For the ASCII characters, however, runes and bytes are roughly
interchangeable when dealing with strings in Go.

16.2. Code Review

223

As explained earlier, strings in Go have a dual nature. A string can be viewed
(physically) as a sequence of bytes, or (conceptually) as a sequence of runes or
"characters". (The lengths of byte, rune, and Unicode character are 1, 2, and 2 or 4
bytes, respectively. Strings in Go use the UTF-8 encoding, which uses 1, 2, or 4 bytes
for each character. An ASCII character (conceptually, a 2-byte rune) occupies 1 byte
in a Go string. Dealing with the text (and, the date and time) is the "messiest" part in
programming. )

"Encoding" a text amounts to mapping the alphabets of the text to the
corresponding strings representing the Morse code. In practice, Morse code
involves a few different length gaps, etc. We will represent those gaps with spaces.

The implementation of Encode() is straightforward.

morse-code/morse/encode.go (lines 7-21)

 7 func Encode(text string) string {
 8 var sb strings.Builder
 9 for _, b := range []byte(text) {
10 if c, ok := morseCode[b]; ok {
11 sb.WriteString(c + " ")
12 } else {
13 if b == ' ' {
14 sb.WriteString(" ")
15 } else {
16 sb.WriteString("???")
17 }
18 }
19 }
20 return sb.String()
21 }

If a character is not representable by a Morse code, then we simply output "???" in
this example.

16.2. Code Review

224

Implementing the Decode() function requires a little more thinking. This is not
necessarily an artifact of our toy example. Decoding Morse code is inherently more
complicated than encoding.

This is because while the unit of a signal is dots and dashes (and gaps), it is a series
of these signals (one or more) that represent a single character in English.

The following Decode() function implements one of the simplest solutions. One
can probably implement this more efficiently using more advanced algorithms.

morse-code/morse/decode.go (lines 9-48)

 9 func Decode(code string) string {
10 var sb strings.Builder
11 var char []byte
12 var spaceCount = 0
13 for _, b := range []byte(code) {
14 if b != ' ' {
15 if spaceCount > 0 {
16 if len(char) > 0 {
17 letter, err := findChar(char)
18 if err != nil {
19 fmt.Println(err)
20 sb.WriteString("?")
21 } else {
22 sb.WriteString(string(letter))
23 }
24 }
25 char = []byte{}
26
27 if spaceCount > 1 {
28 sb.WriteString(" ")
29 }
30 spaceCount = 0
31 }

16.2. Code Review

225

32 char = append(char, b)
33 } else {
34 spaceCount++
35 }
36 }
37 if len(char) > 0 {
38 letter, err := findChar(char)
39 if err != nil {
40 fmt.Println(err)
41 sb.WriteString("?")
42 } else {
43 sb.WriteString(string(letter))
44 }
45 }
46
47 return sb.String()
48 }

morse-code/morse/decode.go (lines 50-57)

50 func findChar(bytes []byte) (byte, error) {
51 str := string(bytes)
52 if c, ok := reverseCode[str]; ok {
53 return c, nil
54 } else {
55 return 0b0, errors.New(fmt.Sprintf("Unrecognized code:
 %s", str))
56 }
57 }

This particular implementation relies on the assumption (specific to this example)
that one space is used between characters and more than one spaces are used
between words.

16.2. Code Review

226

Note that the function findChar() is not exported from this package as it uses the
lowercase first letter for its function name.

All exported names (variables, functions, etc.) should be documented, as a general
practice. As stated, however, the content of the book serves as a documentation for
these examples, and the sample programs in this book are mostly undocumented.
We will discuss Go’s "doc comments" in later lessons.

If you run the program as before:

go run .

You get the following output:

text: Hello, World! => code:-.. .-.. --- --..-- .-- ---
.-. .-.. -.. -.-.--
code:-.. .-.. --- --..-- .-- --- .-. .-.. -.. -.-.-- =>
text: hello, world!

16.3. Pair Programming
Let’s start from the beginning.

When you are given a problem, as a general rule, it is best to solve the problem
from top to bottom. That is, from the high-level organization, description,
understanding, etc. to the lower-level details. This process often corresponds to
what is known as a "design" in software engineering.

Then, you start to implement the lower level components first and build upward.

This is a general guideline in solving computational problems. This kind of strategy

16.3. Pair Programming

227

may not work well in all problem domains.

In this particular example, we may need to read an input in some form
(presumably, converted from the Morse code signals, electrical or otherwise), and
convert them into English. On the reverse side, we can convert an English text to a
sequence of symbols in certain formats (which can be read and converted to Morse
code signals in some way, for instance).

Without considering specific (executable) programs, therefore, we can imagine that
we will need the following "API" to support a broad range of programs.

func Encode(text string) (code string) { /* ... */ }
func Decode(code string) (text string) { /* ... */ }

In this particular example, as with most examples in this book, we do not have well-
defined, and specific, requirements. In reality, we will most likely start from a set of
particular system requirements (e.g., based on the business requirements), which
will likely constrain our "API design".

In this lesson, we will use the use cases of the main() function as a requirement, as
shown earlier. Then, this API design will most likely support those use cases.

Now, how do we implement the Encode() function? As stated, "encoding" is simply
a "dictionary lookup", in this example. The Go programming language provides a
builtin data type map, which we can use for this purpose. (map is a keyword in Go.)

• map: A map is an unordered group of elements of one type, called the element
type, indexed by a set of unique keys of another type, called the key type. The
value of an uninitialized map is nil. The comparison operators == and != must
be fully defined for operands of the key type.

A map is another reference type in Go. (One other reference type we have seen so
far is slice.)

16.3. Pair Programming

228

It is like a hashtable, a dictionary, or a map in other languages. It stores key-value
pairs, and it provides a way to retrieve the value corresponding to a given key.

A variable of the map type can be declared as follows:

var myMap1 map[string]int

Note the syntax. In this example, the type of the keys is string, and the type of the
values is int.

A map can be initialized with an empty value:

myMap2 := map[byte]float64{}

Note the similarity with the empty slice initialization syntax (e.g., the use of {}).
Alternatively, a map can be created with the builtin make() function with an
(optional) initial capacity:

myMap3 := make(map[string][]byte, 10)

In this example, the value type is []byte, a slice of bytes, and its initial capacity is
10. The types of map values can be just about anything, but the key types are
limited to those that are "comparable".

The language spec defines this more precisely, but in short, comparable types are
boolean, numeric, string, pointer, channel, and interface types, and structs or
arrays that contain only those types. Slices, maps, and functions cannot be used as
keys of a map since these types cannot be compared using ==.

Note that, unlike in the case of slices, maps cannot be automatically initialized with

16.3. Pair Programming

229

default values. The size of the map created this way is always zero, initially.

If you would like to provide some initial values, then you can use a "map literal"
using the following syntax:

ages := map[string]int{
 "John": 100,
 "Joe": 80,
 "Mary": 70,
 "Jill": 50,
}

Now, you can use the square bracket notation ages["John"] to access an element,
like in many C-style programming languages. In Go, however, accessing a non-
existent key does not throw an error. It simply return the default value of the map’s
value type. For instance, in the above example, ages["Lisa"] will return 0.

To differentiate the cases where the key does not exist in the map and where the
value happens to be a default value, Go’s map access returns two values, in fact.

It returns the map’s value corresponding to the given key, if it exists, and a bool
value as a second return value, which indicates whether the key exists in the given
map or not.

This is an idiom in Go:

 if v, ok := ages[name]; ok {
 // v is the value of ages[name] for a given key, name
 } else {
 // the key, name, is not found in ages.
 }

16.3. Pair Programming

230

Note the if statement with a variable initialization (:=), which we have discussed
before. If the ok value of ages[name] is true, then the if branch is executed. The
value v will be the value of ages at index "name". Otherwise, the else branch is
executed. In that case, the value of v will be merely the default/zero value of the
type of the map’s value, that is, 0 in this example. (Hence, we should normally
ignore that value.) Using the variable name ok is a convention.

You can add a new element, or overwrite an existing item, this way:

ages["Michael"] = 40
ages["Joe"] = 10

The builtin function len() can be used to get the size of a map.

size := len(ages)

You can delete an existing element using another builtin function, delete().

• delete(): The delete built-in function deletes the element with the specified
key from a map. If the the map is nil or there is no such element specified by the
key, delete is a no-op.

For example,

delete(ages, "Mary")

Deleting a non-existent element in a map is a null operation. It does not throw an
error.

We can iterate over a map, in a similar way that we do over a slice or an array.

16.3. Pair Programming

231

for name, age := range ages {
 fmt.Printf("%s is %d years old\n", name, age)
}

The first values in the for-range loop are the keys and the second values are the
values of the map, e.g., ages in this example.

In this example, we use a map of bytes to strings to represent the mapping from
the letters (e.g., Alphabets and numbers) to the Morse code:

var code = map[byte]string{}

The map, code, is initialized with all the characters relevant to English.

The Morse code does not distinguish upper and lowercase letters. For convenience,
we create a new map that includes both lowercase and uppercase Alphabets in the
init function (say, instead of converting them on the fly).

A Go package can contain one or more init() functions to set up whatever initial
state is needed.

func init() {}

The init() functions do not return any value like the main() function. They run
after all package scope variables and constants are initialized.

The init() functions in a source file are called after all init() functions in the
imported packages are called.

This new map initialized via the first init() function in morse-code/morse/code.go

16.3. Pair Programming

232

is named morseCode in this example. Note that the map is created with an initial
capacity of 26*2+10+16 to accommodate 26*2 Alphabets (upper and lowercase
letters), 10 numbers, and 16 punctuation symbols.

The Encode() function uses a type strings.Builder.

• type Builder [https://golang.org/pkg/strings/#Builder]: A Builder is used to efficiently
build a string using Write methods. It minimizes memory copying. The zero
value is ready to use. Do not copy a non-zero Builder.

◦ func (*Builder) WriteString [https://golang.org/pkg/strings/#Builder.WriteString]:
WriteString appends the contents of a given string to the builder’s buffer.
It returns the length of the string argument and a nil error.

◦ func (*Builder) String [https://golang.org/pkg/strings/#Builder.String]: String
returns the accumulated string.

It goes through each character or byte in the given text, and if it has a
corresponding Morse code (ok == true), then the code is added to the
strings.Builder. If not, it adds three spaces for a space (' ') or an invalid value,
"???", otherwise.

The accumulated string is then returned via the String() method defined in the
strings.Builder type.

Writing, or understanding, the Decode() function requires a little bit more
thinking. We will leave this as an exercise to the reader. But, it essentially follows
the same logic as Encode(). It starts with a map reverseCode and it iterates over
the byte slice of the input code.

The only (main) difference is that we will need to read possibly more than one
bytes (until the next space) to match the code to a corresponding letter. As before,
processing a string as a slice of bytes (e.g., []byte(code)) is kind of an idiom in Go.
As indicated, however, a byte from this byte slice may not correspond to a
"character" unless we are dealing with ASCII characters only.

16.3. Pair Programming

233

https://golang.org/pkg/strings/#Builder
https://golang.org/pkg/strings/#Builder.WriteString
https://golang.org/pkg/strings/#Builder.String

16.4. Summary
We reviewed Go’s builtin map type in this lesson. A map is a reference type.

A map stores key-value pairs. Go uses mostly similar syntax to those used in other
programming languages for similar data types.

16.5. Exercises
1. Implement the same/similar function as the Eecode() method in this lesson

(without directly copying it).

2. Study the implementation of the Decode() function, and implement the same
functionality from memory (again, without directly copying the function,
character by character, or even line by line).

3. Write a program that reads an input in Morse code and prints out a warning
every time it sees a code corresponding to "SOS" in the input. (This is an open-
ended/loosely-defined problem, as is the case with all/most exercise problems in
this book. There are no specific requirements other than what is stated in the
problem. For example, when you see "SOSOS", should you return one SOS or
two SOS's? Dealing with this kind of questions is part of software development.)

16.4. Summary

234

Lesson 17. "LED" Clock

17.1. Introduction
Before the time of Graphical User Interface, early users of computers often used
character-based rendering, known as "ASCII art", to "draw pictures" on the screen,
or on paper using "dot matrix printers", for instance: en.wikipedia.org/wiki/
ASCII_art.

In this lesson, we are going to write a program that prints out the current time in
"big letters".

Here’s, for example, a big letter 0 in a two dimensional slice, that is, a slice of slices:

zero := [][]byte{
 {' ', '0', ' '},
 {'0', ' ', '0'},
 {'0', ' ', '0'},
 {'0', ' ', '0'},
 {' ', '0', ' '},
}

We just use the smallest possible dimension, 5 by 3, in this example, which can
clearly represent all 10 digits.

Go does not have "multi-dimensional" arrays or slices, but one can define a type of a
slice/array of slices/arrays, whose elements can be, in turn, of a type slice/array, etc.

var jagged [][]int

17.1. Introduction

235

https://en.wikipedia.org/wiki/ASCII_art
https://en.wikipedia.org/wiki/ASCII_art

This declaration is equivalent to

type intSlice = []int
var jagged []intSlice

Note that a slice of slices can be "jagged". That is, each element (a slice) in the slice
[]intSlice can have different lengths. (We will discuss the keyword type later in
this lesson.)

The purpose of the program in this lesson is to write the current time in these "big
letters". For instance, here’s a sample display from the example program.

====================
22 0 33 555
 2 0 0 * 3 5
 2 0 0 33 55
2 0 0 * 3 5
222 0 33 55
====================

In case it’s not very clear to you, it says 20:35 in the ""military time", which is
8:35PM in the "civilian time" . It is rather "low tech", but you can see it better if
you squint your eyes. 

Once we have a set of [][]byte for all pertinent letters, printing them out in a
vertical way is trivial. For example,

 0
0 0
0 0
0 0

17.1. Introduction

236

 0

22
 2
 2
2
222

 44
4 4
4 4
444
 4

This can be done by printing one big letter ([][]byte) after another, 0, 2, and 4, in
this example.

Printing them horizontally, however, as is needed for our time display, requires a
bit of thinking.

Other than that, the design of this program is straightforward. [1] Get the current
time first, [2] "translate" it into big letters, and then [3] print out all the letters,
horizontally put together.

17.1. Introduction

237

17.2. Code Review

17.2.1. Package main

The main function of this program is simple:

led-clock/main.go (lines 7-9)

7 func main() {
8 big.DisplayTime()
9 }

17.2.2. Package big

The core functionality is included in the DisplayTime() function in the big
package.

17.2. Code Review

238

led-clock/big/time.go (lines 8-13)

8 func DisplayTime() {
9 now := time.Now()
10 displayStr := fmt.Sprintf("%02d:%02d", now.Local().Hour(),
 now.Local().Minute())
11 tm := CreateBigDigits([]byte(displayStr)...)
12 tm.Print()
13 }

(As stated, file names/paths have generally no relevance in go programs.)

The DisplayTime() function gets the current time via time.Now() and it converts
the time into a string in a displayable format, namely, "HH:MM".

• Package time [https://golang.org/pkg/time/]: Package time provides functionality for
measuring and displaying time. The calendrical calculations always assume a
Gregorian calendar, with no leap seconds.

◦ func Now [https://golang.org/pkg/time/#Now]: Now returns the current local time.

◦ type Time [https://golang.org/pkg/time/#Time]: A Time represents an instant in
time with nanosecond precision. Programs using times should typically
store and pass them as values, not pointers. That is, time variables and
struct fields should be of type time.Time, not *time.Time.

▪ func (Time) Local [https://golang.org/pkg/time/#Time.Local]: Local returns the
Time with the location set to local time.

▪ func (Time) Hour [https://golang.org/pkg/time/#Time.Hour]: Hour returns the
hour within the day specified by the Time, in the range [0, 23].

▪ func (Time) Minute [https://golang.org/pkg/time/#Time.Minute]: Minute
returns the minute offset within the hour specified by the Time, in the
range [0, 59].

17.2. Code Review

239

https://golang.org/pkg/time/
https://golang.org/pkg/time/#Now
https://golang.org/pkg/time/#Time
https://golang.org/pkg/time/#Time.Local
https://golang.org/pkg/time/#Time.Hour
https://golang.org/pkg/time/#Time.Minute

Then DisplayTime() passes the formatted string to the CreateBigDigits()
function, which takes a variable number of bytes (or, "characters") as arguments.

led-clock/big/text.go (lines 8-39)

 8 type BigText [][]byte
 9
10 const height int = 5
11
12 var le = [height][]byte{}
13
14 func (c BigText) append(c1 BigText) BigText {
15 lx := make(BigText, height)
16 for i := range le {
17 lx[i] = append(c[i], c1[i]...)
18 }
19 return lx
20 }
21
22 func (c BigText) Print() {
23 len := len(c[0])
24 bar := strings.Repeat("=", len)
25
26 fmt.Printf("%s\n", bar)
27 for _, v := range c {
28 fmt.Printf("%s\n", v)
29 }
30 fmt.Printf("%s\n", bar)
31 }
32
33 func CreateBigDigits(digits ...byte) BigText {
34 lx := make(BigText, height)
35 for _, d := range digits {
36 lx = lx.append(let[d]).append(let[' '])
37 }

17.2. Code Review

240

38 return lx
39 }

The "big letters" are defined here:

led-clock/big/digits.go (lines 3-24)

 3 var let = map[byte]BigText{
 4 '0': {
 5 {' ', '0', ' '},
 6 {'0', ' ', '0'},
 7 {'0', ' ', '0'},
 8 {'0', ' ', '0'},
 9 {' ', '0', ' '},
10 },
11 '1': {
12 {' ', '1', ' '},
13 {' ', '1', ' '},
14 {' ', '1', ' '},
15 {' ', '1', ' '},
16 {'1', '1', '1'},
17 },
18 '2': {
19 {'2', '2', ' '},
20 {' ', ' ', '2'},
21 {' ', '2', ' '},
22 {'2', ' ', ' '},
23 {'2', '2', '2'},
24 },

led-clock/big/digits.go (lines 74-88)

74 ' ': {

17.2. Code Review

241

75 {' '},
76 {' '},
77 {' '},
78 {' '},
79 {' '},
80 },
81 ':': {
82 {' ', ' ', ' '},
83 {' ', '*', ' '},
84 {' ', ' ', ' '},
85 {' ', '*', ' '},
86 {' ', ' ', ' '},
87 },
88 }

The big package includes a couple of methods defined on the type BigText, which
is a new type defined based off [][]byte.

The magic happens in the BigText.append() function. When big letters are
concatenated, we combine the byte slices of each row. There are 5 rows in this
example, and we use an array of 5 empty byte slices, le, for the for loop ranges.

Then, implementing BigText.Print() is straightforward. Just print all rows in the
given BigText, from top to bottom. Printing the bar string, before and after the time,
is merely for display purposes.

17.3. Pair Programming
We have discussed "types" in Go in the earlier lessons. We have dealt with primitive
types like int and float64. We have used builtin reference types like slice and
map.

A type plays a central role in programming in Go. This is similar to the roles that a

17.3. Pair Programming

242

"class" plays in the object-oriented programming languages.

A type can be associated with a set of "methods", or functions. You can add methods
to the types that you define (in the same package).

We will start tackling this problem by defining a new type BigText, which is
equivalent to [][]byte. This is merely for convenience (and for illustration), and it
is not strictly required. But, it leads to an idiomatic Go program. (The "convenience"
here does not merely refer to naming. As we will see shortly, without this type
definition our program could have ended up "less elegant".)

type BigText [][]byte

In this statement, using the keyword type, BigText is defined to be (more or less)
equivalent to [][]byte (a slice of slices of bytes).

• type: A type definition creates a new, distinct type with the same underlying
type and operations as the given type, and binds an identifier to it. The new
type is called a defined type. It is different from any other type, including the
type it is created from.

This statement does not create a type alias per se. It defines a new type BigText,
which happens to behave just like [][]byte.

The keyword type is similar to typedef in C/C++. The typedef creates a type alias,
just a different name for an existing type. On the other hand, the type definition in
Go defines a new and distinct type.

The new type BitText, in this example, is identical to the type [][]byte, in every
aspect (at least, as of this definition). Nonetheless, variables/constants of these types
cannot be used interchangeably. Explicit type conversion is required.

A C-style typedef alias can be created using a different syntax. For example,

17.3. Pair Programming

243

type smallText = [][]byte

The name smallText is just an alias to [][]byte in this case, and they can be used
interchangeably (e.g., without requiring type conversions).

Although it is typical to create type definitions or aliases in a package scope, it is
also possible to create new types/aliases in a function scope, or even in a block
scope. A defined or alias type is valid only within the scope where it is
defined/declared.

Types defined in a package scope can be exported. The BigText type is exported, in
this example, as denoted by the capital B.

As indicated in the previous section, the design of this program is rather
straightforward. We define "big letters", and create a way to write a "big string", or
a sentence, using these big letters. Then we print each row of the byte slice as a
string.

All this logic can be encapsulated into the new type BigText.

A method of a type is defined as a function with a "receiver" with that type, or its
pointer type.

func (c BigText) Print() { /* ... */ }

In this example, c of type BigText is the receiver. The type of this method is
func(BigText). Note that the receiver type is the type of the first argument, before
the function name.

You can call the method using the dot notation.

17.3. Pair Programming

244

text := BigText{} ①
text.Print() ②

① Note the initialization syntax. This is equivalent to [][]byte{}.

② The function Print() is called on the variable text.

Note that we could not have declared a method like Print() on the type [][]byte.
Methods of a type can be only defined in the package where the type is defined.

The append() method on type BigText takes an argument of type BigText and
returns a value of type BigText. Note that BigText is a reference type since
[][]byte is a reference type.

func (c BigText) append(c1 BigText) BigText {
 lx := make(BigText, height)
 for i := range le {
 lx[i] = append(c[i], c1[i]...)
 }
 return lx
}

Note that the type of the append() method is func(BigText, BigText)
BigText. (The first parameter is the receiver.)

This function signature, and the fact that BigText is a reference type, allows us to
do "chaining". For example, in the function definition of CreateBigDigits(),

func CreateBigDigits(digits ...byte) BigText {
 lx := make(BigText, height)
 for _, d := range digits {
 lx = lx.append(let[d]).append(let[' '])

17.3. Pair Programming

245

 }
 return lx
}

We call the append() method twice in each iteration over the byte slice. (If you
paid attention in the first part , then you should know why this kind of chaining
(e.g., x.append().append()) is possible for the reference variables, but not for the
value type variables. Otherwise, this is a good time to stop and review the relevant
lessons again. )

Now, at this point, all we have to do is to get the current time and display it as
BigText. That is done in the DisplayTime() function.

The main() function of this program simply calls big.DisplayTime().

17.4. Summary
We introduced a type definition in this lesson. One can define a set of methods on a
new type. The dot notation is used on a variable of that type to call its methods.

We will introduce a couple of different kinds of types in the coming lessons,
including structs and interfaces.

17.4. Summary

246

Lesson 18. Euclidean Distance

18.1. Introduction
A distance between two points in a Euclidean space can be calculated using the
Pythagorean theorem.

In this lesson, we will define a coordinate in a 2-D Euclidean space as a Point using
Go’s struct. Then, we will create a function which returns the distance between
two given points.

The goal of this lesson is to introduce a struct and various features of Go that are
relevant to structs.

As an exercise, we will write a program that takes a Point as an input and writes
the distance between the given Point and the previous Point. This continues in a
loop. For the first Point, we will compute the distance of the point from the
"origin", a Point with the coordinate, (0, 0), which we call a "radius" of the
Point.

The program terminates when an input Point is the origin.

18.1. Introduction

247

18.2. Code Review
An "infinite loop" is a scary thing. Especially, to beginning programmers.

If you run your program and if it keeps running and running, and it does not
terminate, then it is probably because there is a problem with your code. Generally,
however, many programs are written to run "forever", that is, unless otherwise
instructed.

At the heart of many programs with user interactions, for instance, are infinite
loops. Many server programs run indefinitely, say, until they crash or they are
explicitly stopped.

18.2.1. Package main

We use an infinite loop in this example to implement a user input handling. This is
similar to an "event loop" typically found in a GUI program (or, in a GUI framework,
hidden from the application developers).

Although we do not use "events" per se, the idea is the same. There is an infinite
for loop at the heart of the main() function. (One may call it the "main loop".)

euclid-distance/main.go (lines 10~31)

10 func main() {
11 prev := euclid.Origin
12 for {
13 p, err := readPoint(repeat)
14 if err != nil {
15 log.Fatalln(err)
16 }
17
18 if p == euclid.Origin {
19 fmt.Println("Now your are back to the origin.

