
C# Mini Reference 2023
A Quick Guide to the Modern C#

Programming Language for Busy Coders

Harry Yoon

Version 1.1.3, 2023-04-04

Copyright
C# Mini Reference:
A Quick Guide to the C# Programming Language

© 2023 Coding Books Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor its dealers and distributors
will be held liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Published: January 2023

Harry Yoon
San Diego, California

ISBN: 9798372476691

1

Preface
C# was originally created based on the Java programming language,
circa 2000~2002, partly because Microsoft wanted to lure programmers
who were familiar with Java at the time.

Java had been created a few years earlier when the object-oriented
programming (OOP) was becoming the most dominant programming
paradigm in the industry. Java became wildly popular. In Java,
everything was a class. Functions were demoted to the "methods" of a
class. Even the functions that do not really belong to an object needed
to be part of a class, e.g., as "static" methods. You couldn’t program in
Java without creating a class first, at least syntactically.

C# initially followed this "everything is a class" design. Now, for the past
20+ years, C# has been trying to liberate itself from the ghost of Java.

In recent years, people have been realizing the limitations of the OOP,
especially as a one-size-fits-all programming paradigm. Most modern
programming languages like Go, Rust, Swift, and even other JVM
languages like Scala and Kotlin do not impose such constraints. In fact,
Java and C# are the only two widely used languages that have such
built-in class-first constraints.

C# has been constantly evolving. But, it went through major changes
between C# 6 and C# 7. And, ever since. Now, C# releases a new major
version every year. As of this writing, C# 11 is the most current version.

Although there have been many (small and big) updates over the years,
the recent changes are really about C# becoming free of Java. C# is now
officially a "multi-paradigm" programming language, and not just an
OOP language. The modern C# encourages the functional programming
styles, among other things. For example, a lot of constructs in C# are
now expressions rather than statements. (Also, it should be noted that
many new features of C# are borrowed from F#, another .NET

2

programming language, which is primarily functional.) Since C# 9, we
can use the top-level statements, at least in no more than one source
code file in a program. This kind of (cosmetic) changes allow us to do
away with much of the boilerplate code in the modern C#.

C# 11 now supports so-called "static abstract methods" in interfaces.
Although its full implications are not entirely clear, this change makes
C# more on a par with other (more modern) languages. C# 11’s interface
is comparable, in terms of its capabilities, to Go’s interface, Rust’s trait,
and Swift’s protocol, among others.

This book primarily focuses on the syntax of the C# language. But we
encourage the readers to read beyond the syntax. In particular, we will
need to adjust our programming styles, rather than sticking with the
old "everything is a class" paradigm, to take advantage of the new
modern features and to program more effectively in C#.

Having said that, you can read the book more or less from beginning to
end, if you’d like, and you will get the full picture of the C# language.

One thing to note is that there’s a fair amount of cross references, and if
you have no prior experience with programming in C#, or other similar
languages like C++ or Java, you may have a little difficulty following
some parts of the book. We also skip some basics of C# so that we can
cover more modern features in more detail in the limited space. The
book’s intended audience is advanced beginners to intermediate-level
programmers. Advanced C# developers can also benefit from this book
by selectively going through more advanced, and modern, features.



It should be noted that this book is not an authoritative
language reference. If there are any inconsistencies or
confusing, or seemingly incorrect, explanations in the
book, we recommend the readers to refer to the
official language specification.

3

Dear Readers:

Please read b4 you purchase, or start investing your time on, this book.

A programming language is like a set of standard lego blocks. There are
small ones and there are big ones. Some blocks are straight and some
are L-shaped. You use these lego blocks to build spaceships or
submarines or amusement parks. Likewise, you build programs by
assembling these building blocks of a given programming language.

This book is a language reference, written in an informal style. It goes
through each of these lego blocks, if you will. This book, however, does
not teach you how to build a space shuttle or a sail boat. If this
distinction is not clear to you, it’s unlikely that you will benefit much
from this book. This kind of language reference books that go through
the syntax and semantics of the programming language broadly, but not
necessarily in gory details, can be rather useful to programmers with a
wide range of background and across different skill levels.

This book is not for complete beginners, however. When you start
learning a foreign language, for instance, you do not start from the
grammar. Likewise, this book will not be very useful to people who
have little experience in real programming. On the other hand, if you
have some experience programming in other languages, and if you
want to quickly learn the essential elements of this particular language,
then this book can suit your needs rather well.