18.2. Code Review

248

 Exiting...")
20 os.Exit(0)
21 }
22
23 if prev == euclid.Origin {
24 fmt.Printf("The \"radius\" of the point is %.4f\n",
 p.Radius())
25 } else {
26 fmt.Printf("The distance of the new point from the
 previous point is %.4f\n", euclid.Distance(prev, p))
27 }
28
29 prev = p
30 }
31 }

We read an input (a Point) and prints out its distance from the previous point, or
from the "origin" (0, 0) if it happens to be first input point. This for loop runs
forever until the program is stopped (e.g., using Ctrl+C) until the input is the origin.

In the main() function, os.Exit(0) with the exit code 0, i.e., a normal exit, is
equivalent to a simple return. It is sometimes more, or less, readable to use one or
the other.

The main() function uses the readPoint() function to read two numbers as a
Point.

euclid-distance/main.go (lines 33-51)

33 const repeat = 3
34
35 func readPoint(repeat int) (euclid.Point, error) {
36 var x, y float32
37 for attempts := 0; ; {

18.2. Code Review

249

38 fmt.Print("Input a point (x, y): ")
39 if _, err := fmt.Scanf("%f,%f", &x, &y); err != nil {
40 attempts++
41 if attempts <= repeat {
42 fmt.Println("The input point should be a form \"x,
 y\", including the comma.")
43 continue
44 } else {
45 return euclid.Origin, err
46 }
47 }
48 break
49 }
50 return euclid.Point{X: x, Y: y}, nil
51 }

We use fmt.Scanf() to read a pair of floating point numbers and convert it to a
Point. As specified by the format "%f,%f", the two numbers have to be separated
by a comma ,. (Spaces are ignored.)

When there is an error in the input, we give the user a few more chances. If the
user fails for repeat times, then we return the error to the caller, which
"gracefully" terminates the program in this example.

We could have used an infinite loop in this case as well, but that would have been
too intrusive even for this simple program. The only way to terminate the program
(other than inputting an input in the correct format, which the user appears to be
having a trouble in this case) would have been using "Ctrl+C" (or, whatever the
termination signal is on the user’s computer).

18.2.2. Package euclid

We define Point as a struct of two float32 numbers. This type is exported, and

18.2. Code Review

250

other packages can use the type Point as long as they have proper access to do so.

euclid-distance/euclid/point.go (lines 5-7)

5 type Point struct {
6 X, Y float32
7 }

18.3. Pair Programming
We have stated that types play a crucial role in Go programs.

One of the ways to create a type is using the struct keyword.

• struct: A struct is a sequence of named elements, called fields, each of which
has a name and a type.

Field names may be specified explicitly or implicitly. A field declared with a type
but no explicit field name is called an embedded field.

An embedded field must be specified as a type name T or as a pointer to a non-
interface type name *T. The unqualified type name, without the package name
prefix, acts as the field name.

A field or method f of an embedded field in a struct x is called promoted if x.f is a
legal selector that denotes that field or method f. Promoted fields act like ordinary
fields of a struct. But they cannot be used as field names in composite literals of the
struct.

Given a struct type S and a defined type T, promoted methods are included in the
method set of the struct as follows:

• If S contains an embedded field T, the method sets of S and *S both include

18.3. Pair Programming

251

promoted methods with receiver T. The method set of *S also includes
promoted methods with receiver *T.

• If S contains an embedded field *T, the method sets of S and *S both include
promoted methods with receiver T or *T.

A field declaration may be followed by an optional string literal tag, which becomes
an attribute for all the fields in the corresponding field declaration. An empty tag
string is equivalent to an absent tag.

A struct type is a value type. A variable of a struct type can be declared just like
those of any other types.

var p Point

In this declaration, the value of p is initialized with default values. The default
value of a struct type comprises the default value of each field.

For example, in the case of Point, the default value will be X: 0.0, Y: 0.0.

A variable of a struct can be initialized this way, using a struct literal:

p := Point{X: 1.5, Y: 2.5}

Or, using a different formatting,

p := Point{
 X: 2.1,
 Y: 5.5,
 }

18.3. Pair Programming

252

In this example, notice the trailing comma , at the end of the last field. This is
required by go fmt.

The expression on the right hand side (a "struct literal") is an example of a "
composite literal".

Values of not all fields will need to be specified in this literal syntax. The missing
fields will have the "zero values" of the corresponding types. You can even change
the order of the fields. For example, Point{Y: 3.0} is equivalent to Point{X:
0.0, Y: 3.0}. And, Point{Y: 3.0, X: 1.0} is equivalent to Point{X: 1.0,
Y: 3.0}.



A struct can also be initialized using positional arguments. For
example, Point{1.0, 2.0} is equivalent to Point{X: 1.0, Y:
2.0}. In this syntax, however, all field values are required. And,
the order matters. The positional argument initializers are not as
commonly used as the "field:value" pair initializers.

It will be a good exercise for the readers to think about why one
would prefer one syntax over the other. In what situations. (Hint:
There is no one "correct" answer.)

You can access the fields with the dot notation, for read and write:

p := Point{X: 1.0, Y: -2.0}
x := p.X
p.Y = 3.0

Go’s struct is based on C’s struct. It has some similarities to class in object
oriented programming languages. But, they are very different constructs, in many
respects.

18.3. Pair Programming

253

Go’s struct types have no constructors or destructors.

In the case of "complex" struct types, it is often a convention to create a builder
function for the type, using a name New() or names that start with New…().

In the example code, we have NewPoint() function for the Point type.

euclid-distance/euclid/new.go (lines 3-9)

3 func NewPoint(x, y float32) *Point {
4 p := Point{
5 X: x,
6 Y: y,
7 }
8 return &p
9 }

We can return a type or a pointer type to the given type. Many programmers prefer
to return a pointer because the word "new" is often associated with functions that
create and return a pointer or reference type, including Go’s builtin new() function.

• func new(Type) *Type: The new() function allocates memory. The first
argument is a type, not a value, and the value returned is a pointer to a newly
allocated zero value of that type.

In this example, the NewPoint() function returns a pointer type of Point.

As mentioned before, returning a pointer to a local, or "auto", variable is generally
not allowed in most C-style block-scoped languages that support pointer types.

In this NewPoint() function, for instance, when the function returns, the local
variable p of value type Point (which is allocated on the stack) will be deleted. And,
accessing its pointer is a disaster waiting to happen. Generally speaking.

18.3. Pair Programming

254

Go, however, automatically takes care of the situations like this. The memory of the
value p is allocated in the heap, and its value is copied. Its pointer &p is now safe to
use even outside the scope of this function.



Use of struct literals as initializers is perfectly valid, and is often
preferred. In fact, using the New-style constructors is generally
discouraged for "small" types like Point, as we will discuss
further later in the book.

Here’s a test code for NewPoint():

euclid-distance/euclid/new_test.go (lines 8~15)

8 func TestNew(t *testing.T) {
9 p := euclid.NewPoint(1.0, 2.0)
10 t.Logf("New point created: %s", *p)
11
12 if p.X != 1.0 || p.Y != 2.0 {
13 t.Fail()
14 }
15 }

The type of p in this code is *Point. Note that we use the same dot notation to
access its fields regardless of whether a type is a struct or a pointer type to a struct.
This is also true when we access its methods. For example, the syntax p.X is
equivalent to (*p).X when p is a variable of a pointer type.

One thing to note in this case is that we use the formatting verb %s when we print
the point’s value using the "Printf"-like functions, testing.T.Logf() in this case.

Variables of any type T which has a function String() of a type func(T) string
can be used in formatted print functions with the %s verb (s for string).

18.3. Pair Programming

255

In our Point example, this is possible because we have defined the String()
function for the type:

euclid-distance/euclid/string.go (lines 5-7)

5 func (p Point) String() string {
6 return fmt.Sprintf("(%.4f, %.4f)", p.X, p.Y)
7 }

String() is a method defined in the Stringer interface. We will cover interfaces
in later lessons.

The Distance() function between two points is implemented using math.Hypot()
function:

euclid-distance/euclid/distance.go (lines 5-9)

5 func Distance(p1, p2 Point) float32 {
6 dx := float64(p1.X) - float64(p2.X)
7 dy := float64(p1.Y) - float64(p2.Y)
8 return float32(math.Hypot(float64(dx), float64(dy)))
9 }

We could have implemented the distance function as a method to Point. In this
particular case, a function seems more natural since their symmetry is more
obvious. That is, in principle,

Distance(p1, p2) == Distance(p2, p1)

This symmetry would have been less obvious if we used methods. E.g.,

18.3. Pair Programming

256

p1.Distance(p2) == p2.Distance(p1) // Not so obvious

As stated, floating point operations are approximate and there could be rounding
errors. The strict equality test between (computed) float numbers are not generally
used.

The Radius() method of Point is then defined using Distance():

euclid-distance/euclid/point.go (lines 9-11)

9 func (p Point) Radius() float32 {
10 return Distance(Origin, p)
11 }

As we discussed in the previous lesson, "LED" Clock), the method declaration syntax
includes a receiver, (p Point) in this case.

You can have either a value type or its pointer type as a receiver type. For example,

func (p *Point) MoveToOrigin() {
 p.X, p.Y = 0, 0
}

This method, MoveToOrigin(), using the receive (p *Point) resets the values of
both X and Y to 0.

p := Point{X: 3.0, Y: 4.0}
p.MoveToOrigin()
fmt.Println("p =", p)

18.3. Pair Programming

257

The Println() statement will print out (0.0000, 0.0000). This would not have
worked if we used a value receiver (p Point).

Note that func (p Point) Radius() float32 {} is more or less equivalent to
func Radius(p Point) float32 {}. And, func (p *Point) MoveToOrigin()
{} is more or less equivalent to func MoveToOrigin(p *Point) {}.

As explained before, for example, in A Tale of Two Numbers, you will have to pass
arguments of pointer types to a function if you need to change the "content" of the
variables. Variables of value types are copied. Changes to the copies have no effect
to the original values.

We will come back to this question, in later lessons, as to when to use value
receivers and when to use pointer receivers.



As will be further discussed later, func (p *Point)
MoveToOrigin() may not be an ideal method to use for "small"
types like Point, which can be consistently used as a value type.
In this case, functions like func MoveToOrigin(p Point)
Point or func Move(target Point, delta Distance)
Point (where type Distance Point) might be a better choice.

Now, we have all the building blocks. In the spirit of the bottom-up approach, let’s
start building "the program" using these components, that is, the top-level main()
function.

We have an infinite for loop that handles the user input.

func main() {
 prev := euclid.Origin
 for {
 p, err := readPoint(repeat)
 // ...

18.3. Pair Programming

258

 prev = p
 }
}

First, in each iteration, we get the user input as a Point variable.

The implementation of the readPoint() is straightforward. One thing to note here
is the location of the repeat declaration in the file, "main.go".

const repeat = 3

Some styles prefer putting all consts and vars in the beginning of a source file.
Some styles prefer putting them in the places closest to where they are used.

In this example, we could have done it either way. The const repeat happens to be
used by the readPoint() function only, and placing it before readPoint() rather
than, say, before main() seems appropriate.

In fact, since nobody else uses it (as is currently written), we can even put it inside
the readPoint() function. It is generally, however, easier to read, and modify, the
code when you place variables and constants where they are more easily visible.
And, programs change. We update code over time, etc.

In this particular example, the number 3 is more or less arbitrary. And, you may
decide to use a different number in the future. (That is why we use the const
repeat in the first place instead of hard coding the number into the if Boolean
expression.)

Next, when we receive a valid input point, we first compare it with the Origin
because that is the program termination input in this example.

If the user inputs Origin (that is, 0, 0), then we terminate the program using

18.3. Pair Programming

259

os.Exit(0).

If not, we print the "radius" of the point if it is the first iteration. Or, we print the
distance between this point and the previous point in subsequent iterations.
Radius() and Distance() are the functions/methods we created earlier, that is,
they are the building blocks.

func main() {
 prev := euclid.Origin
 for {
 p, err := readPoint(repeat)
 // ...
 if prev == euclid.Origin {
 r := p.Radius()
 // ...
 } else {
 d := euclid.Distance(prev, p)
 // ...
 }

 prev = p
 }
}

Note the comparison operator (==) between two points. Equality comparison
between variables of a user-defined struct type is automatically made available by
Go based on the field-wise comparison.

In this example, p == Origin if and only p.X = 0.0 and p.Y == 0.0.

(Note that euclid.Distance(prev, p) is the same as p.Radius() when prev ==
euclid.Origin in this example. Hence we did not need the if statement. We could
have just called euclid.Distance(prev, p).)

18.3. Pair Programming

260

At the end of each iteration, we replace the prev var with the current point p.

prev = p

As stated, Point is a value type, and this assignment copies the values of p.X and
p.Y to prev.X and prev.Y, respectively.

Before we move on to the next lesson, here’s an interesting question.

Is Go an object oriented programming language?

The answer is, Yes and No. 

Obviously, the answer depends on what we mean by "object oriented
programming" (OOP). It is debateable, but one of the most important aspects of OOP
is "data encapsulation". And, an ability to expose the data only through a well
defined "interface".

All object oriented programming languages have a construct called "class" or
something comparable. A class can have "private" fields. A class can have "public"
methods. They all satisfy this fundamental requirement of data encapsulation. And,
that’s why they are called "object oriented programming" languages.

Other characteristics like inheritance, polymorphism, etc., are all secondary.

Now, let’s take a look at Go’s struct.

Within a package, there is no such support. There is no data encapsulation. There is
no private or public methods. Everything is visible to everyone. Go’s struct is not a
class. You cannot do OOP within a package.

On the other hand, there are some level of access controls across different
packages. You can access only the exported names of another package. Nobody can

18.3. Pair Programming

261

access non-exported names of your package. You can hide what you need to hide
within a package and you can expose only the types (and methods, etc.) which you
want to expose to the outside world.

You can definitely practice OOP in Go if you understand that it is package not
struct that is comparable to class in other OOP languages.



Go does not really use the term "object". An object is an abstract
concept in "object oriented programming". But it is also a term
used in many OOP languages to refer to a value of a reference
type. In Go, if you use a value of the pointer type corresponding to
a struct type, then that is the closest thing to an "object" in the
OOP languages. But, regardless, Go does not support inheritance-
based polymorphism. So, the concept of "object" has less
significance.

As stated, Go supports an "object" oriented programming style
using types, and methods. Hence, a better terminology would be
"type-oriented programming". An interface in Go can represent
either a value type or a pointer type, as we will discuss in later
lessons. Go’s type-oriented programming style is not limited to
"objects" or pointers.

18.4. Summary
We learned struct types in this lesson.

A struct type is a sequence of fields. struct allows us to create a new type, known
as a composite type, from other existing types. A set of "methods" can be defined on
a struct type.

18.4. Summary

262

18.5. Exercises
1. Write a function that accepts a slice of Points and finds a pair that has the

shortest distance among all the pairs of points.

18.5. Exercises

263

Lesson 19. Area Calculation

19.1. Introduction
This lesson also includes a somewhat artificial example to demonstrate certain
features of the Go programming language. In particular, structs and interfaces.

We will define a few types that represent geometric "shapes" like a rectangle, an
isosceles (a triangle with two equal sides), and a circle.

We will define a couple of methods to compute its area and perimeter for each
shape.

Now, the problem that we are going to tackle in this lesson is to create a function
that accepts an arbitrary shape (among the three we have defined) and computes
its area. Likewise, create a function that accepts an arbitrary shape and computes
its perimeter.

This is a kind of "polymorphism", and this is where Go’s interface is used.

19.1. Introduction

264

19.2. Code Review
As before, we take a top-down approach to discuss the problem.

19.2.1. Package main

We define a few "demo" functions in the main package to test-drive the functions
we are going to create. We could just use unit test functions for this purpose, but it
should be easier to read these normal functions, as presented in the book.

The main function of this program simply calls these demo functions, one at a time.

The first demo function will create a slice of "shapes" and compute their total areas
and total perimeters. It simply uses the area() and perimeter() methods of each
shape.

area-calculation/shapes.go (lines 11-26)

11 func shapesDemo() {
12 shapes := []shape.Shape{}
13 shapes = append(shapes, isosceles.New(1.0, 2.0))
14 shapes = append(shapes, rectangle.New(2, 3))
15 shapes = append(shapes, circle.New(2))
16
17 totalArea := 0.0
18 totalPerimeter := 0.0
19 for _, s := range shapes {
20 totalArea += float64(shape.Area(s))
21 totalPerimeter += float64(shape.Perimeter(s))
22 }
23
24 fmt.Printf("totalArea = %.5f\n", totalArea)
25 fmt.Printf("totalPerimeter = %.5f\n", totalPerimeter)

19.2. Code Review

265

26 }

Shape is an interface type as we will see shortly.

The second demo will illustrate a use of a function which accepts an arbitrary
number of variables of any type that has Area() method defined and returns their
total area.

area-calculation/areas.go (lines 11-19)

11 func areasDemo1() {
12 areaer := []shape.Areaer{}
13 areaer = append(areaer, isosceles.New(1.0, 2.0))
14 areaer = append(areaer, rectangle.New(2, 3))
15 areaer = append(areaer, circle.New(2))
16
17 totalArea1 := shape.Areas(areaer...)
18 fmt.Printf("totalArea1 = %.5f\n", totalArea1)
19 }

Areaer is another interface type which we will introduce shortly.

The third demo is the same except that we weill use the Perimeter() functions
instead of Area().

area-calculation/perimeters.go (lines 11-19)

11 func perimetersDemo1() {
12 a := []shape.Perimeterer{}
13 a = append(a, isosceles.New(1.0, 2.0))
14 a = append(a, rectangle.New(2, 3))
15 a = append(a, circle.New(2))
16

19.2. Code Review

266

17 totalPerimeter1 := shape.Perimeters(a...)
18 fmt.Printf("totalPerimeter1 = %.5f\n", totalPerimeter1)
19 }

In this example, Perimeterer is another interface type.

An interface is essentially a set of methods, with a name. Go’s interface is
similar to the interfaces in other object-oriented programming languages. But, there
are some crucial differences as well.

For one thing, we do not have to define an interface when we create a type. We only
need an interface when we use the types. We will give more detailed explanation
later in this lesson.

19.2.2. Package rect

We define the Rectangle type as follows:

area-calculation/rect/rectangle.go

 1 package rect
 2
 3 type Rectangle struct {
 4 width float32
 5 height float32
 6 }
 7
 8 func New(w, h float32) Rectangle {
 9 return Rectangle{width: w, height: h}
10 }
11
12 func (r Rectangle) Area() float32 {
13 a := float64(r.width) * float64(r.height)
14 return float32(a)

19.2. Code Review

267

15 }
16
17 func (r Rectangle) Perimeter() float32 {
18 p := 2 * (float64(r.width) + float64(r.height))
19 return float32(p)
20 }

The Area() and Perimeter methods are defined on this type, rectangle, as well
as the New() function.

19.2.3. Package iso

We define the Isosceles type as follows:

area-calculation/iso/isosceles.go

 1 package iso
 2
 3 import "math"
 4
 5 type Isosceles struct {
 6 base float32
 7 height float32
 8 }
 9
10 func New(w, h float32) Isosceles {
11 return Isosceles{base: w, height: h}
12 }
13
14 func (t Isosceles) Area() float32 {
15 a := 0.5 * float64(t.base) * float64(t.height)
16 return float32(a)
17 }
18

19.2. Code Review

268

19 func (t Isosceles) Perimeter() float32 {
20 h := math.Hypot(0.5*float64(t.base), float64(t.height))
21 p := float64(t.base) + 2*h
22 return float32(p)
23 }

The Area() and Perimeter methods are defined on this type isosceles as well.

19.2.4. Package circ

The type Circle looks like this:

area-calculation/circ/circle.go

 1 package circ
 2
 3 import "math"
 4
 5 type Circle struct {
 6 radius float32
 7 }
 8
 9 func New(r float32) Circle {
10 return Circle{radius: r}
11 }
12
13 func (c Circle) Area() float32 {
14 a := 0.5 * math.Pi * float64(c.radius) * float64(c.radius)
15 return float32(a)
16 }
17
18 func (c Circle) Perimeter() float32 {
19 p := math.Pi * float64(c.radius)
20 return float32(p)

19.2. Code Review

269

21 }

The Circle type also has a similar set of methods, Area() and Perimeter.

19.2.5. Package shape

In order to create functions with polymorphic behavior in Go, we will need to
introduce interfaces.

The interface type definition uses the following syntax, which is similar to those
used in defining other types. It uses the interface keyword:

area-calculation/shape/area.go (lines 3-5)

3 type Areaer interface {
4 Area() float32
5 }

The interface type Areaer includes one method Area(). The name Areaer looks
rather strange, but it is generally a convention that, in case of an interface with one
method, we use the name of the method + "er" as the interface name. We mentioned
the Stringer interface before, which includes one method String().

• interface: An interface type specifies a method set called its interface. A
variable of interface type can store a value of any type with a method set that is
any superset of the interface. Such a type is said to implement the interface. An
interface type may specify methods explicitly through method specifications, or
it may embed methods of other interfaces through interface type names.

Now we can define an Area() function that takes an argument of type Areaer.

19.2. Code Review

270

area-calculation/shape/area.go (lines 7-9)

7 func Area(shape Areaer) float32 {
8 return shape.Area()
9 }

The function signature func(shape Areaer) float32 indicates that this function
accepts, as an argument, a variable of any type which includes the Area() method,
as declared by the Areaer interface, and it returns a float32 value. That is the
"contract".

As can be seen from the Area()'s implementation, in this example, the function
does use the fact that it can call the argument’s Area() method. Variables of any
type that does not include the Area() method with the same signature could not
have been passed in to this function.

We can define a similar interface type for the types that have the Perimeter()
method.

area-calculation/shape/perimeter.go (lines 3-5)

3 type Perimeterer interface {
4 Perimeter() float32
5 }

The name of the interface Perimeterer is again based on the name of the method
Perimeter().

Now, we can define a polymorphic function, func Perimeter(shape
Perimeterer) float32, that computes the perimeter of an argument as long as its
type is Perimeterer, that is, as long as it has a method Perimeter().

19.2. Code Review

271

area-calculation/shape/perimeter.go (lines 7-9)

7 func Perimeter(shape Perimeterer) float32 {
8 return shape.Perimeter()
9 }

As in the case of the Area(Areaer) function, this function’s implementation also
relies on the constraint that the argument shape has the method Perimeter()
with the same type.

Note that, in case of "concrete" types like structs, the function signature of a method
includes a receiver. On the other hand, a method in the interface type does not
include receivers.

That is just a syntactic difference. As long as everything else is the same, the
functions types of the methods of a concrete type and an interface type are
considered the same.

Interfaces can be combined. For example,

area-calculation/shape/shape.go (lines 3-6)

3 type Shape interface {
4 Areaer
5 Perimeterer
6 }

The interface type Shape has a method set that includes both Area() (from
Areaer) and Perimeter (from Perimeterer).

For illustration, we also define two functions that take an arbitrary number of
Areaer or Perimeterer arguments and return their total areas and perimeters,
respectively.

19.2. Code Review

272

area-calculation/shape/area.go (lines 11-17)

11 package shape
12
13 type Areaer interface {
14 Area() float32
15 }
16
17 func Area(shape Areaer) float32 {
18 return shape.Area()
19 }
20
21 func Areas(shapes ...Areaer) float32 {
22 totalArea := 0.0
23 for _, s := range shapes {
24 totalArea += float64(s.Area())
25 }
26 return float32(totalArea)
27 }

area-calculation/shape/perimeter.go (lines 11-17)

11 func Perimeters(shapes ...Perimeterer) float32 {
12 totalPerimeter := 0.0
13 for _, s := range shapes {
14 totalPerimeter += float64(s.Perimeter())
15 }
16 return float32(totalPerimeter)
17 }

19.2. Code Review

273

19.3. Pair Programming
Let’s start from the shapesDemo() function.

The type of the variable shapes is a slice of Shapes.

shapes := []shape.Shape{}

We add a few "shapes" to shapes, a Rectangle, an Isosceles, and a Circle. Then
we iterate over shapes.

for _, s := range shapes {
 totalArea += float64(shape.Area(s))
 totalPerimeter += float64(shape.Perimeter(s))
}

The type of s is the interface type Shape. The function shape.Area() is
polymorphic. Although s is declared to be of interface type Shape, the
implementation of shape.Area() does the proper area calculation based on the
specific type of s.

The same with shape.Perimeter().

Now, as for the areasDemo1() function of area-calculation/areas.go,
shape.Areas() is a variadic function, which takes a variable number of
arguments of type Areaer.