Ultimately, only you can decide whether this book will be useful for
you. But, as stated, this book is written for a wide audience, from
beginner to intermediate. Even experienced programmers can benefit,
e.g., by quickly going through books like this once in a while. We all
tend to forget things, and a quick regular refresher is always a good
idea. You will learn, or re-learn, something "new" every time.

Good luck!

4

Table of Contents
Copyright . 1

Preface. 2

1. Introduction. 12

1.1. C# and .NET . 13

1.2. Nullable Context . 15

1.3. Book Organization . 17

2. C# Programs. 24

2.1. Main Methods . 24

2.2. Top-Level Statements. 25

2.3. Declarations . 26

2.4. Access Control . 26

2.5. Blocks and Scopes. 28

3. Lexical Analysis . 29

3.1. Lexical Elements . 29

3.2. Tokens . 31

3.3. Literals. 33

3.4. Compiler Directives . 35

4. Namespaces . 36

4.1. Namespace Declarations. 36

4.2. extern Alias Directives. 37

4.3. using Directives . 38

4.4. Global using . 40

4.5. Implicit using . 40

4.6. Member Declarations . 41

5. C# Type System . 42

5.1. Value Types . 42

5.2. Reference Types . 43

5

5.3. Dynamic Types . 45

6. Constants . 46

7. Variables . 47

7.1. Variable Categories. 47

7.2. Local Variable Declarations . 48

8. Local Functions. 50

8.1. Local Functions . 50

8.2. Static Local Functions . 51

9. Formal Parameters . 52

9.1. Parameter List . 52

9.2. Argument List . 53

9.3. The params Parameter . 54

9.4. Value Parameters . 55

9.5. in Parameters . 56

9.6. out Parameters . 56

9.7. ref Parameters . 57

9.8. Returns by Reference. 58

10. Builtin Value Types . 59

10.1. The bool Type. 59

10.2. The char Type. 59

10.3. Integral Types . 60

10.4. Native Integer Types . 61

10.5. Floating Point Types . 61

10.6. The decimal Type . 61

11. Strings . 62

11.1. Quoted String Literals . 62

11.2. Verbatim String Literals . 62

11.3. Raw String Literals. 63

11.4. UTF8 String Literals . 64

6

11.5. String Interpolation . 64

12. Generics . 66

12.1. Generic Type Parameters . 66

12.2. Type Parameter Constraints . 67

12.3. Type Variance in Generics . 71

13. Interfaces . 72

13.1. Interface Declarations . 73

13.2. Interface Members. 75

13.3. Interface Static Members . 78

13.4. Default Implementations . 81

13.5. Interface Implementations . 82

14. Objects . 83

15. Arrays . 84

15.1. Array Types . 84

15.2. Array Creation. 86

15.3. Array Elements . 87

16. Spans and ReadOnlySpans. 88

16.1. System.Span<T> . 88

16.2. System.ReadOnlySpan<T>. 88

17. Tuples . 89

17.1. Tuple Fields . 89

17.2. Tuple Equality . 90

17.3. Tuple Deconstruction . 91

18. Enums . 94

18.1. Enum Declarations. 94

18.2. Underlying Types . 95

18.3. Enum Modifiers . 96

18.4. Enum Members. 96

18.5. Enum Operations . 98

7

19. Classes. 99

19.1. Class Declarations. 99

19.2. Type Parameters. 101

19.3. Base Classes . 102

19.4. Static Constructors . 104

19.5. Instance Constructors . 105

19.6. Finalizers . 106

19.7. Class Members . 107

19.8. Constants . 107

19.9. Class Fields. 108

19.10. Methods . 108

19.11. Properties. 112

19.12. Indexers . 117

19.13. Events . 117

19.14. Operators . 119

19.15. Operator Overloading . 119

19.16. Nested Types . 120

20. Records . 121

20.1. Record Declaration . 122

20.2. Inheritance . 123

20.3. Primary Constructors . 124

20.4. Immutability . 124

20.5. Value Equality . 124

20.6. Record Deconstruction . 125

20.7. Non-Destructive Mutations . 125

21. Structs . 126

21.1. Struct Declarations. 127

21.2. Struct Members . 128

21.3. Ref Structs . 130

8

21.4. Record Structs . 130

22. Extension Methods . 131

22.1. this Extension Methods . 131

22.2. ref this Extension Methods. 132

22.3. in this Extension Methods . 133

23. The new Operator . 134

23.1. New Array Expressions. 134

23.2. New Object Expressions . 135

23.3. Object Initializers . 135

23.4. Collection Initializers . 136

23.5. Anonymous Object Initializers . 137

23.6. New Delegate Expressions . 137

24. Expressions . 138

24.1. Expression Statements . 138

24.2. The checked and unchecked Statements 139

24.3. Classifications of C# Expressions . 139

24.4. The Operator Precedence. 141

24.5. The checked Operators . 141

24.6. Arithmetic Operators . 141

24.7. Relational Operators . 144

24.8. Assignment Operators. 144

24.9. Logical Operators . 145

24.10. Bitwise Operators. 146

24.11. Shift operators . 147

24.12. True and False Operators . 148

24.13. Conditional Operator . 149

24.14. The Index and Range Operators. 150