When we pass variables of types, Rectangle, Isosceles, and Circle, to
shape.Areas() (as defined in area-calculation/shape/area.go), the implementation
uses the "correct" implementation of the Area() method based on the type of each
argument. The behavior is again polymorphic.

19.3. Pair Programming

274

Go uses interface types for polymorphism, at the point of use, so to speak. In other
object programming languages, interfaces are used to constrain a type, e.g., a
class, at the point of type definition. Java, for example, uses the keyword
implements (or, extends) to declare that an object of a class can behave like a
certain interface. C# uses a slightly different syntax (e.g., using ":"), but the idea is
the same.

Go, on the other hand, does not use interfaces to add a behavior to a type.

For example, the type Rectangle, in this example, does not know anything, and
does not care, about the Areaer interface, or the Perimeterer interface.

The polymorphic behavior happens at the point of use. In the shapesDemo()
function, for example, functions shape.Area() and shape.Perimeter() called
with arguments of an interface type correctly identifies their concrete type.

As long as a variable of a type X has a method Do() which has the same name and
function type as Do() defined in an interface Doer, the variable can be used as if it
is a type Doer, in any place where a Doer is required.

The same holds true for interfaces with more than one methods. As long as a type
implements all methods in the "method set" of an interface, a variable (or, a
constant or a literal) of that type can be used in any place where a type of that
interface is required.

The empty interface, interface{}, is special in that any variable (constant, literal)
can behave like the empty interface type, since there is no requirement imposed by
its method set (which is empty).

In many object oriented programming languages that support inheritance, there is
something like an "Object" type that (almost) everything else inherits from. In Go,
the empty interface, interface{}, is sort of like that top-level Object. Any variable
can be cast to the interface{} type.

19.3. Pair Programming

275

One thing to note is that an interface provides a polymorphic behavior, but not a
slice of interfaces. A Shape is an Areaer, and it is a Perimeterer. But, a slice of
Shapes is not a slice of Areaers. It is not a slice of Perimeterers. It is not a slice of
Rectangles.

If we need to use []Shape for []Areaer, for example, you will need to explicitly
convert them. There is no polymorphic behavior.

area-calculation/areas.go (lines 21-33)

21 func areasDemo2() {
22 s := []shape.Shape{}
23 s = append(s, isosceles.New(1.0, 2.0))
24 s = append(s, rectangle.New(2, 3))
25 s = append(s, circle.New(2))
26
27 b := make([]shape.Areaer, len(s))
28 for i, d := range s {
29 b[i] = d
30 }
31 totalArea2 := shape.Areas(b...)
32 fmt.Printf("totalArea2 = %.5f\n", totalArea2)
33 }

The same with []Shape vs []Perimeterer.

area-calculation/perimeters.go (lines 21-33)

21 func perimetersDemo2() {
22 s := []shape.Shape{}
23 s = append(s, isosceles.New(1.0, 2.0))
24 s = append(s, rectangle.New(2, 3))
25 s = append(s, circle.New(2))
26

19.3. Pair Programming

276

27 b := make([]shape.Perimeterer, len(s))
28 for i, d := range s {
29 b[i] = d
30 }
31 totalPerimeter2 := shape.Perimeters(b...)
32 fmt.Printf("totalPerimeter2 = %.5f\n", totalPerimeter2)
33 }

19.4. Summary
We introduced interfaces in this lesson.

An interface defines a "behavior" in terms of a set of methods which a type has to
satisfy, and it can be used to support polymorphism in Go.

19.5. Questions
1. What is interface in Go?

2. What is struct?

19.4. Summary

277

Lesson 20. Rock Paper Scissors

20.1. Introduction
We have covered a lot of important topics in the last few lessons. Types, structs,
and interfaces. And, more.

In this lesson, we are going to take it a little bit easy, and work on a rock paper
scissors game. Rock paper scissors is one of the most well-known games, which
does not really require introduction.

The program of this lesson lets you play rock paper scissors with the computer.

20.2. Code Review

20.2.1. Package main

The main function of this program merely creates a variable of type Game, and it
calls the Game's main method, Start().

rock-paper-scissors/main.go (lines 7-10)

7 func main() {

20.1. Introduction

278

8 game := rps.NewGame()
9 game.Start()
10 }

20.2.2. Package rps

The rps package includes a package init function, which is called when the package
is imported.

rock-paper-scissors/rps/random.go (lines 8-10)

8 func init() {
9 rand.Seed(time.Now().UnixNano())
10 }

The rand.Seed() function seeds the random number generator from the
math/rand package.

A struct Game is the main type in this example:

rock-paper-scissors/rps/game.go (lines 7-9)

7 type Game struct {
8 wins, losses, ties int
9 }

The main logic of the program is implemented in the Start() function:

rock-paper-scissors/rps/game.go (lines 20-49)

20 func (g *Game) Start() {
21

20.2. Code Review

279

 fmt.Println("---
 ")
22 fmt.Println("Welcome to Rock Paper Scissors!")
23 fmt.Println("Type X or Q to end the game.")
24
 fmt.Println("---
 ")
25
26 for {
27 playerHand, err := readHand()
28 if err != nil {
29 fmt.Println("Error:", err)
30 continue
31 }
32 fmt.Printf("Your Hand = %s\n", playerHand)
33
34 myHand := randomHand()
35 fmt.Printf("My Hand = %s\n", myHand)
36
37 wol := compareHands(playerHand, myHand)
38 if wol == Win {
39 g.wins++
40 } else if wol == Lose {
41 g.losses++
42 } else {
43 g.ties++
44 }
45
46 fmt.Printf("Your wins: %d, losses: %d out of %d plays\n",
 g.wins, g.losses, g.wins+g.losses+g.ties)
47
 fmt.Println("---
 ")
48 }

20.2. Code Review

280

49 }

This function, when invoked, prints out a welcome banner first, and then it starts a
game loop (the infinite for loop).

Each iteration of the loop corresponds to one "play" of hands. It first reads the
player’s hand, it generates its hand (the computer’s hand), and it compares the two
hands to decide who wins. It then updates the struct's fields, wins, losses, and ties.

The game continues until the player inputs Q (Quit) or X (eXit).

If you run the program,

go run .

It prints out the banner and the first prompt.

Welcome to Rock Paper Scissors!
Type X or Q to end the game.

Rock (R), Paper (P), or Scissors (S)?

Here’s an example of a round of plays.

Welcome to Rock Paper Scissors!
Type X or Q to end the game.

Rock (R), Paper (P), or Scissors (S)?
r

20.2. Code Review

281

Your Hand = Rock
My Hand = Rock
Your wins: 0, losses: 0 out of 1 plays

Rock (R), Paper (P), or Scissors (S)?
p
Your Hand = Paper
My Hand = Paper
Your wins: 0, losses: 0 out of 2 plays

Rock (R), Paper (P), or Scissors (S)?
s
Your Hand = Scissors
My Hand = Paper
Your wins: 1, losses: 0 out of 3 plays

Rock (R), Paper (P), or Scissors (S)?
s
Your Hand = Scissors
My Hand = Scissors
Your wins: 1, losses: 0 out of 4 plays

Rock (R), Paper (P), or Scissors (S)?
r
Your Hand = Rock
My Hand = Scissors
Your wins: 2, losses: 0 out of 5 plays

Rock (R), Paper (P), or Scissors (S)?
q
Thanks for playing the game!

20.2. Code Review

282

20.2.3. Pair Programming

An iteration of the game loop in the Game.Start() function essentially consists of
three actions:

1. Read the player’s hand,

2. Generate the computer’s hand, and

3. Compare the two hands.

Depending on the outcome, the values of the three fields of the type Game, wins,
losses, and ties, are updated.

The main functionality of each of these steps is implemented in readHand(),
randomHand(), and compareHands() functions, respectively.

The readHand() function is defined in the file, rps/input.go.

rock-paper-scissors/rps/input.go (lines 17-32)

17 func readHand() (Hand, error) {
18 reader := bufio.NewReader(os.Stdin)
19
20 fmt.Println("Rock (R), Paper (P), or Scissors (S)?")
21 str, err := reader.ReadString('\n')
22 if err != nil {
23 return NullHand, err
24 }
25 str = strings.TrimSuffix(str, "\n")
26 if s := strings.ToUpper(str); strings.HasPrefix(s, "Q") ||
 strings.HasPrefix(s, "X") {
27 fmt.Println("Thanks for playing the game!")
28 os.Exit(0)
29 }
30 hand, err := parseHand(str)

20.2. Code Review

283

31 return hand, err
32 }

It essentially reads the text input and translates it into a Hand.

rock-paper-scissors/rps/hand.go (lines 7-11)

7 const (
8 Rock Hand = iota + 1
9 Paper
10 Scissors
11)

Go does not support "enum" types. Instead, Go uses consts to represent a set of
related constants, as in this example. It is customary to use a single "factored"
const statement to defines a set of related constants.

iota is a special value that starts from 0 and increments by 1 within a const
statement. For Hand, which is a type defined to be uint8, there are three constants
defined: Rock == 1, Paper == 2, and Scissors == 3.

Note that we use values, 1, 2, and 3 in this example, not 0, 1, and 2. 0 can be a good "
default value", e.g., to indicate an invalid Hand.

The implementation of randomHand() is simple:

rock-paper-scissors/rps/random.go (lines 12-14)

12 func randomHand() Hand {
13 return Hand(rand.Intn(3) + 1)
14 }

It just picks a random Hand based on a random number in the range {1, 2, 3}.

20.2. Code Review

284

The expression Hand() represents a type conversion or casting.

The compareHands() function implements the rock paper scissors logic.

rock-paper-scissors/rps/hand.go (lines 13-33)

13 type WinOrLose uint8
14
15 const (
16 Tie WinOrLose = iota
17 Win
18 Lose
19)
20
21 func compareHands(h1, h2 Hand) WinOrLose {
22 if h1 == h2 {
23 return Tie
24 } else {
25 if (h1 == Rock && h2 == Scissors) ||
26 (h1 == Paper && h2 == Rock) ||
27 (h1 == Scissors && h2 == Paper) {
28 return Win
29 } else {
30 return Lose
31 }
32 }
33 }

That is, Rock beats Scissors, Scissors bests Paper, and Paper beats Rock.

The type Hand implements the Stringer method, String():

20.2. Code Review

285

rock-paper-scissors/rps/hand.go (lines 35-46)

35 func (h Hand) String() string {
36 switch h {
37 case Rock:
38 return "Rock"
39 case Paper:
40 return "Paper"
41 case Scissors:
42 return "Scissors"
43 default:
44 return "?"
45 }
46 }

Note that we use the switch statement to map a Hand value to a string. We could
have alternatively used a map to do the same, in this particular example. Or, in
general, we could have implemented the same logic using the if-else statement.

The switch statement in Go is based on C’s switch. But, there are differences.

• switch: Switch statements provide multi-way execution. An expression or type
specifier is compared to the cases inside the switch to determine which
branch to execute.

A switch statement comprises a condition expression and a number of cases. It
runs the first case whose value is equal to the condition expression. Switch cases
evaluate cases from top to bottom, stopping when a case succeeds. Go’s switch does
not need break after each case unlike in other C-style languages.

Instead, Go has fallthrough in cases where the execution needs to cross over the
case boundaries.

• fallthrough: A fallthrough statement transfers control to the first statement

20.2. Code Review

286

of the next case clause in an expression switch statement. It may be used only
as the final non-empty statement in such a clause.

Now that we have implemented all important building blocks, let’s go back to the
Game.Start() method.

func (g *Game) Start() {
 for {
 playerHand, _ := readHand()
 fmt.Printf("Your Hand = %s\n", playerHand)

 myHand := randomHand()
 fmt.Printf("My Hand = %s\n", myHand)

 wol := compareHands(playerHand, myHand)
 // Update the win-loss stats.
 }
}

Incidentally, we could have implemented the part where the stats (wins/losses) are
computed (lines 38-44)

if wol == Win {
 g.wins++
} else if wol == Lose {
 g.losses++
} else {
 g.ties++
}

using switch as follows:

20.2. Code Review

287

switch wol {
case Win:
 g.wins++
case Lose:
 g.losses++
default:
 g.ties++
}

Generally, switch statements are easier to read than long if-then-else chains. Even
in this simple case, the switch version appears preferable.

One other thing to note is that, as stated before, increment/decrement is a
statement, not an expression. Go has only the postfix increment and decrement
operators (x` or `x--`), and not the prefix increment and decrement
operators. You cannot place the ` or -- operators before the variable.

In each iteration of the for loop in the Game.Start() method, it does the three
things we mentioned earlier, which correspond to readHand(), randomHand(),
and compareHands(), respectively.

Then, the main() calls this rps.NewGame().Start() function. That is the entire
program.

One thing to note regarding the Game.Start() method is that it uses a pointer
receiver (g *Game), not a value receiver (g Game). What is the difference?

As we stated in the earlier lessons, for example, in Euclidean Distance, if you may
have to possibly change the value of a variable, then you will have to use a pointer
receiver. The argument value of a value receiver is copied, and hence any changes
to the copied value (including its field values, etc.) will not affect the original
receiver value.

20.2. Code Review

288

A pointer receiver is also generally preferred when the copying of the receiver
argument is expensive, for instance, because the receiver is a large struct.

We will revisit this question of value receiver vs pointer receiver in later lessons,
but as a general rule of thumb, a pointer receiver is preferred, for a number of
reasons including the above two.

20.3. Summary
We created a simple game using a random number generator from the math/rand
package. We also quickly reviewed Go’s switch statement.

20.3. Summary

289

Lesson 21. File Cat

21.1. Introduction
The cat command on the Unix-like platforms prints out the content of one or more
files together. Hence the name conCATenate.

If the argument is not provided, then it reads from the standard input.

NAME
 cat - concatenate files and print on the standard output

SYNOPSIS
 cat [OPTION]... [FILE]...

DESCRIPTION
 Concatenate FILE(s) to standard output.

 With no FILE, or when FILE is -, read standard input.

Let’s implement a simple version of cat in Go.

21.1. Introduction

290

21.2. Code Review

21.2.1. Package main

Here’s the "program":

file-cat/main.go (lines 11-28)

11 func main() {
12 if len(os.Args) == 1 {
13 if _, err := io.Copy(os.Stdout, os.Stdin); err != nil {
14 if err != io.EOF {
15 log.Fatalln(err)
16 }
17 }
18 return
19 }
20
21 for _, fname := range os.Args[1:] {
22 err := file.Copy(os.Stdout, fname)

21.2. Code Review

291

23 if err != nil {
24 fmt.Fprintln(os.Stderr, err)
25 continue
26 }
27 }
28 }

The main() function first checks if a command line argument is provided. If there
is none, then it simply copies the input from stdin to stdout, using the Copy()
function in the io package in the standard library.

If there is one or more arguments, then it copies the content of each file to stdout.
The logic is implemented in the file.Copy() function.

21.2.2. Package file

The file.Copy() function is exported, and it has a type func(*os.File,
string) error.

file-cat/file/copy.go (lines 8-28)

 8 // Copy finds a named file and copies its content
 9 // to the destination file.
10 // It returns error if opening the file or copying fails.
11 func Copy(dest *os.File, name string) error {
12 var file *os.File
13 if name == "-" {
14 file = os.Stdin
15 } else {
16 var err error
17 file, err = os.Open(name)
18 if err != nil {
19 return err
20 }

21.2. Code Review

292

21 defer file.Close()
22 }
23
24 if _, err := io.Copy(dest, file); err != nil {
25 return err
26 }
27 return nil
28 }

This function takes two arguments, a destination file, dest of type *os.File, and a
source file name, name of type string.

Note that the function is written slightly more generally than required by the
main() function. The program only uses os.Stdout as destination, and yet Copy()
can be used with an arbitrary destination (of type *os.File).

Copy() is slightly more useful (e.g., since it can be used in a wider range of
situations), at the expense of being slightly more complicated (e.g., since the caller
has to provide two arguments instead of one). This is a design choice.

Note also that the source and destination arguments are not "symmetric". They
have different types, and they should be interpreted differently. In cases like this, a
function name like Copy might be too generic. A more descriptive name might be
useful.

The function includes what is called "doc comments". Any comment immediately
preceding exported names (or, other unexported top-level constructs, etc.), without
any blank lines, is considered part of the API documentation.

You, or anyone who uses this package, can generate documentation using the go doc
command.

The Open() function first tries to open the file of the given name (or, file path), and
if it fails, it returns an error. If it successfully opens the file, then it copies the

21.2. Code Review

293

content of the file to the destination file, using io.Copy().

One small twist is that, just like in "real cat", if the given file name is "-", then we
read from os.Stdin instead of trying to open a file with that name.

21.3. Pair Programming
Much of the file-related APIs is included in the os and io packages in the standard
library. Getting familiar with file handling APIs, and IO in general, is essential to be
a proficient programmer in Go.

The example program deals with a few basic functions for file opening and file
copying. The function’s logic is straightforward.

In the implementation of file.Copy(), there are a couple of things to note.

First, errors in Go do not literally mean that they are "errors" as commonly used in
English. This is true across all programming languages, regardless of what kind of
error or exception handling mechanisms are used.

As stated before, an error is a signaling mechanism from a callee function to its
caller.

If the callee function does not know how to handle certain situations (e.g., due to
lack of broader context), or if it decides that its caller may be the better one to
handle those situations, etc., then it can return an error so that the caller function
can pay special attention, if necessary.

When dealing with files, encountering EOF ("end of file") while reading a file is not
an "error" per se. All files have endings. Some of Go’s IO functions (but not
io.Copy()) happen to use the error return value to convey the information that
they have read all content of the file, using the variable io.EOF.

It is worth repeating that the error handling in Go is simply a convention. Functions

21.3. Pair Programming

294

return an error as a normal return value (as the last one, if there are multiple
return values), and they use the interface type error for the error return value. It
is just a convention, not hard-wired into the Go programming language.

It is based on C’s convention, and it is a big improvement. But, there are cases
where simply returning error values to the caller (and the caller returning the
errors to its own caller, etc.) through the normal call chain has limitations.

Need for frequent error checking can also lead to code bloating.

Many other modern languages use "exceptions", which has a slightly different
semantics. Exception mechanisms (e.g., using try and catch) have some limitations
as well. The current "trend" in the programming language design seems to be using
"option" style values, as commonly found in functional programming languages.

In Go, if something really disastrous happens that the program cannot recover
from, then it is often best to just terminate the program (e.g., using os.Exit(1)).

Between these two extremes, there is another mechanism for handling exceptional
or unexpected situations: panic() and recover(). This is similar, although rather
limited, to the exception handling mechanism in other programming languages.

We will cover some essential features of panic and recover in later lessons.

One other thing to note in this file.Copy() function implementation is the defer
statement.

We use the defer keyword in this example that we have not seen in the previous
lessons.

• defer: A defer statement invokes a function whose execution is deferred to
the moment the surrounding function returns.

A defer statement starts with the defer keyword, which is followed by a certain
kind of expression, namely a function or method call. The expression cannot be put

21.3. Pair Programming

295

in parentheses.

Deferred functions are invoked immediately before the surrounding function
returns, in the reverse order they were deferred.

It is very common to use defer statements to clean up resources.

In this example, opening a file uses resources (e.g., the file handle, etc.). It is best to
close the file before returning. A function can return in many different ways (either
explicitly or implicitly).

The defer statement guarantees that the deferred function will be called regardless
of how the function returns, even through panics. The exception is os.Exit(),
which immediately terminates the program.

When we open the named file using os.Open(), we use the following two
statements:

var err error
file, err = os.Open(name)

Rather than, say, using the more common short variable declaration:

file, err := os.Open(name)

This is because the compiler sometimes treats the left-hand side of := as all new
variables, and sometimes it does not. (The short variable declaration syntax is valid
as long as there is at least one new variable.)

If a variable, file in this case, happen to be in the same scope, it is considered as
the same variable (because a variable cannot be declared twice in the same scope).
And, err is a new variable in this case, the := declaration is valid. Because of the "at

21.3. Pair Programming

296

least one new variable" rule on the left-hand side of the short variable declaration,
the compile does not complain.

On the other hand, if a variable, file in this case, happens to exist outside the
block, that is, in the surrounding block, then the variable on the left hand side of :=
is considered new because the "variable shadowing" is allowed. In this case, in the
second one-liner example, the compiler treats both file and err as new variables.
The file variable declared before the if statement is different from the file
variable which assign using the := statement.



A variable can be re-declared in a block even if a variable with
the same name exists in an outer scope, e.g., in a block
surrounding this block. Within the scope of this variable in the
inner block, the name refers to the variable declared (or,
redeclared) in this block, not the variable declared outside (which
would have been "in scope" if not for the redelaration). This is
called variable shadowing.

Clearly, that is not what we intend here. Hence, in cases like this, you cannot use the
short variable declaration syntax.

This is one of the frequent gotchas for new Go programmers. This is one of the rare
cases in Go where you build/compile a program successfully and yet you still have a
trivial, but potentially critical, bug that could have been easily caught by a
compiler.

One other thing worth noting is that the package ioutil in the standard library has
been deprecated as of this writhing (Go version 1.16). Many of the functions which
was in the ioutil have been moved other packages, including io.

Although the Go programming language rarely changes, libraries, even the (stable)
standard libraries, change.

21.3. Pair Programming

297

The io.Copy() function is a utility function. It performs certain tasks behind the
scene, like reading the source file and writing to the destination file.

Let’s try to rewrite our file.Copy() function without using io.Copy().

file-cat/file/copy2.go (lines 8-29)

 8 // Copy2 finds a named file and copies its content to the
 destination file.
 9 // It returns the number of bytes copied and a possible error.
10 // It return non-nil error if opening the file or reading and
 writing the content fails.
11 func Copy2(dest *os.File, name string) (int, error) {
12 file, err := os.Open(name)
13 if err != nil {
14 return -1, err
15 }
16 defer file.Close()
17
18 data, err := io.ReadAll(file)
19 if err != nil {
20 return -1, err
21 }
22
23 written, err := dest.Write(data)
24 if err != nil {
25 return -1, err
26 }
27
28 return written, nil
29 }

The file.Copy2() function, not the best descriptive name, uses the io.ReadAll()
and File.Write() functions instead of io.Copy().

21.3. Pair Programming

298

Since io.ReadAll() is supposed to read the whole content of the file into memory,
it does not return io.EOF as an error value. And, because of this, io.ReadAll()
may not, in general, be the most suitable function to use. See the exercise at the end
of this lesson.

File.Write() returns an error if the size of the input content len(data) is
different from the size of the written content, written. Hence an error checking
like this is not required when using the File.Write() function:

if len(data) != written {
 return -1, errors.New(
 fmt.Sprintf("The numbers of bytes read (%d) and written (%d)
are different/n",
 len(data), written))
}

Note the way in which we split a single statement into multiple lines.

The implementation of file.Copy2() is straightforward. It opens a file with a
given name, reads it, and then writes the content to the given output file. Most of
the code is for error handling.

The file.Copy2() function is also preceded by a doc comment.

You can generate, or view, the documentation for the file package using the go doc
command.

go doc --all file

Note that the file argument is the name of the package (or, the last segment of the
path if it follows the package naming convention), not the path of the package
folder, as is the case with most other go commands like go build, go run, and go test.

21.3. Pair Programming

299

Here’s a sample output:

package file // import "examples/file-cat/file"

FUNCTIONS

func Copy(dest *os.File, name string) error
 Copy finds a named file and copies its content to the destination
file. It
 returns error if opening the file or copying fails.

func Copy2(dest *os.File, name string) (int, error)
 Copy2 finds a named file and copies its content to the
destination file. It
 returns the number of bytes copied and a possible error. It
return non-nil
 error if opening the file or reading and writing the content
fails.

You can include un-exported names in the documentation using -u flag.

You can also use go doc for viewing documentations for other libraries. For the
standard library, for instance, you just specify a package name, or qualified names
other symbols.

go doc io

It prints the information on all exported names from the io package, constants,
variables, types, and functions.

go doc io.Copy

21.3. Pair Programming

300

It prints the information on the io.Copy() function.



The Go tools support what is called "testable examples". You can
run go test on the example code, which can be included in the
documentation. This is a fantastic feature that will help you
maintain the docs as well as the code over time.

Although this book cannot cover all the details of Go, it’ll be
worthwhile for you to look this up on the Web if you tend to write
a lot of (public) library packages. For example, refer to an article,
blog.golang.org/examples, on the official Go blog.

21.4. Summary
We learned some basic file and IO-related functions, from the os and io packages.

A defer statement is used to clean up resources before returning from the
function. The deferred functions execute just before the function returns.

We also covered some basics of the go doc command. Readers are encouraged to
fully utilize the go doc features, both from the library user’s and the provider’s
perspectives.

21.5. Exercises
1. The io.ReadAll() function may not be the best option when you read a file,

especially if the file is large. Create a copy function that copies the content of
one file to the other, one line at a time, without having to read all content into
memory.

21.4. Summary

301

https://blog.golang.org/examples

Lesson 22. World Time API

22.1. Introduction
Go is one of the most popular languages for Web backend development.

In fact, Web backend is one of most important uses of the Go programming
language. Go is rarely used in GUI programming, for instance. Go’s support is
minimal for data science or machine learning. At least as of now. Not many
programmers use Go for developing mobile games.

If you use Go, then Web backend, or other server side programming, is the sweet
spot. We will briefly touch on a few examples that are in the area of Web
development in this book.

In this lesson, we look at a simple example that demonstrates the use of some
simple functions of the net/http package in the standard library.

22.1. Introduction

302

22.2. Code Review

22.2.1. Package main

The main() function calls the "World Time API" service to retrieve the current time
every 10 seconds.

world-time-api/main.go (lines 9-24)

 9 const maxErrorCount = 5
10 const interval = 10 * time.Second
11 const url =
 "http://worldtimeapi.org/api/timezone/America/New_York.txt"
12

22.2. Code Review

303

13 func main() {
14 for errorCount := 0; errorCount < maxErrorCount; {
15 datetime, err := world.Datetime(url)
16 if err != nil {
17 errorCount++
18 fmt.Println("Error:", err)
19 continue
20 }
21 fmt.Printf("datetime: %s\n", datetime)
22 time.Sleep(interval)
23 }
24 }

The particular endpoint we use for this example is
"http://worldtimeapi.org/api/timezone/America/New_York.txt".

It serves the time in the New York time zone, and the output is plain text (e.g., as
opposed to JSON format), as indicated by the ".txt" suffix in the URL.

22.2.2. Package world

The world.Datetime() function fetches the content on the Web, reads the content
of the response body, and parses the content to find the desired data, datetime in
our example.

world-time-api/world/datetime.go (lines 11-33)

11 func Datetime(url string) (string, error) {
12 response, err := http.Get(url)
13 if err != nil {
14 return "", err
15 }
16
17 responseData, err := io.ReadAll(response.Body)

22.2. Code Review

304

18 if err != nil {
19 return "", err
20 }
21
22 scanner := bufio.NewScanner(strings.NewReader(
 string(responseData)))
23 for scanner.Scan() {
24 text := scanner.Text()
25 s := strings.SplitN(text, ":", 2)
26
27 if s[0] == "datetime" {
28 return s[1], nil
29 }
30 }
31
32 return "", errors.New("Datetime not found!")
33 }

The Datetime() function uses http.Get(), one of the simplest functions in the
net/http package.

It returns the datetime string to the caller, the main() function, which simply prints
out the result and waits for 10 seconds before it calls Datetime() again.

22.3. Pair Programming
Given a URL, the first thing to do is to fetch the content from the URL. One of the
easiest way to do is using http.Get() function.

Since we covered how to read Go docs in the previous lesson, let’s try that:

go doc http

22.3. Pair Programming

305

This lists all exported names from the http package. Now, let’s try the Get()
function:

go doc http.Get

Here’s the output:

package http // import "net/http"

func Get(url string) (resp *Response, err error)
 Get issues a GET to the specified URL. If the response is one of
the
 following redirect codes, Get follows the redirect, up to a
maximum of 10
 redirects:

 301 (Moved Permanently)
 302 (Found)
 303 (See Other)
 307 (Temporary Redirect)
 308 (Permanent Redirect)

 An error is returned if there were too many redirects or if there
was an
 HTTP protocol error. A non-2xx response doesn't cause an error.
Any returned
 error will be of type *url.Error. The url.Error value's Timeout
method will
 report true if request timed out or was canceled.

 When err is nil, resp always contains a non-nil resp.Body. Caller
should
 close resp.Body when done reading from it.

22.3. Pair Programming

306

 Get is a wrapper around DefaultClient.Get.

 To make a request with custom headers, use NewRequest and
DefaultClient.Do.

That is useful. In particular, we can confirm that this is indeed a function which we
can use: Get() issues a HTTP GET command to the target URL.

http.Get() returns the response of type *http.Response (along with a potential
error value). You can read the body content using io.ReadAll(response.Body)
which we used in the previous lesson, File Cat.


In case you are not familiar, an HTTP response comprises the
header part and the rest, "body", separated by a blank line.

The io.ReadAll() function returns the content in a byte slice type.

It is generally a good idea to spend some time to understand the API and figure out
how the API service works. Reading the documentation can be useful. Trying out
some endpoints using command line tools such as curl can be useful.

For the World Time API service, everything you need to know to use the API is
available on their home page: worldtimeapi.org.

Let’s try to get the London time using one of their examples.

curl -X GET -i
"http://worldtimeapi.org/api/timezone/Europe/London.txt"


You can use tools other than curl as well. The point of this exercise
is to understand the response format from the service. Since we
already implemented http.Get() at this point, we can actually

22.3. Pair Programming

307

http://worldtimeapi.org

use the (work-in-progress) program we are writing for this
purpose. We can just print out the received content (both the
headers and the body) to the console output.

A typical response from the server will look like this:

HTTP/1.1 200 OK
Connection: keep-alive
Access-Control-Allow-Credentials: true
Access-Control-Allow-Origin: *
Access-Control-Expose-Headers:
Cache-Control: max-age=0, private, must-revalidate
Content-Length: 359
Content-Type: text/plain; charset=utf-8
Cross-Origin-Window-Policy: deny
Date: Fri, 23 Apr 2021 20:41:02 GMT
Server: Cowboy
X-Content-Type-Options: nosniff
X-Download-Options: noopen
X-Frame-Options: SAMEORIGIN
X-Permitted-Cross-Domain-Policies: none
X-Request-Id: 06b5bce3-27fb-4abb-9407-cea8865d6345
X-Runtime: 28ms
X-Xss-Protection: 1; mode=block
Via: 1.1 vegur

abbreviation: BST
client_ip: 187.144.22.133
datetime: 2021-04-23T21:41:03.119143+01:00
day_of_week: 5
day_of_year: 113
dst: true
dst_from: 2021-03-28T01:00:00+00:00
dst_offset: 3600

22.3. Pair Programming

308

dst_until: 2021-10-31T01:00:00+00:00
raw_offset: 0
timezone: Europe/London
unixtime: 1619210463
utc_datetime: 2021-04-23T20:41:03.119143+00:00
utc_offset: +01:00

Anything above the blank line is headers. Anything that follows the blank line is the
body.

Now, where is the London time?

As you can easily figure out, the desired data is in a line that starts with "datetime:
". What we need to get is the value after this prefix, "2021-04-
23T21:41:03.119143+01:00" in this particular response.

So, one way to get the datetime is to go through all lines from the response body,
line by line, and find a line that starts with "datetime: ". It is easy to write such a
function using library functions like strings.HasPrefix().

In this example, we are using a slightly more specialized API, namely,
bufio.Scanner, for demonstration.

Let’s browse the doc:

go doc bufio.Scanner

Here’s an output:

package bufio // import "bufio"

type Scanner struct {

22.3. Pair Programming

309

 // Has unexported fields.
}
 Scanner provides a convenient interface for reading data such as
a file of
 newline-delimited lines of text. Successive calls to the Scan
method will
 step through the 'tokens' of a file, skipping the bytes between
the tokens.
 The specification of a token is defined by a split function of
type
 SplitFunc; the default split function breaks the input into lines
with line
 termination stripped. Split functions are defined in this package
for
 scanning a file into lines, bytes, UTF-8-encoded runes, and
space-delimited
 words. The client may instead provide a custom split function.

 Scanning stops unrecoverably at EOF, the first I/O error, or a
token too
 large to fit in the buffer. When a scan stops, the reader may
have advanced
 arbitrarily far past the last token. Programs that need more
control over
 error handling or large tokens, or must run sequential scans on a
reader,
 should use bufio.Reader instead.

func NewScanner(r io.Reader) *Scanner
func (s *Scanner) Buffer(buf []byte, max int)
func (s *Scanner) Bytes() []byte
func (s *Scanner) Err() error
func (s *Scanner) Scan() bool
func (s *Scanner) Split(split SplitFunc)

22.3. Pair Programming

310

func (s *Scanner) Text() string


The Go documentation is also available online. For the standard
library, the best place is golang.org/pkg.

As you can see from the doc, a new Scanner can be created using NewScanner()
function. (The naming convention, as well as its function signature, clearly
indicates that this is a function we can use to create a new Scanner.)

$ go doc bufio.NewScanner

package bufio // import "bufio"

func NewScanner(r io.Reader) *Scanner
 NewScanner returns a new Scanner to read from r. The split
function defaults
 to ScanLines.

The NewScanner() function takes an argument of type io.Reader.

We have responseDate which is a type of []byte. A byte slice can be cast to a
string. A new io.Reader can be created from a string using
strings.NewReader() function.

$ go doc strings.NewReader

package strings // import "strings"

func NewReader(s string) *Reader
 NewReader returns a new Reader reading from s. It is similar to
 bytes.NewBufferString but more efficient and read-only.

22.3. Pair Programming

311

https://golang.org/pkg

strings.Reader is an interface type of io.Reader, among other things.

Hence, we get scanner of type *bufio.Scanner this way:

 scanner := bufio.NewScanner(strings.NewReader(
string(responseData)))

bufio.NewScanner() creates a Scanner which by default "tokenizes" the content
using newlines.

Now, we can use the Scan() method of bufio.Scanner to read responseData,
line by line.

$ go doc bufio.Scanner.Scan

package bufio // import "bufio"

func (s *Scanner) Scan() bool
 Scan advances the Scanner to the next token, which will then be
available
 through the Bytes or Text method. It returns false when the scan
stops,
 either by reaching the end of the input or an error. After Scan
returns
 false, the Err method will return any error that occurred during
scanning,
 except that if it was io.EOF, Err will return nil. Scan panics if
the split
 function returns too many empty tokens without advancing the
input. This is
 a common error mode for scanners.

22.3. Pair Programming

312

We use the scanner.Text() method to get the next "token":

$ go doc bufio.Scanner.Text

package bufio // import "bufio"

func (s *Scanner) Text() string
 Text returns the most recent token generated by a call to Scan as
a newly
 allocated string holding its bytes.

The next thing we will need to do is to split each line into a "key-value" pair, This is
based on the knowledge we gained by browsing the sample response body.

$ go doc strings.SplitN

package strings // import "strings"

func SplitN(s, sep string, n int) []string
 SplitN slices s into substrings separated by sep and returns a
slice of the
 substrings between those separators.

 The count determines the number of substrings to return:

 n > 0: at most n substrings; the last substring will be the
unsplit remainder.
 n == 0: the result is nil (zero substrings)
 n < 0: all substrings

 Edge cases for s and sep (for example, empty strings) are handled
as
 described in the documentation for Split.

22.3. Pair Programming

313

Based on this doc, we know we can use something like this to get the key and the
rest (i.e., the value). Note the value 2 for n (the third argument):

s := strings.SplitN(text, ":", 2)

The for scanner.Scan() loop continues until we find the desired key "datetime"
or it runs out of tokens.

In the latter case, we return a non-nil error to indicate that we have not found what
we are looking for. You can use errors.New() to create a value of an interface type
error:

$ go doc errors.New

package errors // import "errors"

func New(text string) error
 New returns an error that formats as the given text. Each call to
New
 returns a distinct error value even if the text is identical.

That is our Datetime function implementation.

In the main function, we keep calling world.Datetime() on a regular interval. We
"sleep" for 10 seconds.

$ go doc time.Sleep

package time // import "time"

func Sleep(d Duration)
 Sleep pauses the current goroutine for at least the duration d. A

22.3. Pair Programming

314

negative
 or zero duration causes Sleep to return immediately.

time.Second is a constant (of type time.Duration) defined in the time package:

$ go doc time.Second

package time // import "time"

const (
 Nanosecond Duration = 1
 Microsecond = 1000 * Nanosecond
 Millisecond = 1000 * Microsecond
 Second = 1000 * Millisecond
 Minute = 60 * Second
 Hour = 60 * Minute
)
 Common durations. There is no definition for units of Day or
larger to avoid
 confusion across daylight savings time zone transitions.

 To count the number of units in a Duration, divide:

 second := time.Second
 fmt.Print(int64(second/time.Millisecond)) // prints 1000

 To convert an integer number of units to a Duration, multiply:

 seconds := 10
 fmt.Print(time.Duration(seconds)*time.Second) // prints 10s

If we run into a certain number of errors, then we terminate the program.

Let’s run the program. Here’s a sample output:

22.3. Pair Programming

315

$ go run .

Error: Datetime not found!
datetime: 2021-04-23T17:32:42.207099-04:00
datetime: 2021-04-23T17:32:52.418983-04:00
Error: Datetime not found!
datetime: 2021-04-23T17:33:33.179857-04:00
datetime: 2021-04-23T17:33:43.432816-04:00
datetime: 2021-04-23T17:33:53.671061-04:00
datetime: 2021-04-23T17:34:03.901718-04:00
signal: interrupt

One of the things that we see by browsing the documentation for the http.Get()
function is that "Get is a wrapper around DefaultClient.Get".

http.Get uses the variable DefaultClient. In the next lesson, we will look into
the http client in some more detail.

22.4. Summary
We used the http.Get() function to fetch Web content. We parsed the response
body to get the current time in a particular timezone.

22.5. Exercises
1. Modify the url in the main package to get the time in your own timezone.

2. Use the number consecutive errors not the total error count as a criterion to
terminate the program.

3. Parse the datetime string and print it out in a particular format, e.g., "April 21st,
2:15PM".

22.4. Summary

316

4. Use the "big digit LED clock", "LED" Clock, to display the datetime from the
server.

22.5. Exercises

317

Lesson 23. Where the ISS at

23.1. Introduction
The website, Where the ISS at? [https://wheretheiss.at], provides the real-time location
data of the International Space Station (ISS) in REST API.

Here’s the REST API documentation: wheretheiss.at/w/developer. There are five API
endpoints. They do not require authentication, as of this writing,

One thing to note is that they have rate limits, around 1 request per second.

The satellites endpoint returns a list of satellites and their IDs.

$ curl https://api.wheretheiss.at/v1/satellites

[{"name":"iss","id":25544}]

There is currently only one satellite supported, and that is the ISS. Its ID is 25544.

You can get the current position of the ISS using the satellites/[ID] endpoint. Let’s
write a program which displays the current location and altitude of the ISS on a
regular interval.

23.1. Introduction

318

https://wheretheiss.at
https://wheretheiss.at/w/developer

23.2. Code Review
First, let’s try out this endpoint:

curl -X GET -i https://api.wheretheiss.at/v1/satellites/25544

Here’s a sample response:

HTTP/1.1 200 OK
Date: Sat, 24 Apr 2021 03:28:21 GMT
Server: Apache/2.2.22 (Ubuntu)
X-Powered-By: PHP/5.3.10-1ubuntu3.26
X-Rate-Limit-Limit: 350
X-Rate-Limit-Remaining: 349
X-Rate-Limit-Interval: 5 minutes
Access-Control-Allow-Origin: *
X-Apache-Time: D=23228
Cache-Control: max-age=0, no-cache
Content-Length: 312

23.2. Code Review

319

Content-Type: application/json

{"name":"iss","id":25544,"latitude":-21.409188508186,"longitude":-
32.420309123332,"altitude":424.89524314303,"velocity":27565.45635825,
"visibility":"eclipsed","footprint":4532.2848807191,"timestamp":16192
34901,"daynum":2459328.6446875,"solar_lat":12.915312498887,"solar_lon
":127.45847703932,"units":"kilometers"}

Again, note the empty line separating the headers and the body. By default, it sends
the data in the JSON format in the response body. We can "pretty print" the body of
the response:

{
 "name": "iss",
 "id": 25544,
 "latitude": -21.409188508186,
 "longitude": -32.420309123332,
 "altitude": 424.89524314303,
 "velocity": 27565.45635825,
 "visibility": "eclipsed",
 "footprint": 4532.2848807191,
 "timestamp": 1619234901,
 "daynum": 2459328.6446875,
 "solar_lat": 12.915312498887,
 "solar_lon": 127.45847703932,
 "units": "kilometers"
}

We are only interested in the four fields, latitude, longitude, altitude, and
timestamp (in Unix epoch seconds), in this example.

This program’s logic/structure will be pretty much the same as that of the previous
lesson, World Time API.

23.2. Code Review

320

• Call the API endpoint.

• Fetch the data, and parse the response.

• Print out the result.

The primary difference will be, in this example, we will deal with JSON responses.

23.2.1. Package main

Here’s a portion of the source file, main.go, which includes the main() function:

wheretheiss-api/main.go (lines 9-15)

9 const issID = 25544
10 const endpoint = "https://api.wheretheiss.at/v1/satellites"
11 const interval = 10 * time.Second
12
13 func main() {
14 trackISS()
15 }

A few constants are defined here, and then the main() function merely calls
another function, trackISS(), in the same package. We are going to work on a few
different versions of the program, and we will use a different "track ISS" function
for each version.

The trackISS() function is defined as follows:

wheretheiss-api/main.go (lines 17-28)

17 func trackISS() {
18 for {
19 sat, err := iss.Track(endpoint, issID)
20 if err != nil {

23.2. Code Review

321

21 fmt.Println("Error while tracking ISS:", err)
22 continue
23 }
24 fmt.Println(*sat)
25
26 time.Sleep(interval)
27 }
28 }

We have an infinite loop, as before, and in each iteration, we call the iss.Track()
function defined in the iss package. Then, we print out the result, and repeat the
same after waiting about 10 seconds.

The iss.Track() function does all the heavy lifting.

23.2.2. Package client

First, let’s create an http.Client. In the previous lesson, we used http.Get() to
fetch the data, which indirectly calls http.DefaultClient.Get().

This time, we will explicitly create a variable of type http.Client (or, its pointer
type), and use its methods.

wheretheiss-api/client/client.go (lines 8-15)

8 const timeout = 5 * time.Second
9
10 func New() *http.Client {
11 client := http.Client{
12 Timeout: timeout,
13 }
14 return &client
15 }

23.2. Code Review

322

The type, http.Client, includes a few exported (or, public) fields, and their values
can be customized. In this example, we set the request timeout duration to 5
seconds.

The conventional New() function returns a pointer to an http.Client value.

23.2.3. Package iss

Based on the sample JSON response data, and according to our requirements, we
create a struct type SatelliteData.

This will be used to store the ISS position data.

wheretheiss-api/iss/iss.go (lines 9-14)

9 type SatelliteData struct {
10 Timestamp int64 `json:"timestamp"`
11 Latitude float64 `json:"latitude"`
12 Longitude float64 `json:"longitude"`
13 Altitude float64 `json:"altitude"`
14 }

Each field of a struct definition can include an optional "tag", after the field type, a
string which has no real significance to the compiler. Other applications, or
packages, can use the tags as needed.



Go supports two styles of string literals, * the double-quote style,
as we primarily use in the examples in this book, and * the back-
quote style, known as "raw string literals".

The raw string literals using back quotes can directly include
various characters which otherwise would have needed escaping.
Raw string literals can even include newline characters without

23.2. Code Review

323

escaping, thereby making them effectively "multi-line strings".

Note that it would have been necessary to escape the double
quotes in the field tags (e.g., "json:\"timestamp\"") if we had
used the normal double quote strings.

In this example, the tags are to be used for marshaling and unmarshaling JSON
data.

wheretheiss-api/iss/iss.go (lines 16-23)

16 func Unmarshal(data []byte) (*SatelliteData, error) {
17 sat := SatelliteData{}
18 err := json.Unmarshal(data, &sat)
19 if err != nil {
20 return nil, err
21 }
22 return &sat, nil
23 }

The iss.Unmarshal() function converts the response byte slice (JSON string) into
a value of type SatelliteData.

The magic happens in json.Unmarshal(). The json package in the Go standard
library includes functions for marshaling/encoding and unmarshaling/decoding
JSON strings.

$ go doc json.Unmarshal

package json // import "encoding/json"

func Unmarshal(data []byte, v interface{}) error
 Unmarshal parses the JSON-encoded data and stores the result in

23.2. Code Review

324

the value
 pointed to by v. If v is nil or not a pointer, Unmarshal returns
an
 InvalidUnmarshalError.
 ...

It should be noted that you can pick and choose a set of fields that you want to
serialize or deserialize. You do not have to deserialize every field that is included in
the response, for instance.

Another thing to note is that, in order to be able to use the marshall/unmarshall
functions in the json package, the fields of a struct should be exported. That is,
their names should be capitalized. For example, in the SatelliteData type, all
four fields Timestamp, Latitude, Longitude, and Altitude are exported
although no other packages use them.

In order to use the response JSON data, which follows the typical JSON field name
convention (e.g., camelCase), we use the tags with the corresponding target names
in the JSON response. These tags are solely for the standard json package.

For convenience, we also implement the Stringer interface method, String(), on
the type SatelliteData. Functions like fmt.Printf() uses the Stringer interface.

wheretheiss-api/iss/iss.go (lines 25-28)

25 func (s SatelliteData) String() string {
26 t := time.Unix(s.Timestamp, 0)
27 return fmt.Sprintf("%s: (Lat:%.4f, Lon:%.4f, Alt:%.4f)",
 t.Format(time.RFC1123), s.Latitude, s.Longitude, s.Altitude)
28 }

The implementation of this method uses a couple of exported functions from the
time package.

23.2. Code Review

325

$ go doc time.Unix

package time // import "time"

func Unix(sec int64, nsec int64) Time
 Unix returns the local Time corresponding to the given Unix time,
sec
 seconds and nsec nanoseconds since January 1, 1970 UTC. It is
valid to pass
 nsec outside the range [0, 999999999]. Not all sec values have a
 corresponding time value. One such value is 1<<63-1 (the largest
int64
 value).

time.Unix() is used to create a value of type time.Time from the timestamp, and
Time.Format() is used to format the time for display.

$ go doc time.Format

package time // import "time"

func (t Time) Format(layout string) string
 Format returns a textual representation of the time value
formatted
 according to layout, which defines the format by showing how the
reference
 time, defined to be "Mon Jan 2 15:04:05 -0700 MST 2006",
 would be displayed if it were the value.
 ...

Here’s the iss.Track() function:

23.2. Code Review

326

wheretheiss-api/iss/track.go (lines 10-41)

10 func Track(endpoint string, issID int) (*SatelliteData, error) {
11 url := fmt.Sprintf("%s/%d", endpoint, issID)
12
13 req, err := http.NewRequest(
14 http.MethodGet,
15 url,
16 nil,
17)
18 if err != nil {
19 return nil, err
20 }
21
22 req.Header.Add("Accept", "application/json")
23
24 httpClient := client.New()
25 res, err := httpClient.Do(req)
26 if err != nil {
27 return nil, err
28 }
29
30 data, err := io.ReadAll(res.Body)
31 if err != nil {
32 return nil, err
33 }
34
35 sat, err := Unmarshal(data)
36 if err != nil {
37 return nil, err
38 }
39
40 return sat, err
41 }

23.2. Code Review

327

The Track() function calls the ISS Satellite endpoint, it reads the response body as
a JSON string, and deserializes it into a variable of type SatelliteData.

23.3. Pair Programming
As indicated, the Track() function uses a value of http.Client directly rather
than using higher level functions such as http.Get(), which uses
http.DefaultClient in its implementation. This gives us some more control.

var httpClient = &http.Client{
 Timeout: 5 * time.Second,
}

Furthermore, we use Client.Do() method instead of simpler Client.Get(). If
we need to customize a request, e.g., set a header, or add a cookie, etc, then we will
need to create a value of http.Request and use the Client.Do(request)
method.

In this example, we set a header "Accept: application/json" to the request.
This is not entirely required in this case since the Where the ISS at API happens to
return JSON response by default. Code samples included in this book are primarily
for illustration.

Track() then uses io.ReadAll() to read the body of the response (a JSON string).
As stated before, io.ReadAll() might not be the best choice in some situations, but
in this case, it is perfectly all right. We cannot parse JSON until we see the whole
string.

The iss.Unmarshal() function is a simple wrapper around json.Unmarshal(),
which is generally not necessary. In this example, it saves us one line. 

In some cases, you may want to have more control over deserialization over the

23.3. Pair Programming

328

default behavior provided by the implementation of json.Unmarshal().