24.15. Default Value Operator . 151

24.16. Null-Testing Expressions . 152

9

24.17. The nameof Operator . 154

24.18. The sizeof Operator . 155

24.19. The typeof Operator . 155

24.20. The as Operator . 155

24.21. The is Expression . 156

24.22. The switch Expression . 156

25. Lambda Expressions . 158

25.1. Lambda Functions . 158

25.2. Static Lambda Functions . 159

25.3. Closures . 159

26. Statements . 161

26.1. Empty Statement . 162

26.2. Declaration Statement. 163

26.3. The for Statement . 163

26.4. The foreach Statement . 165

26.5. The do Statement . 166

26.6. The while Statement. 167

26.7. The if Statement . 167

26.8. The switch Statement . 170

26.9. Labeled Statements . 172

26.10. The goto Statement. 173

26.11. The break Statement . 174

26.12. The continue Statement . 174

26.13. The return Statement . 175

26.14. The lock Statement. 176

27. Pattern Matching . 177

27.1. Discard Pattern . 178

27.2. Constant Pattern. 178

27.3. Relational Pattern . 179

10

27.4. Var Pattern . 180

27.5. Type Pattern . 181

27.6. Declaration Pattern . 182

27.7. Logical Pattern . 183

27.8. Parenthesized Pattern. 185

27.9. Property Pattern . 185

27.10. Positional Pattern. 187

27.11. Tuple Pattern. 188

27.12. List Pattern . 188

28. Using & Disposable . 191

28.1. The using Statement. 191

28.2. The using Declaration . 192

29. Exception Handling . 193

29.1. The Exception Base Class . 193

29.2. The throw Expression. 193

29.3. The try - catch Statement . 194

30. Attributes . 197

30.1. Attribute Classes . 197

30.2. Attribute Parameters. 199

30.3. Attribute Specification . 200

A. How to Use This Book . 202

Index . 204

About the Author . 238

About the Series . 239

Community Support . 240

11

Chapter 1. Introduction
C# is a rather complex language. In fact, depending on how you
measure the complexity of a programming language, C# could be the
most complex language among some of the widely used languages. No
one likes complexity. And yet, C# is one of the most popular and favorite
languages for many developers. Why?

A programming language is a tool. Sometimes, having a complex and
flexible tool can make doing a real task much simpler and easier. Using
a chainsaw can make the task of cutting a tree easier, for example.
That’s the case with C#.

There are a few implications for this. On the one hand, C# is not
generally considered a beginner-friendly language. There is an upfront
investment you need to make before you can reap the benefits. On the
other hand, C# can be a powerful tool for building a large, enterprise-
grade software once you master the tool.

In general, you will end up with "simpler" programs using "more
complex" languages like C#. At least, that’s the idea. Hence, it is rather
important to use C# correctly and effectively. Otherwise, the downside of
using a heavyweight language, if you will, will be bigger than the
benefits of using such a language.

This book provides a bird’s eye view of the C# language grammar. It is
organized into a few dozen semi-independent chapters, covering most
of the important features of C#.

A programming language is not just a sum of its features. In order to be
able to use a language like C# most effectively, however, you will need
to know what features are available at your disposal. You will need to
have a thorough high-level understanding of each of these features. As
stated in the preface, the readers are encouraged not to lose the sight of
the forest while going through each of these trees.

12

1.1. C# and .NET
At the risk of oversimplifying, there are three aspects to a programming
language, and programming in that language:

• The language itself, e.g., the grammar and the standard library,

• The runtime, and

• The tooling (e.g., the language compiler).

As an example, the C++ programming language specification is
managed by the ISO. On the other hand, toolings are provided by
various tool vendors like Microsoft, GNU/gcc, and clang. C++ has no
separate runtime per se, other than the standard library support at run
time. C++ programs are directly compiled to a machine code.

In case of C# and .NET, Microsoft more or less owns a whole ecosystem
comprising all three parts of the C# language. (We do not discuss other
implementations of C# such as those used in Unity, etc.) The .NET
system defines a set of standard libraries and their run time support.
.NET is also a runtime, or a virtual machine, that runs the byte code
compiled from C# programs.