The iss.Track() function includes some boilerplate code for error handling:

if err != nil {
 return nil, err
}

This 3-liner if statement is included four times in this small function.

The purpose of the if statement in this example is just to "relay" any non-nil errors
returned by the functions that Track() calls to its own caller, and nothing else.

Unfortunately, there is no easy way to reduce this clutter, that is, as long as we use
this error-as-a-return-value convention in Go. This is a simple example, but one can
easily imagine a long call chain where a function calls a function, which calls
another function, and so forth.

As alluded before, Go provides another way of handling exceptional, or unexpected,
situations.

Panics automatically "bubble up", or propagate upstream in the call chain. When a
panic happens in a function, the execution stops at this point, and it immediately
returns, after calling only the deferred functions. The same thing happens to its
caller, and its caller, …, until it reaches the main() function, at which point the
program terminates, with a non-zero exit code.

A good example of the use of panic is when dividing a number by a variable whose
value is 0. (As a side note, if you attempt to divide a number by a constant 0 or 0.0,
or numeric literals equivalent to 0, the Go compiler catches it at a build time. It’s a
compile error, not a run-time error.)

• func panic(v interface{}): The panic built-in function stops normal

23.3. Pair Programming

329

execution of the current goroutine. When a function F calls panic, normal
execution of F stops immediately. Any functions whose execution was deferred
by F are run in the usual way, and then F returns to its caller.

We can call panic() with an arbitrary value, of any type.

During the unwinding of the call stack, or during the "panicking", as is called in Go,
any function in the call chain may decide to handle the panic from downstream,
using Go’s builtin recover() function.

• func recover() interface{}: The recover built-in function allows a
program to manage behavior of a panicking goroutine. Executing a call to
recover inside a deferred function stops the panicking sequence by restoring
normal execution.

The recover() function is normally, and almost always, used in a deferred
function. recover() returns the same value as the parameter used when panic()
was called. If recover() is called when the goroutine is not panicking, then it
merely returns nil.

As an example, let’s try to rewrite the Track() function so that we do not have to
include the 3-liner error handling if statement everywhere. Simply putting the if
statement in a separate function, and calling that function, will not work since that
function call has to go through the normal call chain as well.

Here, in the second version of the Track function, we use panic():

wheretheiss-api/iss/track.go (lines 43-65)

43 func Track2(endpoint string, issID int) (sat *SatelliteData, err
 error) {
44 defer func() {
45 if r := recover(); r != nil {
46 err = r.(error)

23.3. Pair Programming

330

47 }
48 }()
49
50 url := fmt.Sprintf("%s/%d", endpoint, issID)
51 req, err := http.NewRequest(http.MethodGet, url, nil)
52 panicOnError(err)
53
54 req.Header.Add("Accept", "application/json")
55 res, err := client.New().Do(req)
56 panicOnError(err)
57
58 data, err := io.ReadAll(res.Body)
59 panicOnError(err)
60
61 sat, err = Unmarshal(data)
62 panicOnError(err)
63
64 return
65 }

The panicOnError() function is defined as follows:

wheretheiss-api/iss/track.go (lines 85-89)

85 func panicOnError(err error) {
86 if err != nil {
87 panic(err)
88 }
89 }

Every time we run into an error, we call panic(err). In a deferred function, we
then call recover() to check if there has been an error. And, if so, recover() !=
nil, then we "convert the return value r back to an error type" and return that

23.3. Pair Programming

331

error to the caller.

The expression r.(error) casts r, which is of type interface{}, to error type.
This is known as a "type assertion".

At the risk of sounding like a broken record, all example programs in this book are
primarily for illustration purposes, and this example, in particular, only
demonstrates the use of panic() and recover(). Use of panics is often reserved
for situations where the normal convention using the error return values is not
suitable.

Incidentally, the defer statement uses an anonymous function literal, and it calls the
function immediately at the point of its definition.

func() { /* ... */ }()

This is equivalent to

f := func() { /* ... */ }
f()

This variation of Track(), or Track2(), does not require any real changes to its
caller(s). Refer to trackISS2() in the code listing at the end of the book, [appendix-
code-listing-part2].

We can even go a little bit further with this example.

This example of using panic/recover in the same function, Track2(), does not add
much value, beyond the body of this function. Its callers will still have to deal with
errors.

We can just use panics throughout our program. Every time we encounter an

23.3. Pair Programming

332

error (from the functions we use), we convert it to panic and deal with it later. In
situations where a long call chain is involved, it can potentially reduce the code
clutter significantly.

The example still uses one caller and one callee, but it can be used in multiple
function call sequences.

Here’s a new version of Track():

wheretheiss-api/iss/track.go (lines 67-83)

67 func Track3(endpoint string, issID int) *SatelliteData {
68 url := fmt.Sprintf("%s/%d", endpoint, issID)
69 req, err := http.NewRequest(http.MethodGet, url, nil)
70 panicOnError(err)
71
72 req.Header.Add("Accept", "application/json")
73 res, err := client.New().Do(req)
74 panicOnError(err)
75
76 data, err := io.ReadAll(res.Body)
77 panicOnError(err)
78
79 sat, err := Unmarshal(data)
80 panicOnError(err)
81
82 return sat
83 }

We use the same panicOnError() function as before. It simply calls panic()
when it receives a non-nil error.

The difference between Track3() and Track2() is that, in this new version, we do
not call recover(). It lets its caller, or the caller’s caller, etc., handle the panicking

23.3. Pair Programming

333

situation as they see fit.

Now, one of the functions in the call chain, trackISS3() in this case, which is
really the main() function of the program (this additional layer of function call is
somewhat artificial in this example), may decide to do something with panics.

For example,

wheretheiss-api/main.go (lines 43-52)

43 func trackISS3() {
44 defer restartOnPanic()
45
46 for {
47 sat := iss.Track3(endpoint, issID)
48 fmt.Println(*sat)
49
50 time.Sleep(interval)
51 }
52 }

wheretheiss-api/main.go (lines 54-59)

54 func restartOnPanic() {
55 if r := recover(); r != nil {
56 fmt.Println("Error while tracking ISS:", r.(error))
57 trackISS3()
58 }
59 }

The restartOnPanic() simply restarts the for loop, essentially by calling
restartOnPanic() again, in the error situation.

23.3. Pair Programming

334

The three versions of trackISS() behave the same way.

Here’s a sample output:

go run .
Sat, 24 Apr 2021 09:35:12 CST: (Lat:-51.7867, Lon:69.1035,
Alt:435.8655)
Sat, 24 Apr 2021 09:35:22 CST: (Lat:-51.7975, Lon:70.0997,
Alt:435.8687)
Sat, 24 Apr 2021 09:35:33 CST: (Lat:-51.7987, Lon:71.1959,
Alt:435.8684)
Error while tracking ISS: Get
"https://api.wheretheiss.at/v1/satellites/25544": context deadline
exceeded (Client.Timeout exceeded while awaiting headers)
Sat, 24 Apr 2021 09:35:54 CST: (Lat:-51.7704, Lon:73.2874,
Alt:435.8565)
Sat, 24 Apr 2021 09:36:04 CST: (Lat:-51.7428, Lon:74.2820,
Alt:435.8457)
signal: interrupt

Note that we can change the request timeout duration by changing the
http.Client's Timeout value. For example,

client := http.Client{
 Timeout: 500 * time.Millisecond,
}

23.4. Summary
We learned how to make simple HTTP GET requests in a Go program using a value
of type http.Request.

23.4. Summary

335

We also reviewed the error handling mechanism, using panic() and recover().

23.5. Exercises
1. Although we do not cover GUI programming, including the Web frontend, if you

are familiar with Web mapping APIs, such as Google Maps, then you can plot
the (projections of) the ISS’s positions on the map of the planet, real time.

23.5. Exercises

336

Lesson 24. Simple Web Server

24.1. Introduction
Let’s write a simple HTTP server.

There are many "Web framework" libraries in Go. Many Go programmers use these
Web frameworks for various reasons. For example, some frameworks may have
better performance. Some frameworks may expose APIs which are "easier" to use
(although "easy" is really a subjective characterization in this context). Etc.

But, Go’s standard library has a perfectly good support for Web backend
programming.

We will try out a few simple APIs from the net/http package in this lesson.

24.1. Introduction

337

24.2. Code Review
As always, let’s start from the main() function.

When you are trying to read and understand a program source code, which is new
to you, the main package is the best place to start, especially the main() function.

Generally, but not always, the top-down approach works best when designing a
new program, or when trying to get a high-level understanding of an existing
program.

24.2.1. Package main

The main function in this example is very simple:

web-server-simple/main.go (lines 9-17)

9 func main() {
10 fmt.Println("Server starting...")
11
12 http.HandleFunc("/", handler.Handler1)
13
14 if err := http.ListenAndServe(":8080", nil); err != nil {
15 panic(err)
16 }
17 }

It sets up a handler function,

http.HandleFunc("/", handler.Handler1)

And, it calls http.ListenAndServe()

24.2. Code Review

338

if err := http.ListenAndServe(":8080", nil); err != nil {
 panic(err)
}

This if statement is pretty idiomatic when you start a long-running server program.

The http.HandleFunc() maps a URL path, or route, the "root" / in this case, to a
handler function of type func(http.ResponseWriter, *http.Request). All
requests will be handled by the Handler1() function in the handler package, in
this example.

In general, the Web server program may include multiple handlers for different
paths.

$ go doc http.HandleFunc

package http // import "net/http"

func HandleFunc(pattern string, handler func(ResponseWriter,
*Request))
 HandleFunc registers the handler function for the given pattern
in the
 DefaultServeMux. The documentation for ServeMux explains how
patterns are
 matched.

The doc says that http.HandleFunc() uses http.DefaultServeMux, which is of a
type http.ServeMux. You can go doc each of these names, and then the names that
are included in those docs, and so forth, if you need to.

But, in this case, all we need is essentially the type of the handler argument. We
will write, or review, a handler function shortly.

24.2. Code Review

339

Likewise, we can look up the http.ListenAndServe() function:

$ go doc http.ListenAndServe

package http // import "net/http"

func ListenAndServe(addr string, handler Handler) error
 ListenAndServe listens on the TCP network address addr and then
calls Serve
 with handler to handle requests on incoming connections. Accepted
 connections are configured to enable TCP keep-alives.

 The handler is typically nil, in which case the DefaultServeMux
is used.

 ListenAndServe always returns a non-nil error.

Again, we are using the default http.DefaultServeMux variable defined in the
net/http package when calling the http.ListenAndServe() function with nil
Handler second argument, as in this example.

We can easily create a custom handler type (e.g., using struct) by implementing a
method, ServeHTTP(http.ResponseWriter, *http.Request), as defined in the
http.Handler interface type:

$ go doc http.Handler

package http // import "net/http"

type Handler interface {
 ServeHTTP(ResponseWriter, *Request)
}
 A Handler responds to an HTTP request.

24.2. Code Review

340

 ...

The http.ListenAndServe() function does not return, except for the case of an
error. When this function returns, the error value will always be non-nil.

Therefore, the following implementation is also idiomatic:

func main() {
 http.HandleFunc("/", handler.Handler1)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

When http.ListenAndServe() returns, if ever, it logs the error (which is always
non-nil) and terminates the program with a non-zero exit code.

24.2.2. Package handler

Here’s the simplest handler function of type func(ResponseWriter, *Request):

web-server-simple/handler/handlers.go (lines 8-10)

8 func Handler1(w http.ResponseWriter, r *http.Request) {
9 io.WriteString(w, "Hello\n")
10 }

This function merely returns a string "Hello" as a plain text.

Here’s a slightly more complex version:

web-server-simple/handler/handlers.go (lines 12-15)

12 func Handler2(w http.ResponseWriter, r *http.Request) {

24.2. Code Review

341

13 w.Header().Add("Content-Type", "application/json")
14 io.WriteString(w, `{"greeting":"hello"}`)
15 }

The Handler2 function sets a header, "Content-Type: application/json", and
it returns a simple JSON string {"greeting":"hello"}.

When you start this simple Web server, it print out the message, "Server starting…",
and it just waits.

$ go run .

Server starting...

Let’s try to access this Web server using, for example, curl.

$ curl http://localhost:8080/

Hello

It just returns the string "Hello" regardless of the URL path.

$ curl http://localhost:8080/abc

Hello

You can also try to access the server using a web browser.

24.2. Code Review

342

24.3. Pair Programming
A function has a type. A variable or a literal of a function type can be used just like
any other values.

Functions like http.HandleFunc(), for example, accept arguments of a function
type. In particular, the second argument of http.HandleFunc() is a type
func(http.ResponseWriter, *http.Request).

As an exercise, let’s create a kind of "universal" function that does any kind of
binary operation, which takes two ints and returns an int.

func doBinaryOperation(l, r int, f func(int, int) int) int {
 return f(l, r)
}

This function accepts a value of function type, func(int, int) int, as its third
argument, and calls the argument function using its first two arguments, which are
ints.

If we pass a function argument that does addition, then doBinaryOperation()
does addition. If we pass a function argument that does multiplication, then
doBinaryOperation() does multiplication. It does anything that the argument
function does.

Here’s a simple test code:

func TestDoBinaryOperation(t *testing.T) {
 l, r := 1, 2

 sum := func(l int, r int) int {
 return l + r

24.3. Pair Programming

343

 }
 p := doBinaryOperation(l, r, sum)
 if p != 3 {
 t.Fail()
 }

 m := doBinaryOperation(l, r, func(l int, r int) int {
 return l - r
 })
 if m != -1 {
 t.Fail()
 }
}

Both of these two tests "pass". The first test case calls doBinaryOperation() with a
variable sum which has a type func(l int, r int) int. The second test case
uses a function literal, func(l int, r int) int { return l - r }).

We can go a little bit further.

In this Web server example, the http.HandleFunc() function maps a path to a
single handler function. You can use different handlers for different paths, but as is
written, you can call only one handler per path.

Many Web server frameworks support constructs called "middleware". A
middleware is a function that runs in the "middle" from the time when a request is
received to the time when a response is sent. You can run multiple middlewares in
series.

Let’s build, as an exercise, a middleware framework into our simple Web server.

We can define a "middleware" as follows:

24.3. Pair Programming

344

type middleware = func(http.Handler) http.Handler

It is a function that takes a http.Handler function and returns another
http.Handler function. http.Handler is an interface type from the http
package, and it is being used as a reference type. We can "chain-call" our
middlewares one after another.

Here’s an example of our middleware function:

func LogMiddleware(next http.Handler) http.Handler {
 return http.HandlerFunc(
 func(w http.ResponseWriter, r *http.Request) {
 log.Printf("%v\n", *r)
 next.ServeHTTP(w, r)
 })
}

This function return a function that simply logs the request r and calls the "next"
handler function. Note that the type of LogMiddleware() is middleware, that is,
func(http.Handler) http.Handler.

Now, let’s create a function that takes a set of middlewares and return a
http.Handler function, which we can use as the second argument for
http.Handle().

func RunMiddlewares(h http.Handler, middlewares ...middleware)
http.Handler {
 for _, mw := range middlewares {
 h = mw(h)
 }
 return h

24.3. Pair Programming

345

}

We can use this function as follows:

func main() {
 http.Handle("/", handler.RunMiddlewares(
 http.HandlerFunc(handler.Handler1),
 handler.Middleware1,
 handler.Middleware2,
))

 log.Fatal(http.ListenAndServe(":8080", nil))
}

Note that we use http.Handle() instead of http.HandleFunc() in this example.

24.4. Summary
We implemented a simple Web server using APIs of the http package. We also
implemented a simple "middleware" framework using a function that takes a
function and returns a function.

24.5. Exercises
1. Implement a handler that uses a query parameter, say, name and returns a

string "Hello <name>". We have not discussed how to read URL query
parameters, but go doc (or, the online Go documentations) is your best friend.

2. Create a simple Web server using a custom http.ServeMux, not the
http.DefaultServeMux.

3. The RunMiddlewares() function calls middleware function in the reverse

24.4. Summary

346

order. And, it calls the "main handler" last (e.g., handler.Handler1 in the
example). How would you change its implementation so that middlewares are
called in the order they are added but the main handler is still called last?

24.5. Exercises

347

Lesson 25. TCP Client and Server

25.1. Introduction
The Internet is built on top of the TCP/IP protocol. The HTTP application layer
protocol is built on top of TCP/IP, among other things.

Telnet is another popular application layer protocol that is built on TCP/IP. It used to
be one of the main ways to connect to a remote machine, e.g., to get a shell access,
but that use is mostly superseded by SSH at this point, which is more secure.

The Telnet protocol, however, still remains to be one of the most basic methods to
facilitate "text-based" communications among remote hosts on the Internet. Here’s
a Wikipedia article, if you need more information: en.wikipedia.org/wiki/Telnet.

We are going to write a simple Telnet client, as well as a server, in this lesson.

25.1. Introduction

348

https://en.wikipedia.org/wiki/Telnet

25.2. Code Review - Client
Let’s start with the client.

25.2.1. Package main

Here’s the client’s main() function:

telnet-client-simple/main.go (lines 10-31)

10 const (
11 host = "localhost"
12 port = 2323
13)
14
15 func main() {
16 client := telnet.NewClient(host, port)
17 err := client.Connect(false)
18 if err != nil {
19 log.Fatalln(err)
20 }
21 defer client.Close()
22
23 go client.Listen()
24
25 err = client.ProcessInput()
26 if err == io.EOF {
27 os.Exit(0)
28 } else if err != nil {
29 log.Fatalln(err)
30 }
31 }

25.2. Code Review - Client

349

The main() function first creates a client of type telnet.Client (or, its pointer
type) from the telnet package. It uses its methods to connect and process
input/output.

25.2.2. Package telnet

First, we create a new type Client to represent a Telnet client program and its
behavior.

telnet-client-simple/telnet/client.go (lines 15-19)

15 type Client struct {
16 address string
17 connection net.Conn
18 ignoreNewline bool
19 }

The Client struct includes three fields. For example, connection is a network
connection of type net.Conn. Note that none of them is exported.

Client implements the following set of methods:

func (c *Client) Connect(newline bool) (err error) {}
func (c *Client) Close() {}
func (c *Client) Listen() {}
func (c *Client) ProcessInput() error {}

The Connect() method is implemented as follows:

telnet-client-simple/telnet/client.go (lines 30-34)

30 func (c *Client) Connect(ignoreNewline bool) (err error) {

25.2. Code Review - Client

350

31 c.connection, err = net.Dial(TCP, c.address)
32 c.ignoreNewline = ignoreNewline
33 return
34 }

This method is just a simple wrapper around net.Dial(), which does all the heavy
lifting.

• Package net [https://golang.org/pkg/net/]: Package net provides a portable interface
for network I/O, including TCP/IP, UDP, domain name resolution, and Unix
domain sockets. Although the package provides access to low-level networking
primitives, most clients will need only the basic interface provided by the Dial,
Listen, and Accept functions and the associated Conn and Listener interfaces.

◦ func Dial [https://golang.org/pkg/net/#Dial]: Dial connects to the address on the
named network. For TCP and UDP networks, the address has the form
"host:port". The host must be a literal IP address, or a host name that can be
resolved to IP addresses. The port must be a literal port number or a service
name.

Note that the Client.Connect() method accepts a Boolean argument,
ignoreNewline. We use this variable in the implementation of ProcessInput().

The Close() method is a also simple wrapper around net.Conn.Close():

telnet-client-simple/telnet/client.go (lines 36-41)

36 func (c *Client) Close() {
37 if c.connection != nil {
38 c.connection.Close()
39 c.connection = nil
40 }
41 }

25.2. Code Review - Client

351

https://golang.org/pkg/net/
https://golang.org/pkg/net/#Dial

The Listen() method starts a "listener loop".

telnet-client-simple/telnet/client.go (lines 43-62)

43 func (c *Client) Listen() {
44 for {
45 if c.connection != nil {
46 err := doCopy(c.connection)
47 if err != nil {
48 fmt.Println(err)
49 return
50 }
51 } else {
52 return
53 }
54 }
55 }
56
57 func doCopy(src io.Reader) error {
58 if _, err := io.Copy(os.Stdout, src); err != nil {
59 return err
60 }
61 return nil
62 }

This listener looping continues until the connection is broken, or until it encounters
an error.

The ProcessInput() method is defined as follows:

telnet-client-simple/telnet/client.go (lines 64-84)

64 func (c *Client) ProcessInput() error {
65 reader := bufio.NewReader(os.Stdin)

25.2. Code Review - Client

352

66 for {
67 cmd, err := reader.ReadString('\n')
68 if err != nil {
69 return err
70 }
71 if c.ignoreNewline {
72 cmd = strings.TrimRight(cmd, "\n")
73 }
74 c.send(cmd)
75 }
76 }
77
78 func (c *Client) send(cmd string) error {
79 if c.connection == nil {
80 return errors.New("Connection not established")
81 }
82 fmt.Fprint(c.connection, cmd)
83 return nil
84 }

ProcessInput() simply copies the user input to the destination connection,
using a helper method, send().

25.3. Pair Programming - Client
The implementation of this client program is straightforward.

The main() function creates a client for a particular remote address. The host
and port are hard-coded in this case as consts. Normally, it will be better to read
these values from the command line as we have done in some previous lessons.

The main() function first starts a goroutine to listen to the messages coming from a
server, client.Listen(). Then (in parallel), it processes the user input from the

25.3. Pair Programming - Client

353

terminal, client.ProcessInput().

The go keyword starts a function or method in a "goroutine", a thread of execution
different from the one where the main() function is running. Note that we run the
ProcessInput() function within the main goroutine. In this example, we ignore
synchronization between these two goroutines.

The client.Listen() method starts an infinite loop. In each iteration, it reads an
input from the connection and it copies the content to the os.Stdout, if any. The
doCopy(c.connection) function simply calls io.Copy(os.Stdout,
c.connection).

The ProcessInput() method starts another infinite loop. It processes the user
input on a line-by-line basis. It calls send() to send the user input to the
connection, e.g., to the remote server.

Clearly, we cannot run both in the same thread, or goroutine. At least one, or both,
functions will have to be run as separate goroutines.

Note the use of the ignoreNewline flag in the ProcessInput() method.

When a user types a text and presses an Enter key on the terminal, a newline is
automatically added. In general, it may not be the user’s intention to add a newline.
It is just a signal indicating that the user is done with this particular line of input.

When you issue a command "ls" on a Unix shell, for instance, you press the l key,
the s key, and the Enter key. The shell receives three characters corresponding to
these three keystrokes. But, the command is actually "ls", without the trailing
newline.

The same holds true with telnet. In fact, a telnet server like telnetd expects a
newline (\n or \r\n) after each line of input.

By default, the ignoreNewline is set to false. But, there can be situations where

25.3. Pair Programming - Client

354

that is not very convenient.

For instance, in some communications, a newline may have a special meaning. If
we use the newline as an end of line symbol, then it will be hard to tell which is a
real newline and which is just an end of line signal.

As another example, if you develop a game server and a client that communicate
over Telnet (or, over TCP), using some kind of a predefined text-based protocol,
then it will be more desirable not to include the newline characters after each line.

HTTP is a text based protocol. In fact, we can use our "Telnet client" to communicate
with an HTTP server. It is, strictly speaking, not a Telnet client per se in this use
case. It is more of a TCP client. But, the distinction is not that important in practice.

The only thing we need to be careful about is the newlines. In HTTP, a "line" does
not end with a newline character.

We built a simple Web server in the previous lesson, Simple Web Server. Let’s run it
on the localhost with port 8080.

Then, we can use our client to "talk" to this Web server. Run the client with the
server address, "localhost:8080". Note that we will need to change the
ignoreNewline value to true in the Connect() method since we are not really
using the "Telnet" protocol.

Once the client program runs, type the following in the input:

GET / HTTP/1.1 ①
Host: localhost ②

① Type `GET / HTTP/1.1 ` and Enter.

② Type Host: localhost and Enter.

25.3. Pair Programming - Client

355

③ Just Enter.

You will get the same output as in the previous lesson:

Hello

This is an example request in the HTTP/1.1 protocol. Note the empty "line" at the
end.

Obviously, our "Telnet client" does not know anything about HTTP, which is an
application layer protocol. But, it knows TCP, thanks to the library we use, e.g., the
net package.

We can use this client app to talk to any TCP server that uses text-based protocols as
long as we understand those protocols.

25.4. Code Review - Server

25.4.1. Package main

The main() function creates a server of type echo.Server (or, its pointer type)
from the echo package. The host and port are also hard-coded in this example.

tcp-server-echo/main.go (lines 8-21)

 8 const (
 9 host = "localhost"
10 port = 2323
11)
12
13 func main() {
14 server, err := echo.NewServer(host, port)

25.4. Code Review - Server

356

15 if err != nil {
16 log.Fatalln("Failed to create a server:", err)
17 }
18 defer server.Close()
19
20 log.Fatalln(server.Listen())
21 }

The use of the port number 2323 is arbitrary. Telnet servers use port 23 by default.

25.4.2. Package echo

As with Client, let’s create a new type Server to represent a TCP server’s
behavior:

tcp-server-echo/echo/server.go (lines 12-15)

12 type Server struct {
13 Address string
14 net.Listener
15 }

The Server struct includes two fields. Note that it has an embedded field
net.Listener, which allows us to use a simpler syntax using "promotion".

The type Server implements the following method:

func (s *Server) Listen() error {}

Note that we have deliberately chosen an API that is rather similar to
http.ListenAndServe() from the http package. This function does not return
unless there is an error.

25.4. Code Review - Server

357

tcp-server-echo/echo/server.go (lines 30-47)

30 func (s *Server) Listen() error {
31 fmt.Printf("Listening on %s....\n", s.Address)
32
33 for {
34 conn, err := s.Accept()
35 if err != nil {
36 return err
37 }
38
39 err = handleConnection(conn)
40 if err == io.EOF {
41 continue
42 }
43 if err != nil {
44 return err
45 }
46 }
47 }

Here’s handleConnection():

tcp-server-echo/echo/server.go (lines 49-58)

49 func handleConnection(conn net.Conn) error {
50 defer conn.Close()
51
52 for {
53 err := echo(conn)
54 if err != nil {
55 return err
56 }
57 }

25.4. Code Review - Server

358

58 }

The handleConnection() function also includes an "infinite loop" to process user
inputs. The main service this this "echo server" provides is to echo the user input
back to the client:

tcp-server-echo/echo/server.go (lines 60-78)

60 func echo(conn net.Conn) error {
61 buf := make([]byte, 1024)
62 read, err := conn.Read(buf)
63 if err != nil {
64 return err
65 }
66
67 bytes := buf[:read]
68 input := strings.TrimRight(string(bytes), "\n")
69 fmt.Println("Received:", input)
70
71 output := fmt.Sprintf("ECHO: %s\n", input)
72 _, err = conn.Write([]byte(output))
73 if err != nil {
74 return err
75 }
76
77 return nil
78 }

25.5. Pair Programming - Server
Note the idiomatic way to start a server in the main() function:

25.5. Pair Programming - Server

359

log.Fatalln(server.Listen())

We will leave the implementation to the reader. As always, try to understand the
sample code first, close the book, and create the same or similar program on your
own. Your program does not have to be exactly the same as the sample.



You can just do "thought programming". You’ll likely learn more
by actually programming on computer, but that is not always
required. Depending on where you are right now while reading
this book, do whatever works best for you.

Once you are done with the server implementation, you can run both the server
and the client, and test them to see if they really work.

Here’s a sample session:

Server

tcp-server-echo$ go run .
Listening on localhost:2323....
Received: Hello server!
Received: How are you?
Received: Bye bye

Client

telnet-client-simple$ go run .
Hello server! ①
ECHO: Hello server!
How are you? ②
ECHO: How are you?
Bye bye ③

25.5. Pair Programming - Server

360

ECHO: Bye bye

① The client-side user types "Hello server!" and Enter.

② The user types "How are you?" + Enter.

③ The user types "Bye bye" + Enter.

Before we end this lesson, let’s go back to the question, the value receiver vs the
pointer receiver.

In the case of telnet.Client and tcp.Server, all the methods are implemented
on the pointer types.

func (c *Client) Connect(newline bool) (err error) {}
func (c *Client) Close() {}
func (c *Client) Listen() {}
func (c *Client) ProcessInput() error {}

func (s *Server) Listen() error {}

As explained, there are a couple of reasons to use a pointer receiver. First, in order
for the method to be able to modify the receiver value, it needs to use the pointer
receiver. Second, to avoid copying the value on each method call, the pointer
receiver is preferred.

We then suggested, as a general rule, prefer using pointer receivers.

So, when do we use value receivers?

In order to answer this question, we will have to go back to our discussion on value
types vs reference types.

25.5. Pair Programming - Server

361

In languages like Java, this is essentially a non-issue. All custom types are reference
types. There is no choice. In C#, the choice is limited: struct for value types, and
class for reference types.

In languages like C++ and Go, however, it is much more complicated.

First of all, all custom types in Go are value types. But, for every value type, we can
define a reference type corresponding to the value type, that is, its pointer type.

In general, all types in Go have this dual nature. (The builtin reference types like
slice and map are exceptions.)

And, you can use a type either way, as a value type (or, "value-semantics" type) or as
a reference type (or, "reference-semantics" type), e.g., using pointers. In some sense,
this is a good thing. It gives a programmer more flexibility, more freedom, and
more power.

Well…

With great power comes great responsibility. 

— Ben Parker, Spider-Man

It is generally a best practice to create a new type for one or the other use, but not
for both. Not to mix their uses.

When you create a type, you will have to think of this question: Is this more like a
value type (or, a value-semantics type), or more like a reference type (or, a
reference-semantics type)?

"Small" types like Point and Hand that we used in the earlier lessons are value-
semantics types, by their nature. Anything that are, in some ways, comparable to
primitive types like int is a value type. Anything that it makes sense to "copy" is a
value type.

25.5. Pair Programming - Server

362

Everything else should be a reference-semantics type. That is, you will (almost)
exclusively use its pointer type *T rather than type T itself. The Client and Server
types in this lesson belong to this category.

One other thing to note is that a value type should not generally include a reference
type. For example, if a struct type includes a pointer type field, or a slice, then it
will be probably best to use that type as a reference type. There are exceptions,
however.

This is a general guideline. The compiler does not care, but you will end up writing
better code if you stick to this rule or guideline, especially if you are new to the Go
programming language.

An experienced C programmer intuitively knows this even if he/she may not have
explicitly thought about it. In C, there is also an issue of memory management,
which is tied to this issue of value vs reference, and stack vs heap memory, etc. It’s
much simpler in Go.

In Go, unlike in C++, however, there is one additional twist. You cannot implement
an interface method for both a type and its pointer type. Go does not allow function
overloading. You’ll have to choose one or the other.

If you stick to the above guideline, then everything will work out fine. For a value-
semantics type, you use value receivers for all its methods. (Or, for almost all.) For a
reference-semantics type, you use pointer receivers for all its methods. (Or, for
almost all.)

This general rule will encompass the two special cases mentioned before where
only pointer receivers can be used (or, pointer receivers are preferred).

This discussion is really beyond the scope of an introductory book like this, but it is
essential to understand this concept to become a proficient Go programmer. In the
long run.

25.5. Pair Programming - Server

363

To reiterate, when you create a new type, you decide: Is the value semantics, or the
reference semantics, more suitable for the values of this type?


As stated, this is a general guideline, especially for beginners. As
you gain more experience, you will gain "better intuition" when it
comes to making design decisions like this.

For "references types" (which will be primarily used as pointer types), you can
generally mix pointer and value receivers. For example, you may decide to use
pointer receivers for all but the String() method, etc. For "value value types"
(which will be primarily used as value types), it is still preferred to exclusively use
value receivers. There are, obviously, exceptions. For instance, the builtin type
string is a value type. Syntactically. It is a struct. But, it includes a field of a
reference type, a pointer to a byte array. So, in general, treating types like like this
as reference types is better. And yet, string behaves like a value-semantics type in
most cases. This is because of the fact that a string value is immutable in Go.



As indicated before, the Go language does not provide a way to
make values of a user defined type immutable. We will not
discuss the immutability aspect of programming languages in this
book because it is largely irrelevant in Go.



A type can be made effectively immutable, outside a package, by
not exposing the fields and not providing any methods that can
mutate the values of the fields. This is similar to using the package
level access control for OOP in Go. However, this "trick" has
limitations. For example, all fields of a struct that are to be
marshalled or unmarshalled should be exported, that is, if you
use the standard json package.

25.5. Pair Programming - Server

364

25.6. Summary
We touched upon basic client-server programming in this lesson. We used APIs in
the net package in the Go standard library.

We also spent some time discussing value receivers vs pointer receivers. The
general rule is that, for a type, you use one or the other type receivers (almost)
exclusively for all its methods and do not mix them.

25.7. Exercises
1. Try running Client.ProcessInput() in a separate goroutine. What changes

are required? The simplest way to do this is probably using sync.WaitGroup.
Refer to the API doc online, or use go doc sync.WaitGroup.

2. Create an echo server, as in this example, and create another server that does
"relaying". A client talks to the relay server, and it merely re-sends the message
to the echo server. Once the relay server receives the response from the echo
server, it relays the response back to the client. How would you write this "relay
server"?

Author’s Note

"Polyglotting"
How was it? Was it fun? That was the end of Part II. Hope you learned
something new from the lessons in this part. If any of the topics we covered
here was not clear to you, then you can always go back and repeat the lessons
(remember, "if you read a book 100 times, …" ), or you can refer to different
resources on the Web.

Many people learn foreign languages for fun. Even if you have no plans to

25.6. Summary

365

travel to Japan, for instance, at least not in the near future, you can still learn
the Japanese language just for the fun of it. A lot of people do. A lot of people
speak many languages.

Likewise, many programmers learn and use many different programming
languages. Often, for practical reasons. But, sometimes, just for fun.

All programming languages are different. They offer different perspectives.
They have different strengths and weaknesses. They have different areas of
primary uses. For example, Python is now becoming the language for
AI/machine learning. If you are interested in low-level systems programming,
then you will have to use C/C++ or Rust.

Learn a new programming language just for the fun of it. If you use Java, for
instance, at your work, then learn C#. Use C# to build something fun.

The author has used over 20 different programming languages over the
years, sometimes by necessity, sometimes just for fun.

Here’s a list of other (upcoming) books by the author, if you are interested:

• The Art of C# - Basics: Introduction to Programming in Modern C#

• The Art of Python - Basics: Introduction to Programming in Modern
Python

• The Art of Typescript - Basics: Introduction to Programming in Typescript
and Javascript

• The Art of Rust - Basics: Introduction to Programming in Rust

• The Art of C++ - Basics: Introduction to Programming in Modern C++

Yes, they all have more or less the same titles, except for the language part. 

They are part of the "Learn Programming (Languages) for Fun" series.

25.7. Exercises

366

Review - Structs, Methods,
Interfaces

Key Concepts
Function Types and Values

In Go, a function is a value, with a function type. Functions can be passed
around just like other values. Function values may be used as function
arguments and return values.

Flow Control
Switch Statements

A switch statement comprises a condition expression and a number of cases. It
runs the first case whose value is equal to the condition expression. Switch cases
evaluate cases from top to bottom, stopping when a case succeeds. Go’s switch`
does not need break after each case.

Switch without a condition is the same as switch true. This construct can be a
clean way to write long if-then-else chains.

Defer Statements

A defer` statement defers the execution of a function until the surrounding
function returns. The deferred call’s arguments are evaluated immediately, but
the function call is not executed until the surrounding function returns.
Deferred function calls are pushed onto a stack. When a function returns, its
deferred calls are executed in last-in-first-out order.

Key Concepts

367

Advanced Types
Maps

A map stores a key to value mapping. The make function returns a map of the
given type, initialized and ready for use. A map can also be initialized with a
map literal. If the top-level type is just a type name, you can omit it from the
elements of the literal.

Structs

A struct is a collection of fields of one or more types. Struct fields are accessed
using the dot notation (.). They can be accessed through a struct pointer with
the same dot notation without the explicit dereference.

A struct literal denotes a newly allocated struct value by listing the values of its
fields. You can list just a subset of fields by using the Name: syntax. The order of
named fields is irrelevant.

Methods

You can define methods on types, including struct types. A method is a function
with a special receiver argument. The receiver appears in its own argument list
between the func keyword and the method name. Methods are just functions
with a different syntax.

Receivers

You can declare methods with value or pointer receivers. You can only declare a
method with a receiver whose type is defined in the same package as the
method.

Methods with a pointer receiver can modify the value to which the receiver
points. Since methods often need to modify their receiver, pointer receivers are
more common than value receivers. With a value receiver, the methods operate
on a copy of the original value.

Advanced Types

368

Interfaces

A set of method types defines an interface type. A type implicitly implements an
interface by implementing its methods. An interface value holds a value of a
specific underlying concrete type, which implements those methods. Calling a
method on an interface value executes the method of the same name on its
underlying type.

Implicit interfaces decouple the definition of an interface from its
implementation, which could then appear in any package without
prearrangement.

The Empty Interface

The interface type that specifies zero methods is known as the empty interface,
interface{}.` An empty interface may hold values of any type. The empty
interface type can be used by code that handles values of unknown type at build
time.

Type Assertions

A type assertion provides access to an interface value’s underlying concrete
value. For example, the statement t := i.(T) asserts that the interface value i
holds the concrete type T and assigns the underlying T value to the variable t. If i
does not hold a T, the statement will trigger a panic.

To test whether an interface value holds a specific type, a type assertion can
return two values: the underlying value and a boolean value that reports
whether the assertion succeeded. E.g., in t, ok := i.(T), if i holds a T, then t
will be the underlying value and o`k will be true. If not, `ok will be
false and t will be the zero value of type T, and no panic occurs.

Advanced Types

369

Part III: Having Fun
There is no royal road to programming.

370

Lesson 26. Folder Tree

26.1. Problem
There is a Unix command tree, which lists the content of a directory, files and
subdirectories, in a tree-like format.

Implement a simple tree command in Go.

Here’s a relevant part from the tree man page.

DESCRIPTION
 Tree is a recursive directory listing program that produces a
depth indented listing of files. With no arguments, tree lists the
files in the current directory. When directory arguments are given,
tree lists all the files and/or directories found in the given
directories each in turn. Upon completion of listing all
files/directories found, tree returns the total number of files
and/or directories listed.

Here’s a sample output from the tree command:

.
├── go.mod
├── main.go
├── temp
│ └── temp.txt
└── tree
 ├── print.go
 ├── tree1.go
 ├── tree1_test.go

26.1. Problem

371

 └── tree2.go

2 directories, 7 files

26.2. Discussion
The Go standard library includes various functions to facilitate file system related
operations. We will use those APIs to traverse a directory hierarchy.

One of the the most convenient functions to use in this context is
filepath.WalkDir(). Or, we can manually traverse the directory tree using the
fs package APIs.

• Package filepath [https://golang.org/pkg/path/filepath/]: Package filepath
implements utility routines for manipulating filename paths in a way
compatible with the target operating system-defined file paths.

◦ func WalkDir [https://golang.org/pkg/path/filepath/#WalkDir]: WalkDir walks the
file tree rooted at root, calling fn for each file or directory in the tree,
including root. All errors that arise visiting files and directories are filtered
by fn: see the fs.WalkDirFunc documentation for details. The files are

26.2. Discussion

372

https://golang.org/pkg/path/filepath/
https://golang.org/pkg/path/filepath/#WalkDir

walked in lexical order, which makes the output deterministic but requires
WalkDir to read an entire directory into memory before proceeding to walk
that directory. WalkDir does not follow symbolic links.

• Package fs [https://golang.org/pkg/io/fs/]: Package fs defines basic interfaces to a file
system. A file system can be provided by the host operating system but also by
other packages.

◦ type WalkDirFunc [https://golang.org/pkg/io/fs/#WalkDirFunc]: WalkDirFunc is
the type of the function called by WalkDir to visit each file or directory. The
path argument contains the argument to WalkDir as a prefix. That is, if
WalkDir is called with root argument "dir" and finds a file named "a" in that
directory, the walk function will be called with argument "dir/a".

◦ type DirEntry [https://golang.org/pkg/io/fs/#DirEntry]: A DirEntry is an entry read
from a directory (using the ReadDir function or a ReadDirFile’s ReadDir
method).

26.3. Sample Code Snippets
The main function parses the command line argument, and if there is at least one
argument, then it uses the first argument as a starting directory.

Otherwise it uses the current folder (.) by default.

folder-tree/main.go (lines 9-19)

 9 func main() {
10 folder := "."
11 if len(os.Args[1:]) > 0 {
12 folder = os.Args[1]
13 }
14
15 err := tree.Tree1(folder)
16 if err != nil {

26.3. Sample Code Snippets

373

https://golang.org/pkg/io/fs/
https://golang.org/pkg/io/fs/#WalkDirFunc
https://golang.org/pkg/io/fs/#DirEntry

17 log.Fatalln(err)
18 }
19 }

The easiest way to traverse a directory hierarchy is using filepath.WalkDir().
Here’s a sample function, Tree1().

folder-tree/tree/tree1.go (lines=9-25)

 9 func Tree1(folder string) error {
10 refDepth := computeDepth(folder, 0)
11 err := filepath.WalkDir(folder,
12 func(path string, d fs.DirEntry, err error) error {
13 if err != nil {
14 return err
15 }
16 depth := computeDepth(path, refDepth)
17 prefix := buildPrefix(d.IsDir(), depth)
18 printTree(prefix, d.Name())
19 return nil
20 })
21 if err != nil {
22 return err
23 }
24 return nil
25 }

Here’s an alternative implementation to traverse the directory structure in
recursive way.

folder-tree/tree/tree2.go (lines=21-42)

21 func list(parentPath string, folder string, depth int) error {

26.3. Sample Code Snippets

374

22 path, err := filepath.Abs(parentPath +
 string(filepath.Separator) + folder)
23 if err != nil {
24 return err
25 }
26
27 files, err := os.ReadDir(path)
28 if err != nil {
29 return err
30 }
31
32 for _, file := range files {
33 prefix := buildPrefix(file.IsDir(), depth)
34 printTree(prefix, file.Name())
35
36 if file.IsDir() {
37 list(path, file.Name(), depth+1)
38 }
39 }
40
41 return nil
42 }

The full code is included in the appendix at the end of the book.

Here’s a sample output:

.

.. go.mod

.. main.go
== temp
.... temp.txt
== tree
.... print.go

26.3. Sample Code Snippets

375

.... tree1.go

.... tree1_test.go

.... tree2.go

26.4. Exercises
1. The sample code of this lesson does not include the counts of dirs and files, as in

"real tree". Modify either or both Tree() functions to display that information.

2. Implement your own version of the tree command.

26.4. Exercises

376

Lesson 27. Stack Interface

27.1. Problem
A stack is a data structure commonly used in programming. Here’s a Wikipedia
article if you need an intro or refresher: en.wikipedia.org/wiki/
Stack_(abstract_data_type).

1. Implement a stack data structure using a slice.

2. Implement another stack using a linked list.

3. Create Push() and Pop() functions which take either type of stack as
arguments.

Readers are encouraged to think about this problem before continuing.

27.2. Discussion
A stack, by definition, supports "push" and "pop" operations, in a LIFO fashion (last
in, first out).

27.1. Problem

377

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

It is easy to implement a stack using a slice. We can embed a slice inside a stack
structure, and support push() and pop() via slice operations.

We can append() to a slice to emulate the stack push. We can re-slice the slice to
remove the last element and return it to emulate the stack pop.

It is a little bit harder to implement a stack using a linked list. Go standard library
includes a doubly linked list container type, but not a singly linked list. We can
either use the standard library doubly linked list or implement our own singly
linked list.

Once we have a linked list data structure, we can map stack’s push to a list
operation of adding an item to the front. And, we can map stack’s pop to a list
operation of removing an item from the front.

In order to provide polymorphic behavior for Push() and Pop() functions, we will
need to define an interface that encapsulate the "stackness" of slice-based stacks
and linked-list-based stacks.

27.3. Sample Code Snippets
The main() function demonstrates the uses of the polymorphic functions named
PushToStack() and PopFromStack(). These two functions call the corresponding
methods in the stack types.

stack-interface/main.go (lines 10-30)

10 func main() {
11 sliceStack := slice.New()
12
13 stack.PushToStack(sliceStack, []int{1, 2, 3})
14 stack.PushToStack(sliceStack, []int{4, 5})
15 stack.PrintStack(sliceStack)
16

27.3. Sample Code Snippets

378

17 sliceItem := stack.PopFromStack(sliceStack)
18 fmt.Printf("Item = %v\n", sliceItem)
19 stack.PrintStack(sliceStack)
20
21 linkedStack := linked.New()
22
23 stack.PushToStack(linkedStack, []int{1, 2, 3})
24 stack.PushToStack(linkedStack, []int{4, 5})
25 stack.PrintStack(linkedStack)
26
27 linkedItem := stack.PopFromStack(linkedStack)
28 fmt.Printf("Item = %v\n", linkedItem)
29 stack.PrintStack(linkedStack)
30 }

We define a stack using a slice as follows:

stack-interface/slice/slicestack.go (lines 5-9)

5 type data = interface{}
6
7 type SliceStack struct {
8 slice []data
9 }

Note that we use the empty interface type, interface{}, the mother of all types,
for our data type. This is a common practice in Go since the language does not
support generics (as of yet). You can just pick a simple type like int or string.
There is no difference for this exercise.

 Generics will be included in Go 1.18.

The SliceStack type implements the Push() and Pop() methods as follows:

27.3. Sample Code Snippets

379

stack-interface/slice/slicestack.go (lines 18-30)

18 func (s *SliceStack) Push(item interface{}) {
19 s.slice = append(s.slice, item.(data))
20 }
21
22 func (s *SliceStack) Pop() interface{} {
23 l := len(s.slice)
24 if l == 0 {
25 return nil
26 }
27 item := s.slice[l-1]
28 s.slice = s.slice[:l-1]
29 return item
30 }

SliceStack does not need to be concerned about formal interfaces at this point.
But, it is important to keep in mind that we are implementing a "behavior". A
stack’s behavior is defined by "push" and "pop".

Next, let’s take a look at another example, a stack which internally uses a singly
linked list. For this, we will need to create a type that represents a singly linked list.

stack-interface/linked/list.go (lines 3-5)

3 type list struct {
4 head *node
5 }

Here a node is defined as follows:

27.3. Sample Code Snippets

380

stack-interface/linked/node.go (lines 3-8)

3 type data = interface{}
4
5 type node struct {
6 item data
7 next *node
8 }

The list implements the following two methods:

stack-interface/linked/list.go (lines 13-24)

13 func (l *list) pushFront(n *node) {
14 n.next = l.head
15 l.head = n
16 }
17
18 func (l *list) popFront() (n *node) {
19 if l.head == nil {
20 return nil
21 }
22 n, l.head = l.head, l.head.next
23 return
24 }

A generic linked list will support more general API, but these two methods suffice
for our purposes.

Then, we define a stack using this list, which we call LinkedStack, as follows:

27.3. Sample Code Snippets

381

stack-interface/linked/linkedstack.go (lines 8-10)

8 type LinkedStack struct {
9 *list
10 }

Note that we use "embedding" for the list field. This is semantically equivalent to
the following although the embedding provides some syntactic convenience.

type LinkedStack struct {
 list *list
}

The LinkedStack type implements the Push() and Pop() methods as follows:

stack-interface/linked/linkedstack.go (lines 19-31)

19 func (s *LinkedStack) Push(item interface{}) {
20 n := node{
21 item: item.(data),
22 }
23 s.pushFront(&n)
24 }
25
26 func (s *LinkedStack) Pop() interface{} {
27 n := s.popFront()
28 if n == nil {
29 return nil
30 }
31 return n.item
32 }

27.3. Sample Code Snippets

382

Note that we use s.pushFront(&n), for instance, instead of
s.list.pushFront(&n). Syntactically, it is almost as if LinkedStack "inherits"
from list, in object oriented programming languages. This is called "promotion" in
Go.

Now, let’s create a function that takes a stack and pushes an element into the given
stack.

For this, we will need to define an interface that captures this behavior. That is, a
stack is something which we can push an element into.

stack-interface/stack/stack.go (lines 3-5)

3 type Pusher interface {
4 Push(item interface{})
5 }

Following the convention, we named this interface Pusher (because it includes one
method Push()). We just use the broadest possible type interface{} for the item
type.

Note that this is not type-aliased as in the case of data in concrete stack
implementations. We have chosen the broadest possible API for these functions.
Also, using a custom type name (type alias or type definition) will make the
interface less generic.

We implement our polymorphic function as follows:

stack-interface/stack/operations.go (lines 5-7)

5 func PushToStack(s Pusher, item interface{}) {
6 s.Push(item)
7 }

27.3. Sample Code Snippets

383

The PushToStack() function just pushes the given item into the given Pusher.
Now, since both SliceStack and LinkedStack implement the Push() method
with the same signature as that in the Pusher interface, we can use a value of
either of these stack types as an argument to the PushToStack() function.