Microsoft’s .NET has a very complicated history, with many different
versions and manifestations, and with many different (and ever-
changing) names. The framework, and the version, that we use in this
book is simply called .NET 7 (which was originally called .NET Core).
This is a cross-platform version of the .NET framework. That is, once
you create a C# program targeting .NET 7, you can run it on any system
that is supported by .NET 7. (In addition, .NET, in general, supports
multiple programming languages.)

Another implication of this rather tightly integrated ecosystem is that
C# does not stand by itself. In fact, at least in principle, you will not be
able to read and interpret C# programs precisely without knowing what
their associated .NET framework is.

1.1. C# and .NET

13

This is not necessarily unique to C#, with all programming languages
evolving over time, etc. But, in case of C# and .NET, the interdependency
is much tighter.

C# uses a project file to manage build configurations and what not. The
default version of C# for .NET 7 is C# 11. That is, if you plan to use a
different version of C# on .NET 7, for instance, then you will need to
explicitly specify that in the project file.

When you scaffold an empty C# project on .NET 7, e.g., using Visual
Studio or dotnet CLI, it creates the following placeholder project file:

SampleProject.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net7.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 </PropertyGroup>

</Project>

There are four properties set by the tool in this file. The OutputType
property indicates the type of the target binary, e.g., Exe (executable) vs
Lib (library). We are targeting .NET 7 via TargetFramework (which is a
natural value if you use the tooling based on .NET 7).

The last two properties, ImplicitUsings and Nullable, are rather
significant. C# went through a few backward incompatible changes in
the past. In the original C#, the values of both these properties would
have been disable. Now, moving forward, the majority of the C#
community will likely use the enable value, and hence, C# has become
effectively backward incompatible.

1.1. C# and .NET

14

We will always assume in this book that these two values are set to
enable. Strictly speaking, some of the information provided in this
book might be "incorrect", e.g., when using different values for these
properties (and, possibly for some others as well).

Unless you have a legacy code, etc., we recommend the readers do the
same: Always use <ImplicitUsings>enable</ImplicitUsings> and
<Nullable>enable</Nullable>. ImplicitUsings has a relatively
small impact, but Nullable completely changes how C# program
works. We discuss this in the next section.

1.2. Nullable Context
A variable of a reference type can be null. The null value simply
means that the variable points to nothing. That it points to no real data
in memory. The default value of a reference variable is null.

This is true across all different C-style programming languages which
support the reference types or pointer types. Accessing these variables
when they are null has been the cause of so many (potentially
preventable) errors, called the null-pointer exceptions.

C# has a compile time support to address this problem. This feature is
called the "nullable context". It is disabled by default, which means
that all reference variables are nullable, as they always have been. In
the enabled nullable context, the traditional (nullable) reference
variables become non-nullable. Setting these variables to null will
cause a compile time error. In addition, one can use a new kind of
reference variables within the enabled nullable context, called the
"nullable reference variables". All nullable reference variables should
be checked for nullability before using. Otherwise, the compiler will
likely throw compile-time errors or warnings.

You can set the nullable context in the C# project file as we discussed in
the previous section. In addition, you can selectively enable or disable

1.2. Nullable Context

15

the nullable context in certain parts of the code using the C#'s compiler
directive, nullable. To enable, you can put this in your source code
file:

#nullable enable

This is in effect until the end of the source file, or until the next
#nullable directive is used, if any. To disable, use the following:

#nullable disable

You can also restore the previous context value using the following
directive:

#nullable restore



The nullable context is purely a compile time support.
The .NET runtime does not know anything about the
nullable context, and as far as it is concerned, all
reference variables are nullable.

Here’s a list of valid values for the nullable setting:

disable Sets the nullable annotation and
warning contexts to disabled

enable Sets the nullable annotation and
warning contexts to enabled

restore Restores the nullable annotation and
warning contexts to project settings

1.2. Nullable Context

16

disable annotations Sets the nullable annotation context to
disabled

enable annotations Sets the nullable annotation context to
enabled

restore annotations Restores the nullable annotation
context to project settings

disable warnings Sets the nullable warning context to
disabled

enable warnings Sets the nullable warning context to
enabled

restore warnings Restores the nullable warning context
to project settings

1.3. Book Organization
We start from the top, in terms of the general C# program structure. A
C# program is essentially a collection of C# source files that are (to be)
compiled together. An executable C# program has one and only entry
point, which could be a Main method of a startup class or the top-level
statements in one source code file. We also describe the basic concepts
of access control, e.g., public vs private, namespaces, and blocks and
scopes in this chapter.