We can do the same with a function that takes a stack and pops the head element
from the given stack.

For this, we will need to define an interface that captures this behavior. That is, a
stack is something which we can pop an element from. We name this interface
Popper.

stack-interface/stack/stack.go (lines 7-9)

7 type Popper interface {
8 Pop() interface{}
9 }

Now, the PopFromStack() function:

stack-interface/stack/operations.go (lines 9-11)

9 func PopFromStack(s Popper) interface{} {
10 return s.Pop()
11 }

This function pops an item from the given Popper and returns the item.

Since both SliceStack and LinkedStack implement the Pop() method with the
same signature as that in the Popper interface, we can use a value of either of these
stack types as an argument to the PopFromStack() function.

You can find the full code listing in the appendix at the end of the book.

27.3. Sample Code Snippets

384

27.4. Exercises
1. Implement a slice-based stack type using a concrete data type, not

interface{}. Is there any difference when you use a value type vs a pointer
type?

2. Implement a linked list type using a concrete data type, not interface{}. Is
there any difference when you use a value type vs a pointer type?

3. Implement a stack using a new linked list with the concrete data type. Is there
any difference when you use a value data type vs a pointer type?

4. Implement a Peek() function for each stack type. A "peek" function returns an
element at the top of a stack, if any, without "popping" the element. What are
the considerations when you use a value data type vs a pointer type?

5. Create a stack type whose implementation can be switched at runtime, e.g.,
using a flag.

27.4. Exercises

385

Lesson 28. Web Page Scraping

28.1. Problem
Given a web page URL, retrieve the page’s information, in particular, its title and its
description and keywords meta tags.

28.2. Discussion
HTML pages, written in the HTML markup language, are primarily to be consumed
by end users, after a Web browser renders them in a user readable format.

Sometimes, however, a machine may need to consume the Web content in HTML,
just like the Web browser program.

28.1. Problem

386

This is often known as "web scraping". We can extract some useful data from the
websites in various ways.


Web scraping of certain websites can potentially violate the
copyright laws in your jurisdiction, for example, depending on
how you use the scraped data.

In our sample code, we get the HTML page from a given website, and extract its
page title, and the description, keywords, and author fields from meta tags, if
present.

Here’s a sample output from the Yahoo home page:

$ go run . https://www.yahoo.com

2021/04/26 16:16:51 [0] URL: https://www.yahoo.com
2021/04/26 16:17:01 Extracted: {"title":"Yahoo","description":"News,
email and search are just the beginning. Discover more every day.
Find your yodel.","keywords":["yahoo","yahoo home page","yahoo
homepage","yahoo search","yahoo mail","yahoo messenger","yahoo
games","news","finance","sport","entertainment"],"author":""}

We internally create a JSON object based on the extracted data (e.g., for further
processing down the line). If we "pretty print" this data,

{
 "title": "Yahoo",
 "description": "News, email and search are just the beginning.
Discover more every day. Find your yodel.",
 "keywords": [
 "yahoo",
 "yahoo home page",

28.2. Discussion

387

 "yahoo homepage",
 "yahoo search",
 "yahoo mail",
 "yahoo messenger",
 "yahoo games",
 "news",
 "finance",
 "sport",
 "entertainment"
],
 "author": ""
}

In this example, the Yahoo home page does not include a meta tag for "author".

28.3. Sample Code Snippets
The main() function reads one or more URL arguments from the command line,
and processes each URL sequentially.

website-title-single/main.go (lines 10-26)

10 func main() {
11 if len(os.Args) == 1 {
12 log.Fatalln("Provide URLs in the command line argument")
13 }
14
15 for i, url := range os.Args[1:] {
16 log.Printf("[%2d] URL: %s\n", i, url)
17
18 htmlmeta, err := processWebsite(url)
19 if err != nil {
20 log.Println("Error:", err)

28.3. Sample Code Snippets

388

21 continue
22 }
23
24 log.Printf("Extracted: %s\n", htmlmeta)
25 }
26 }

The processWebsite() function fetches the HTML content from the given URL
and it calls Extract() in the meta package.

website-title-single/main.go (lines 28-41)

28 func processWebsite(url string) (*meta.HTMLMeta, error) {
29 res, err := http.Get(url)
30 if err != nil {
31 return nil, err
32 }
33
34 htmlmeta, err := meta.Extract(res.Body)
35 if err != nil {
36 return nil, err
37 }
38 defer res.Body.Close()
39
40 return htmlmeta, nil
41 }

The meta.Extract() does the "scraping" on the given HTML page content
(res.Body). It returns a pointer value of HTMLMeta along with a potential error.

The HTMLMeta struct is defined in the meta package:

28.3. Sample Code Snippets

389

website-title-single/meta/htmlmeta.go (lines 5-10)

5 type HTMLMeta struct {
6 Title string `json:"title"`
7 Description string `json:"description"`
8 Keywords []string `json:"keywords"`
9 Author string `json:"author"`
10 }

Although the page title is not "meta" per se, we just lump them together in one
struct for convenience.

The Extract() function parses the HTML content using the "golang.org/x/net/html"
package.

website-title-single/meta/extract.go (lines 10-53)

10 func Extract(resp io.Reader) (*HTMLMeta, error) {
11 tkzer := html.NewTokenizer(resp)
12
13 hm := NewMeta()
14 inTitleTag := false
15 for token := tkzer.Next(); token != html.ErrorToken; token =
 tkzer.Next() {
16 switch token {
17 case html.StartTagToken, html.SelfClosingTagToken:
18 t := tkzer.Token()
19 if t.Data == "body" {
20 return hm, nil
21 } else if t.Data == "title" {
22 inTitleTag = true
23 } else if t.Data == "meta" {
24 desc, ok := extractMetaProperty(t, "description")
25 if ok {

28.3. Sample Code Snippets

390

26 hm.Description = desc
27 }
28
29 keywords, ok := extractMetaProperty(t, "keywords")
30 if ok {
31 hm.Keywords = regexp.MustCompile(
 `(\s*,\s*)+`).Split(keywords, -1)
32 }
33
34 author, ok := extractMetaProperty(t, "author")
35 if ok {
36 hm.Author = author
37 }
38 }
39 case html.TextToken:
40 if inTitleTag {
41 t := tkzer.Token()
42 hm.Title = t.Data
43 inTitleTag = false
44 }
45 }
46 }
47
48 err := tkzer.Err()
49 if err != nil && err != io.EOF {
50 return nil, tkzer.Err()
51 }
52 return hm, nil
53 }

This is the first and the only time we use packages that are not from the standard
library or from our own modules.

import (

28.3. Sample Code Snippets

391

 "golang.org/x/net/html"
)

The Go compiler tools use this string to find the package to import. Currently, the
import spec has to be a URL-like string pointing to a source code repository (aka
"go-gettable") so that the tools can fetch the necessary package code. The Go tools
currently support a few source control systems including git.

The location "golang.org/x" contains a special set of packages. Some of them might
be moved to the standard library in the future.

Here’s the "go.mod" file:

website-title-single/go.mod

module examples/website-title-single

go 1.17

require golang.org/x/net v0.0.0-20210428140749-89ef3d95e781

Note the require line which includes a specific version information for the
golang.org/x/net package.

You can download the external packages to your computer using the "go get"
command:

go get

Or, if you want to update the dependencies to the latest versions, you can use the -u
flag:

28.3. Sample Code Snippets

392

go get -u

When you have external package dependencies in your module, the go module
tools also create a file called "go.sum", which includes information on
indirect/transitive dependencies. Normally, you do not have to look at this file. This
is primarily used, and managed, by the tools.

website-title-single/go.sum

golang.org/x/net v0.0.0-20210428140749-89ef3d95e781
h1:DzZ89McO9/gWPsQXS/FVKAlG02ZjaQ6AlZRBimEYOd0=
golang.org/x/net v0.0.0-20210428140749-89ef3d95e781/go.mod
h1:OJAsFXCWl8Ukc7SiCT/9KSuxbyM7479/AVlXFRxuMCk=
golang.org/x/sys v0.0.0-20201119102817-f84b799fce68/go.mod
h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210423082822-04245dca01da/go.mod
h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod
h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/text v0.3.6/go.mod
h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod
h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=

In order to clean up your dependencies, you do

go mod tidy

The implementation of Extract() should be easy to understand. It uses the
Tokenizer type from the net/http package.

28.3. Sample Code Snippets

393

It iterates over the "tokens" using the “for ;;” loop. Note that this use of the for loop
is similar to the do while loop in other C-style languages.

It uses the switch statement to find what we are looking for, e.g., <title>…
</title> and other meta tags.


When you scrape Web content, it is best to start by browsing the
HTML source of the target page. How to scrape certain data
depends on how the data is embedded in the HTML markup.

In this particular example, we are only interested in the content in the <head>…
<head> part, and we ignore the <body>…</body> part. In general, however, we will
more likely want to extract data from the HTML body.

One thing to note in this function is that we use the regex package, which we
haven’t covered in this book.

hm.Keywords = regexp.MustCompile(`(\s*,\s*)+`).Split(keywords, -1)

We will leave it as an exercise to the reader to understand what this statement does.
(Remember, "documentation, documentation, documentation".)

We could have used a simpler function strings.Split(), but then we would have
to trim all keywords. (Take a look at an HTML page source to see why that is.)

hm.Keywords = strings.Split(keywords, ",")

If we reach the end of the token list, as signaled by err == io.EOF by the
html/Tokenizer, or if we run into an error, then we terminate the parsing.

The full code is included in the appendix at the end of the book.

28.3. Sample Code Snippets

394

28.4. Exercises
1. In the example code, we call extractMetaProperty() multiple times, once for

each meta tag we are looking for. How can we improve this implementation?

2. Get a list of all congressmen in your state, or any state if you live outside the
United States, from the U.S. Congress website, www.congress.gov.

3. Create a Web crawler. Fetch all URLs (from <a>` tags) from a given site, follow
them recursively, up to a certain depth, and extract each site’s title and
description, among other things.

28.4. Exercises

395

https://www.congress.gov

Lesson 29. QR Code Generator

29.1. Problem
Given a text such as a URL string, generate a QR code for the given text, as a PNG
image.

29.1. Problem

396

29.2. Discussion
A QR code is a type of matrix barcode (or two-dimensional barcode). A barcode is a
machine-readable optical label that contains information about the item to which it
is attached such as the price of the item. QR codes often contain data for a locator,
identifier, or tracker that points to a website or application.

You can find more information on the Web, for example, QR Code
[https://en.wikipedia.org/wiki/QR_code].

The Go standard library includes a very interesting set of packages, namely, image
and its sub-packages. They seem almost out of place because Go’s support for
graphics and/or user interfaces is in general pretty minimal.

However, if you think about it, the image manipulation is one of the most important
tasks of the Web backend services. As stated, Go’s forte is the Web backend
development.

We are going to use some APIs from golang.org/pkg/image/ and golang.org/pkg/
image/png/ to create PNG images.

In addition, we will use the flag package, golang.org/pkg/flag/, again from the Go
standard library, to process the command line flags.

Many programs that use the command line arguments follow certain conventions
that are more or less universal across all command line tools. The flag package
comes in handy when you need to provide some systematic command line options
for your Go programs.



Interestingly, there are many command line argument processing
libraries written in, and for, Go. They are essentially "better"
versions of the flag package. And yet, many of them are wildly
popular.

29.2. Discussion

397

https://en.wikipedia.org/wiki/QR_code
https://golang.org/pkg/image/
https://golang.org/pkg/image/png/
https://golang.org/pkg/image/png/
https://golang.org/pkg/flag/

This will likely indicate that Go is one of the most favorite
languages among the developers when it comes to creating
command line tools, or server programs.

29.3. Sample Code Snippets
The main function handles the command line flags, and it calls the
qrcode.GeneratePNG() function to generate, and save, a QR code image file which
encodes the input string.

qrcode-generator/main.go (lines 10-25)

10 var pFile = flag.String("file", "", "QR Code image file name")
11 var pSize = flag.Int("size", 256, "QR Code size")
12
13 func main() {
14 flag.Parse()
15
16 if flag.NArg() == 0 {
17 log.Fatalln("Need to specify the content for the QR
 Code.")
18 }
19 content := strings.Join(flag.Args(), " ")
20
21 err := qrcode.GeneratePNG(content, *pFile, *pSize)
22 if err != nil {
23 log.Fatal(err)
24 }
25 }

As stated, we use various functions from the flag package to process the command
line options. We will leave the usage of these functions from the flag package to the
readers.

29.3. Sample Code Snippets

398

As emphasized before, the API doc is always your best friend. E.g., refer to Package
flag [https://golang.org/pkg/flag/] to figure out how to use these functions. Alternatively,
you can always use the go doc command.

For QR code generation, we use a third party package, github.com/skip2/go-qrcode.

As we discussed before, in order to be able to use a third party library in our
program, we will need to indicate that in the go.mod file. For example,

require github.com/skip2/go-qrcode v0.0.0-20200617195104-da1b6568686e

And, we will need to do go get. (Alternatively, if we do go get
github.com/skip2/go-qrcode, it will automatically update the go.mod file if the
command runs successfully.)

Then, we will need to import it in the source code file that uses the package. For
example,

import (
 qr "github.com/skip2/go-qrcode"
)

The GeneratePNG() function does a few things.

qrcode-generator/qrcode/png.go (lines 12-39)

12 func GeneratePNG(content string, imgFile string, size int) error {
13 code, err := qr.Encode(content, qr.Medium, size)
14 if err != nil {
15 return err
16 } else {
17 img, _, err := image.Decode(bytes.NewReader(code))

29.3. Sample Code Snippets

399

https://golang.org/pkg/flag/
https://golang.org/pkg/flag/

18 if err != nil {
19 return err
20 }
21
22 if imgFile == "" {
23 if err := png.Encode(os.Stdout, img); err != nil {
24 return err
25 }
26 } else {
27 f, err := os.Create(imgFile)
28 if err != nil {
29 return err
30 }
31 defer f.Close()
32
33 if err := png.Encode(f, img); err != nil {
34 return err
35 }
36 }
37 }
38 return nil
39 }

First, it calls the go-qrcode library to encode the given string into a QR code, in
[]byte format. Next, it converts the byte slice into an instance of image.Image
type. Finally, it creates an (empty) file, or just uses stdout, to save the image in PNG
format.

There is some duplication of code, e.g., we have png.Encode(os.Stdout, img) in
two places, and it can be simplified, if desired. We will leave it to the readers.

The full code is included in the appendix at the end of the book.

 In fact, the github.com/skip2/go-qrcode package includes a

29.3. Sample Code Snippets

400

https://github.com/skip2/go-qrcode

high-level function WriteFile(), which does more or less the
same thing as GeneratePNG().

So, how do you know how to use this CLI program? Well, it comes for free when we
use a library like the flag package.

$ go run . -h

Usage of /tmp/go-build364500019/b001/exe/qrcode-generator:
 -file string
 QR Code image file name
 -size int
 QR Code size (default 256)

This option -h, or --help, is automatically generated by the flag package based on
our program (e.g., the main() function).

Unfortunately, this help message only cares about the "flags", and it does not tell
you that the program actually needs an argument (the text to be encoded as a QR
code).

Integrating program arguments and flags will require a little bit more work than
this code sample. We will leave it to the readers, as an exercise.

In any case, if you run the program without any arguments,

$ go run .

2021/07/04 14:40:45 Need to specify the content for the QR Code.
exit status 1

It tells you that an argument is needed. This is from the error check that we added

29.3. Sample Code Snippets

401

in the main() function:

if flag.NArg() == 0 {
 log.Fatalln("Need to specify the content for the QR Code.")
}



You can actually "install" this program, in fact all of the Go
programs you create on your computer, on your system using the
go install command. One nice thing about go install is that,
once you install a Go program, it is available from your PATH so
that you do not have to use go run or even specify the path to the
executable.

(This will only work if you have installed your Go tools properly.
Typically, the binaries are installed under $GOPATH/bin. If the
GOPATH env variable is not explicitly set (which is rarely required
in recent versions of Go), then the go tools use a folder named
go/bin under the user’s home directory.)

Try go help install for more information.

29.4. Exercises
1. Write a QR code generator program which outputs the code as a JPG image. The

PNG and JPG packages have essentially the same APIs. For more information,
refer to the API doc, golang.org/pkg/image/jpeg/. Or, go doc image/jpeg.

2. Add an additional flag to indicate the output format. That is, depending on its
value, we will generate either a png image of jpeg image. If the flag is not
specified, then generate a png image by default.

29.4. Exercises

402

https://golang.org/pkg/image/jpeg/

Lesson 30. Producer Consumer

30.1. Problem
Implement the classic producer consumer problem using goroutines: Producer-
consumer problem [https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem].

Let the producer generate 10 integer numbers, and let the consumer print out those
10 numbers.

Once the task is done, terminate the program.

30.2. Discussion
An idiomatic way to tackle this kind of problem is using channels.

Goroutines communicate via channels, which is considered a better practice than
sharing data directly in memory. Using shared memory requires exclusiveness.
Using channels requires coordination.

30.1. Problem

403

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

We used goroutines in this book before.

A goroutine is a (lightweight) thread of execution managed by the Go runtime.
Goroutines run in the same memory space, and the memory shared across different
goroutines must be synchronized, in some way.

The Go standard library includes package sync, which provides basic
synchronization primitives such as mutual exclusion locks (e.g., Mutex). Using these
synchronization primitives are the traditional, and most common, ways of
managing multiple threads. You can use them in Go as well if you need to, or if you
want to.

In Go, however, sharing data via channels, instead of using shared memory, is
considered a "better" way.

Channels are a typed conduit through which goroutines can send and receive
values of a specific element type. The keyword chan is used to declare a channel
type.

The optional ← operator specifies the channel direction, send or receive. If no
direction is given, the channel is bidirectional. A channel may be constrained only
to send or only to receive by assignment or explicit conversion.

The following channel can be used to send and receive values of type string:

var ch chan string

The following channel can only used to send int64 values:

var ch chan<- int64

The following channel can only used to receive float64 values:

30.2. Discussion

404

var ch <-chan float64

A channel is a reference type. A nil channel is never ready for communication.
Channels must be initialized before use, just like slices or maps.

Channels act as FIFO queues (first in, first out). The values sent on a channel, from a
goroutine, are received, say, by another goroutine, in the order they are sent.
Channels do not need synchronization, unlike slices or maps.

A new, initialized channel value can be made using the built-in function make(),
which takes a channel type and an optional capacity as arguments:

ch := make(chan int, 100)

A channel with zero capacity is "unbuffered". Communication succeeds only when
both the sender and receiver are ready.

Otherwise, the channel is buffered and communication succeeds without blocking
if the buffer is not full (for sends) or not empty (for receives).

A channel may be closed with the built-in function close(). The multi-valued
assignment form of the receive operator reports whether a received value was sent
before the channel was closed.

A sender goroutine can close a channel to indicate that no more values will be sent.
A receiver goroutine can test whether a channel has been closed by assigning a
second parameter to the receive expression:

v, ok := <-ch

30.2. Discussion

405

The value of ok will be false if there are no more values to receive and the channel
is closed.

The loop “for i := range ch”" receives values from the channel repeatedly until it is
closed.

30.3. Sample Code Snippets
Here’s the main() function, which creates two (unbuffered) channels, one for data
communication, msgs, and another for sending the "done" signal, done.

producer-consumer/main.go (lines 9-23)

 9 const buff int = 0
10
11 func main() {
12 var msgs = make(chan int, buff)
13 var done = make(chan bool)
14
15 var p producer.Producer = producer.MakeProducer(msgs, done)
16 var c consumer.Consumer = consumer.MakeConsumer(msgs, done)
17
18 go p.Produce()
19 go c.Consume()
20
21 b := <-done
22 fmt.Println("DONE", b)
23 }

It creates a variable of the interface type Producer (as defined in the producer
package) and a variable of the interface type Consumer (as defined in the consumer
package).

30.3. Sample Code Snippets

406

And, it starts goroutines Produce() and Consume() on the producer and the
consumer, respectively.

It should be noted that since chan is a reference type, the same msgs and done
channels are shared by both producer p and consumer c.

Finally, it waits for the "done" message on the done channel.

b := <-done

When it receives the "done" value (true or false), it terminates the program.



In situations like this where we do not care about the actual
values, a value of an empty struct type struct{} is often used. In
this particular example, we will use the bool value to indicate a
certain termination state.

The Producer interface type is introduced to demonstrate polymorphic behaviors.
This is not really necessary for the operations of the goroutines and channels.

producer-consumer/producer/producer.go (lines 10-12)

10 type Producer interface {
11 Produce()
12 }

The QuickProducer struct is a concrete type, which implements the Produce()
method.

producer-consumer/producer/producer.go (lines 14-17)

14 type QuickProducer struct {

30.3. Sample Code Snippets

407

15 msgs chan int
16 done chan bool
17 }

The Produce() method of the QuickProducer type generates ten integers, from 1
to 10, and it returns.

producer-consumer/producer/producer.go (lines 27-35)

27 func (p *QuickProducer) Produce() {
28 for i := 1; i <= 10; i++ {
29 fmt.Printf("P: Sending Msg %d\n", i)
30 p.msgs <- i
31 fmt.Printf("P: Sent %d\n", i)
32 time.Sleep(delay)
33 }
34 close(p.msgs)
35 }

Closing the channel is not needed in this case.

Likewise, the Consumer interface type is introduced to demonstrate polymorphic
behaviors.

producer-consumer/consumer/consumer.go (lines 10-12)

10 type Consumer interface {
11 Consume()
12 }

The QuickConsumer struct is a concrete type, which implements the Consume()
method.

30.3. Sample Code Snippets

408

producer-consumer/consumer/consumer.go (lines 14-17)

14 type QuickConsumer struct {
15 msgs chan int
16 done chan bool
17 }

The Consume() method of the QuickConsumer type waits for int values on the
msgs channel. When it has received 10 int values, it sends the "done" message to
the done channel.

producer-consumer/consumer/consumer.go (lines 27-45)

27 func (c *QuickConsumer) Consume() {
28 count := 0
29 for {
30 fmt.Println("C: Waiting...")
31 msg, ok := <-c.msgs
32 if !ok {
33 c.done <- false
34 break
35 }
36 count++
37 fmt.Printf("C: Msg received %d\n", msg)
38 time.Sleep(delay)
39
40 if count >= 10 {
41 c.done <- true
42 break
43 }
44 }
45 }

30.3. Sample Code Snippets

409

We can let the producer produce more than 10 values. But, the overall behavior
would not change, in this particular example. Once the consumer receives 10 ints,
it will send "done".

On the other hand, if the producer does not produce 10 values, then it can
potentially lead to a deadlock since the consumer is waiting for 10 values.

The producer explicitly closing the channel in that case would help.

close(p.msgs)

The consumer can detect the channel closure, and act appropriately. In this
example, it sends the "done" message (with value false), effectively terminating
the program.

If you are new to goroutines and channels, then it would be instructive to see how
its behavior changes when you change various parameters in the program (e.g., the
message channel capacity, the relative size of the delay variables on the consumer
and producer sides, etc.).

Here’s a sample output (with buff == 0):

$ go run .

C: Waiting...
P: Sending Msg 1
P: Sent 1
C: Msg received 1
P: Sending Msg 2
C: Waiting...
C: Msg received 2
P: Sent 2
...

30.3. Sample Code Snippets

410

P: Sending Msg 10
C: Waiting...
P: Sent 10
C: Msg received 10
DONE true

You can find the full code listing in the appendix.

30.4. Exercises
1. Update the consumer for loop using the "channel range" loop. We have not

discussed this in the book. You’ll need to do some research to find out what that
is.

2. Modify the web scraper to get the site metadata in parallel using goroutines. Use
a map map[string]*HTMLMeta to store the scraped data. (Use URLs as keys.)
There are a number of different ways you can do this. Let’s suppose that the
goal is to get the data from many websites (say, 1000 websites) as fast as
possible.

Author’s Note

Request for Feedback
The author is constantly looking to improve the book.

If you have any suggestions, then please let us know. We, and the future
readers, will really appreciate it.

It can be anything from simple typos, unclear sentences, and formatting
errors to bugs in the sample code and maybe downright incorrect
explanations. Here’s the author’s email:

30.4. Exercises

411

• harry@codingbookspress.com.

The author will try to correct the errors as soon as possible, if needed.

Thank you! 

30.4. Exercises

412

mailto:harry@codingbookspress.com

Review - Goroutines, Channels

Key Concepts
Goroutines

A goroutine is a lightweight thread managed by the Go runtime. You can start a
new goroutine by calling a function or a method with the go keyword.
Goroutines run in the same address space, so access to shared memory must be
synchronized.

Channels

Channels are a typed conduit through which you can send and receive values
with the channel operator, ←. (The data flows in the direction of the arrow.) A
channel can be created using the make() function. You cannot send or receive
data via an unbuffered channel until the other side is ready. This allows
goroutines to synchronize without explicit locks or condition variables.

Channels with non-zero length are buffered. You can send data to a buffered
channel unless the buffer is full. You can receive data from a buffered channel
unless the buffer is empty.

Key Concepts

413

Part IV: Final Projects
All’s well that ends well.

414

Lesson 31. Go Fish

31.1. Project
As a final project, we will work on a card game, in particular, "Go Fish".

Go Fish is one of the most popular card games played around the world:
en.wikipedia.org/wiki/Go_Fish. We will design and implement this game, to be
played on the terminal (e.g., via "CLI"), in this lesson.

Here’s an except from the Wikipedia article, in case you are not familiar with the
game:

Five cards are dealt from a standard 52-card deck (54 Counting
Jokers) to each player, or seven cards if there are three or fewer
players. The remaining cards are shared between the players, usually
spread out in a disorderly pile referred to as the "ocean" or "pool".

The player whose turn it is to play asks another player for their
cards of a particular face value. For example, Player A may ask,
"Player B, do you have any threes?" Player A must have at least one
card of the rank they requested. Player B must hand over all cards of
that rank if possible. If they have none, Player B tells Player A to
"go fish" (or just simply "fish"), and Player A draws a card from the
pool and places it in their own hand. Then it is the next player's
turn – unless the card Player A drew is the card they asked for, in
which case they show it to the other players, and they get another
turn. When any player at any time has four cards of one face value,
it forms a book, and the cards must be placed face up in front of
that player. Play proceeds to the left. When all sets of cards have
been laid down in books, the game ends. The player with the most
books wins.

31.1. Project

415

https://en.wikipedia.org/wiki/Go_Fish

31.2. Design
We will create a "single player" version of the game. More precisely, it will be a "one
on one" play between a player and the computer.

The game, Go Fish, is available on Unix/Linux platforms.

$ man go-fish

NAME
 go-fish — play “Go Fish”

SYNOPSIS
 go-fish [-p]

DESCRIPTION
 go-fish is the game “Go Fish”, a traditional children's card
game.

31.2. Design

416

 The computer deals the player and itself seven cards, and places
the rest of the deck face-down (figuratively). The object of the
 game is to collect “books”, or all of the members of a single
rank. For example, collecting four 2's would give the player a “book
 of 2's”.

 The options are as follows:

 -p Professional mode.

 The computer makes a random decision as to who gets to start the
game, and then the computer and player take turns asking each other
 for cards of a specified rank. If the asked player has any
cards of the requested rank, they give them up to the asking player.
A
 player must have at least one of the cards of the rank they
request in their hand. When a player asks for a rank of which the
other
 player has no cards, the asker is told to “Go Fish!”. Then, the
asker draws a card from the non-dealt cards. If they draw the card
 they asked for, they continue their turn, asking for more ranks
from the other player. Otherwise, the other player gets a turn.

 When a player completes a book, either by getting cards from the
other player or drawing from the deck, they set those cards aside
 and the rank is no longer in play.

 The game ends when either player no longer has any cards in
their hand. The player with the most books wins.

 go-fish provides instructions as to what input it accepts.


Incidentally, Go Fish was the first game that the author played on
Unix. 

31.2. Design

417

Now how would you implement a game like this?

First, we will need some types to represent cards, hands, books, etc. This is not a
must, but it helps to create an idiomatic Go program.

The game will have a "loop", as in most games, to process the user input, etc.

A Go Fish game will go through a number of different "phases". A game starts by
dealing an initial set of cards to each player, that is, the user ("you") and the
computer ("me").

Then, in the game loop, we need to determine which player’s turn it is.

Then, if it’s the player’s turn (or "your turn"), read the player’s input (e.g., a request
for cards of a certain rank), handle the input according to the rules of the game, and
determine the outcome.

The outcome can be one of the following:

• The computer does not have any cards of the rank that is requested. That is, "Go
Fish", or

• The computer has one or more cards of the requested rank, and it hands over
those cards to the player.

Based on the outcome, it determines who plays the next round.

If it’s the computer’s turn (or "my turn"), then we need first to pick a rank to ask for
from the player. And, the game proceeds in a similar way.

We keep track of the books made throughout the game, and when ultimately all
cards are exhausted and all books are made, the game ends.

Whoever has more books at the end wins the game.

31.2. Design

418

31.3. Implementation
We will leave the implementation to the reader, as an exercise. An example
program is included in the appendix: [appendix-code-listing-part4].

Here’s a sample session:

Starting a new game.
Dealing cards.
You were dealt 7 cards
Your hand: [2: 1], [3: 2], [4: 2], [8: 2],
I now have 7 cards as well
Determining the turn... I play first.
--
Me: 0 books, You: 0 books
--
It's my turn:
Give me A
You say, "Go Fish!"
I drew a card
--
Me: 0 books, You: 0 books
--
It's your turn:
Your hand: [2: 1], [3: 2], [4: 2], [8: 2],
Ask me for a card by rank (1 ~ 13)
8
You took 1 8s from me
--
Me: 0 books, You: 0 books
--
It's your turn:
Your hand: [2: 1], [3: 2], [4: 2], [8: 3],
Ask me for a card by rank (1 ~ 13)

31.3. Implementation

419

4
"Go Fish!"
You drew 8 of Spades
You made a book: 8.
Your hand: [2: 1], [3: 2], [4: 2],
--
Me: 0 books, You: 1 books
--
It's my turn:
Give me Q
You say, "Go Fish!"
I drew a card
--
Me: 0 books, You: 1 books
--
...


The example code uses labels, which we did not cover in this
book. Statements like continue, break, and goto (yes, Go has
goto) can use the labels as their targets.

31.3. Implementation

420

Lesson 32. Go Fish Galore
A few more Go Fish projects. After all, this is a book on Go.


There is no sample code for these final projects. This is a time for
you to test your Go skills! 

32.1. Project A
In the previous lesson, Go Fish, we created a program that lets you play a Go Fish
game against a computer.

Modify the program so that you can play with multiple computer players, say, 1 to 5.

For example, you can specify the number of computer players as a command line
argument:

./gofish 3

32.1. Project A

421

Note that when there are more than two players in the game, a player has to pick
one of the other players before asking for cards.

32.2. Project B
Create a Go Fish game server and client programs. You can use the basic TCP server
and client programs from TCP Client and Server as a basis for these programs.

The server can accept game requests from multiple users across the network. Use
goroutines to handle each game.

Each player/client plays a one-on-one game against the game server.

32.3. Project C
Now, create a Go Fish game server that lets two or more users play in the same
game. The game server can support multiple simultaneous games, with each game
allowing multiple players. You can also add zero or more computer players in the
mix.

This project requires a bit of design.

How will a user create a new game? How will a user start the game? How will a
user find games that are currently accepting new players? Etc. etc.

All "project ideas" in this lesson are "open-ended". Use your imagination.

32.4. Project D
Make the computer player "smarter". What is the best strategy to win in Go Fish?
Implement the strategy for the computer player.

32.2. Project B

422

Use your smart player in your server implementations in the previous projects, A, B,
and C.


These are not easy projects for beginners. But, we covered
everything you need to know to work on these problems in this
book. Good luck!

Author’s Note

Final Remarks
Congratulations! You made it! 

It is not easy to read a technical book like this from beginning to end,
regardless of your skill levels. This is a big achievement. Congrats!

As stated, knowledge is familiarity. The more you read, and the more you
practice, the better you will become. In any art. Especially, in the art of
programming.

Hope you had as much fun reading this book as I did writing it. 

32.4. Project D

423

Index
A

addition, 73
algorithm, 163
anonymous function literal, 332
API design, 228
API endpoints, 318
append, 147, 217, 378
append function, 147
array, 112, 128, 217
array initialization, 129
Arrays, 217
ASCII art, 235
authentication, 318

B

Basic Types, 214
bitwise operations, 77
block, 297
block scope, 244
bool, 77, 162
bool type, 161
Boolean expression, 44, 88
Boolean expressions, 166
Boolean operations, 76
break, 286, 367
buffered, 405
buffered channel, 413
built-in function, 405
builtin function, 231
builtin reference types, 242

byte slice, 311
bytes, 223

C

call chain, 329-330, 333
call sequences, 333
call stack, 330
cap, 113
capacity, 129, 217, 229, 233, 405
chan, 407
channel, 409
channel closure, 410
channel operator, 413
Channels, 405, 413
channels, 403
characters, 223, 240
client-server programming, 365
command line, 388
command line argument, 373, 421
command line arguments, 45
comments, 73
comparison operator, 260
comparison operators, 89
compilation, 20
composite literal, 253
concrete type, 140, 272, 369, 407-408
conditional expression, 93
const, 36
constant, 111
Constants, 215

424

consumer, 403

D

data structure, 377
deadlock, 410
decoder, 220
default package name, 192
default value, 284
defer, 295, 367
defer statement, 295, 332
Defer Statements, 367
deferred function, 296, 330-331
Deferred function calls, 367
Deferred functions, 296
deferred functions, 301, 329
dependency management, 186
dereference operator, 104
directory tree, 372
doc comment, 299
doc comments, 227, 293
dot notation, 244, 246, 255, 368
double precision, 174

E

else, 44
embedded field, 251
embedding, 382
Empty Interface, 369
empty interface, 275, 369, 379
empty struct type, 407
encoder, 220
end of file, 294
enum, 284

EOF, 294
Equality, 260
error, 136, 218, 299, 331
error code, 175
error handling, 138, 142, 294, 299, 329, 336
error interface, 141
error return value, 295
Errors, 218
errors, 294
exit code, 175
explicit conversion, 215
exported functions, 325
Exported Names, 214
Exported names, 189
exported names, 52, 209, 293, 300, 306
expression, 32-33, 73-74, 85, 295

F

fallthrough, 286
field declaration, 252
file copying, 294
file opening, 294
floating point number, 96
floating point numbers, 72, 174, 250
for, 114, 394
for loop, 288
For Range, 216
for range, 120
for range loop, 116, 216
For Statement, 216
Forward declaration, 93
func, 87
function, 82, 85, 87, 92, 106, 161, 177, 179,

425

214
Function arguments, 214
function declaration, 97
function definition, 82
function definitions, 85
function overloading, 363
function scope, 36, 155, 244
function signature, 87, 179
function type, 161, 343
Function Types, 367
Function values, 367
Functions, 214
functions, 98, 229

G

game loop, 281, 418
garbage collection, 21, 103
GET requests, 335
go, 354
go build, 127, 299
go doc, 293, 299-300
Go docs, 305
Go documentation, 311
Go Fish, 415, 421-422
go fmt, 253
go get, 188, 392
go mod, 187
Go module, 184, 186, 199
Go package, 189
Go programs, 214
go run, 135, 160, 299
Go runtime, 155, 413
go test, 299

Go testing framework, 208
goroutine, 354, 404-405, 413
Goroutines, 403, 413
goroutines, 354, 403, 407, 422

H

handler, 339
handler function, 338, 344
handler type, 340
handlers, 339, 344
Hello World, 41
hello world, 23, 29
HTML markup language, 386
HTML page, 387
HTML pages, 386
HTTP, 355
HTTP GET, 307
HTTP response, 307
HTTP server, 337, 355

I

if, 44
If Statement, 216
if statement, 88, 193, 329, 339
implicit conversion, 215
import, 32, 50
import statement, 88, 191, 212
infinite loop, 248, 250, 322
infinite loops, 248
init, 232
init function, 232, 279
initialization, 119
initializers, 215

426

inner block, 297
integer, 74
integer division, 75
integer literal, 72
integer literals, 74
integer types, 72
interface, 218, 262, 369, 383-384
interface type, 266, 270, 272, 274, 369, 406
Interfaces, 369
interfaces, 264, 270
International Space Station, 318
iota, 284
iteration, 198

J

JSON format, 304, 320
JSON object, 387
JSON response, 323, 328
JSON responses, 321
JSON string, 328
JSON strings, 324

L

len, 113
length, 129, 217
library, 220
linked list, 378, 380
local variable, 85, 165
local variables, 56, 100
loop variables, 120

M

main, 17-18, 127, 154, 160, 171, 278, 388

main function, 17, 26-27, 30, 52, 221, 238,
373

main package, 26, 112, 127, 153, 188, 191,
207

make, 114, 119
make function, 114, 150, 368
map, 228
map, 230, 368
map literal, 230, 368
Maps, 368
maps, 229, 405
marshaling, 324
memory management, 155
meta tags, 386-387, 394
method, 193, 368
method set, 275
method types, 369
Methods, 368
methods, 193, 243, 369
middleware, 344
middlewares, 344
module name, 191
module root folder, 189
modulo, 75
Morse code, 220
multiple variable assignment, 76, 99
multiplication, 73

N

named return value, 97
named return values, 135
new() function, 254
numeric literals, 329

427

O

object oriented programming, 261
OOP, 261
outer scope, 297

P

package, 17, 25, 127, 186, 191, 214
package declaration, 17, 88, 200, 214
package directory, 189
package doc, 212
package name, 189, 191, 300
package scope, 35-36, 111, 244
Packages, 214
panic, 132, 141, 295, 329
panicking, 330
Panics, 329
panics, 296, 332
Point, 247
pointer, 103, 113, 128, 217
pointer receiver, 288-289, 361, 368
pointer receivers, 258
pointer type, 104, 254, 262, 362
Pointers, 217
pointers, 155
polymorphic, 274
polymorphic behavior, 270, 275-276,

378
polymorphic behaviors, 407-408
polymorphic function, 271, 383
polymorphic functions, 378
polymorphism, 264, 275
primitive types, 72, 242

producer, 403
producer consumer problem, 403
Promoted fields, 251
promoted methods, 251
promotion, 383
Pythagorean theorem, 247

R

random number, 284
random number generator, 279
rate limits, 318
receiver, 244, 257, 368
receiver argument, 368
Receivers, 368
receivers, 272
recover, 141, 295, 330
recursion, 198, 200
Recursive algorithms, 201
reference semantics, 103, 113, 154-

155, 364
reference type, 217, 228, 245, 362,

405
reference types, 104, 113, 361
remainder, 75
remainder operation, 201
require, 188, 392
reslice, 147
response body, 309, 320, 328
REST API, 318
return, 84
return statement, 97
return values, 218
right hand side expression, 40

428

rock paper scissors, 285
rune type, 223
runes, 223

S

scope, 296
server and client, 422
short variable declaration, 215, 296
short variable declarations, 55
single precision, 174
singly linked list, 380
slice, 112, 128, 147, 217, 265, 378
slice of bytes, 229
slice operations, 378
slice type, 129
Slices, 217, 229
slices, 405
source code files, 25
source file, 30, 191, 200, 214
source files, 188, 209
stack, 377-378
standard libraries, 297
standard library, 188, 292, 294, 300, 302,

311, 324, 337, 365, 378, 392, 404
standard testing framework, 210
strconv, 176
string concatenation, 39
string literal, 32
Stringer, 285
Stringer interface, 256, 270, 325
strings, 63
struct, 247, 253, 368
Struct fields, 368

struct literal, 252, 368
struct pointer, 368
struct type, 251-252
struct types, 368
Structs, 368
structs, 264
switch, 367, 394
switch statement, 286, 367
Switch Statements, 367
switch statements, 288
synchronization, 404

T

tag, 323
tags, 323
TCP client, 355
TCP server, 356
TCP/IP, 348
Telnet, 348
Telnet client, 355
Telnet protocol, 348
Telnet servers, 357
test files, 209
test function, 208
test package, 209
Testing, 208
testing framework, 208
time package, 193
timestamp, 320, 326
tree, 371
type, 71, 242, 251
type alias, 243
type assertion, 332, 369

429

Type Assertions, 369
type conversion, 179, 285
Type Conversions, 215
type definition, 246
type definitions, 244
Type Inferences, 216
types, 242

U

unbuffered, 405
unbuffered channel, 413
underlying array, 130, 147, 217
Unix epoch, 320
unmarshaling, 324

V

value receiver, 288-289, 361, 368
value receivers, 258, 361
value semantics, 103, 155, 364
value type, 104, 252, 262, 362
value types, 155, 361
var, 36
var declaration, 215
variable, 111
variable names, 215
variable shadowing, 297
Variables, 215
variadic functions, 151

W

Web backend, 302
Web backend development, 302
Web backend programming, 337

Web development, 302
Web framework, 337
web scraping, 387
Web server, 339
Web server frameworks, 344
World Time API, 303

Z

zero value, 217, 369
Zero Values, 215

430

Credits
Images

All drawings used in this book are taken from undraw.co, an amazing service
with an amazing open source license. Many thanks to the creator of the site:
twitter.com/ninaLimpi!

Icons

All emoji icons used in this book are from fontawesome.com. Fontawesome is a
very popular tool, probably used by almost everyone who does Web or mobile
programming.

Typesetting

Here’s another absolutely fantastic software, asciidoctor.org, which is used to
create an ebook as well as paperback versions of this book. AsciiDoc
[https://asciidoc.org] is like a Markdown on steroid. You can follow them on Twitter:
twitter.com/asciidoctor.

Other Resources

The author has relied on many resources on the Web in writing this book, in
particular, golang.org. If the book includes any material from these resources,
then the copyright of those content belong to the respective owners.

431

https://undraw.co
https://twitter.com/ninaLimpi
https://fontawesome.com
https://asciidoctor.org
https://asciidoc.org
https://twitter.com/asciidoctor
https://golang.org

About the Author
Harry Yoon has been programming for over three decades. He has used over 20
different programming languages in his academic and professional career. His
experience spans broad areas from scientific programming and machine learning
to enterprise software and Web and mobile app development.

He occasionally hangs out on social media:

• Instagram: @codeandtips [https://www.instagram.com/codeandtips/]

• TikTok: @codeandtips [https://tiktok.com/@codeandtips]

• Twitter: @codeandtips [https://twitter.com/codeandtips]

• YouTube: @codeandtips [https://www.youtube.com/@codeandtips]

• Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

432

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/

Mini Programming Language
References
We are creating a number of books under the series title, A Hitchhiker’s Guide to the
Modern Programming Languages. We cover essential syntax of the 12 select
languages in 100 pages or so, Go, C#, Python, Typescript, Rust, C++, Java, Julia,
Javascript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach you
different ways of programming, and more importantly, different ways of thinking.

All Books in the Series

Already published, or to be published, throughout 2023

• Go Mini Reference

• Modern {cs} Mini Reference

• Python Mini Reference

• Typescript Mini Reference

• Rust Mini Reference

• C++20 Mini Reference

• Modern Java Mini Reference

• Julia Mini Reference

• Javascript Mini Reference

• Haskell Mini Reference

• Scala 3 Mini Reference

433

• Lua Mini Reference

434

	The Art of Go - Basics: Introduction to Programming in Golang - Beginner to Intermediate
	Copyright
	Preface
	Table of Contents
	Introduction
	Part I: First Steps
	Lesson 1. The Simplest Go Program
	1.1. Agenda
	1.2. Code Reading
	1.3. Summary
	1.4. Questions

	What is Programming?
	Lesson 2. Hello World 1
	2.1. Agenda
	2.2. Code Reading

	Lesson 3. Hello World 2
	3.1. Agenda
	3.2. Code Reading

	Lesson 4. Hello World 3
	4.1. Agenda
	4.2. Code Reading

	Lesson 5. Hello World 4
	5.1. Agenda
	5.2. Code Reading
	5.3. Summary
	5.4. Questions
	5.5. Exercises

	How to Use This Book
	Lesson 6. Simple Arithmetic
	6.1. Agenda
	6.2. Code Reading
	6.3. Explanation
	6.4. Keywords
	6.5. Grammar
	6.6. Deep Dive
	6.7. Summary

	Lesson 7. A Tale of Two Numbers
	7.1. Agenda
	7.2. Code Reading - Sum of Two Numbers
	7.3. Code Reading - Bigger of Two Numbers
	7.4. Code Reading - Difference of Two Numbers
	7.5. Code Reading - Average of Two Numbers
	7.6. Code Reading - Swap Two Numbers 1
	7.7. Code Reading - Swap Two Numbers 2
	7.8. Summary
	7.9. Questions

	Lesson 8. Multiplication Table
	8.1. Agenda
	8.2. Code Reading
	8.3. Summary
	8.4. Questions
	8.5. Exercises

	Lesson 9. Find the Largest Number
	9.1. Agenda
	9.2. Code Reading I
	9.3. Code Reading II
	9.4. Code Reading III
	9.5. Summary

	Lesson 10. Rotate Numbers
	10.1. Agenda
	10.2. Code Reading
	10.3. Summary
	10.4. Exercises

	Lesson 11. Leap Years
	11.1. Agenda
	11.2. Code Reading
	11.3. Summary
	11.4. Exercises

	Lesson 12. BMI Calculator
	12.1. Agenda
	12.2. Code Reading
	12.3. Summary

	Lesson 13. Birth Date
	13.1. Agenda
	13.2. Code Reading
	13.3. Summary

	Lesson 14. Greatest Common Divisor
	14.1. Agenda
	14.2. Code Reading
	14.3. Summary

	Lesson 15. Reverse a Number
	15.1. Agenda
	15.2. Code Reading
	15.3. Summary
	15.4. Exercises

	Review - Packages, Functions, Variables
	Key Concepts
	Flow Control
	Advanced Types
	Error Handling

	Part II: Moving Forward
	Lesson 16. Hello Morse Code
	16.1. Introduction
	16.2. Code Review
	16.3. Pair Programming
	16.4. Summary
	16.5. Exercises

	Lesson 17. "LED" Clock
	17.1. Introduction
	17.2. Code Review
	17.3. Pair Programming
	17.4. Summary

	Lesson 18. Euclidean Distance
	18.1. Introduction
	18.2. Code Review
	18.3. Pair Programming
	18.4. Summary
	18.5. Exercises

	Lesson 19. Area Calculation
	19.1. Introduction
	19.2. Code Review
	19.3. Pair Programming
	19.4. Summary
	19.5. Questions

	Lesson 20. Rock Paper Scissors
	20.1. Introduction
	20.2. Code Review
	20.3. Summary

	Lesson 21. File Cat
	21.1. Introduction
	21.2. Code Review
	21.3. Pair Programming
	21.4. Summary
	21.5. Exercises

	Lesson 22. World Time API
	22.1. Introduction
	22.2. Code Review
	22.3. Pair Programming
	22.4. Summary
	22.5. Exercises

	Lesson 23. Where the ISS at
	23.1. Introduction
	23.2. Code Review
	23.3. Pair Programming
	23.4. Summary
	23.5. Exercises

	Lesson 24. Simple Web Server
	24.1. Introduction
	24.2. Code Review
	24.3. Pair Programming
	24.4. Summary
	24.5. Exercises

	Lesson 25. TCP Client and Server
	25.1. Introduction
	25.2. Code Review - Client
	25.3. Pair Programming - Client
	25.4. Code Review - Server
	25.5. Pair Programming - Server
	25.6. Summary
	25.7. Exercises

	Review - Structs, Methods, Interfaces
	Key Concepts
	Flow Control
	Advanced Types

	Part III: Having Fun
	Lesson 26. Folder Tree
	26.1. Problem
	26.2. Discussion
	26.3. Sample Code Snippets
	26.4. Exercises

	Lesson 27. Stack Interface
	27.1. Problem
	27.2. Discussion
	27.3. Sample Code Snippets
	27.4. Exercises

	Lesson 28. Web Page Scraping
	28.1. Problem
	28.2. Discussion
	28.3. Sample Code Snippets
	28.4. Exercises

	Lesson 29. QR Code Generator
	29.1. Problem
	29.2. Discussion
	29.3. Sample Code Snippets
	29.4. Exercises

	Lesson 30. Producer Consumer
	30.1. Problem
	30.2. Discussion
	30.3. Sample Code Snippets
	30.4. Exercises

	Review - Goroutines, Channels
	Key Concepts

	Part IV: Final Projects
	Lesson 31. Go Fish
	31.1. Project
	31.2. Design
	31.3. Implementation

	Lesson 32. Go Fish Galore
	32.1. Project A
	32.2. Project B
	32.3. Project C
	32.4. Project D

	Index
	Credits
	About the Author
	Mini Programming Language References