A source code file is essentially a sequence of characters. We next go
through some basic process of converting an input sequence of
characters to a sequence of "tokens" which the compiler understands.
This is generally known as "lexing". C#'s lexical structure is rather
similar to those of other C-style programming languages.

A C# program logically consists of one or more namespaces. A
namespace can include other namespaces or declarations of custom

1.3. Book Organization

17

types, e.g., using class, record, and struct, etc., which can in turn
include other member declarations. In C#, the using directives are
used to import names from other namespaces. Namespaces themselves
do not participate in access control.

C# types are organized in a hierarchy with the base class object at its
root. As with many C-style languages, C# has values and references (or,
pointers), with different characteristics. C# supports two distinct, and
mutually exclusive, categories of types, namely, value types and
reference types. In addition, C# includes the dynamic type, which is sort
of an escape hatch when static typing is too limiting in certain cases.

In the next two chapters, Constants and Variables, we go through some
basics of "variables" in C#. Variables are an essential component of
imperative programming, in which we manipulate the state (variables)
to perform the desired task. In C#, there are many different categories
of variables. Constants are a special kind of variables whose values are
known, and fixed, at compile time. Non-constant variables in C# can be
classified into multiple categories, including local variables, fields of a
class (or, record or struct), etc. Some fields belong to a class itself ("static
fields"), and some fields to an object, or an instance of a class ("instance
fields").

Local variables are the most common kind of variables, e.g., in (non-
OOP) C-style programming languages. They are tied to a call stack
frame, and when the stack frame is removed, their memory is de-
allocated. (And/or, the memory pointed by these variables is marked for
garbage collection.)

C# does not support standalone functions (that are not a member of a
class), as we alluded in the preface. This is a fundamental limitation of
the languages like Java and C#. To compensate this syntactic limitation,
C# includes a number of different function kinds. Local functions and
static local functions are two of those function kinds. Similar to local
variables, local functions are tied to a stack frame, and they have a

1.3. Book Organization

18

limited lifetime. Local functions in C# are similar to the lambda
functions, and they have overlapping use cases.

C# includes many "function-like" constructs, including local functions,
function members (or, methods), static or instance constructors, and
delegates, etc. Their declarations and invocations have more or less
common syntax. In the Formal Parameters chapter, we describe the
common structures of their "function parameter" declarations.

Function arguments are by default "passed by value" (which can have
slightly different meanings when applied to values vs references). C#
allows using in, out, and ref parameter modifiers to change this
argument passing semantics in some cases.

We next go through C#'s built-in value types such as bool, char, and
other numeric types. We include brief descriptions of these types for
completeness.

Continuing with the builtin types, we go over some basics of strings in
the next chapter, Strings. String is a reference type, but it has
characteristics of value types, e.g., in terms of value equality, and the
like. In this chapter, we primarily focus on a number of different string
literal syntax in C#. But, readers are encouraged to learn more about
strings through different resources. For example, C# strings have many
(important) builtin methods, which we do not cover in this book.

Generics is a very important part of C#. Types, and methods, can be
declared with "type parameters", which in effect allows us to define a
set of related types in one declaration. The most important recent
developments in C# with respect to generics have been improvements
in generic type constraints. C# now allows constraining type
parameters in generic declarations in many different and flexible ways.

An interface in the modern C# defines a behavior, and a lot more. In
fact, interface has changed so much recently that it is now hard to tell
what an interface really is in C#.

1.3. Book Organization

19

Among the many (important) recent changes, there are a few that’s
noteworthy. First, methods in an interface can now have default
implementations, which can be inherited by an implementing class
(and, record and struct). Second, static methods have become an
integral part of interface, and not just supporting actors, if you will.
Third, static methods can now even participate in defining the
"behavior" part of an interface, as of C# 11. For example, C# 11’s new
generic math support includes the INumber interface in the
Systems.Numerics namespace:

public interface INumber<TSelf> : IComparable<TSelf>, ...
where TSelf : INumber<TSelf> {
 public static virtual int Sign (TSelf value);
 // ...
}

All types implementing INumber<T> will need to implement this Sign
virtual static method, for instance. (This partial example also illustrate
the use of generic type constraints.) In the Interfaces chapter, we go
through some essential elements of the modern C# interface, including
these recent changes.

C# has a unified type system. Every (non-interface) type inherits from
the object type. This was a core part of C# 1.0, and it remains so even
after two decades of language transformations.

Arrays are arguably the most important data structures beyond the
primitive types in any programming languages. C#'s array is a generic
type, which supports all common array operations such as indexing, in
a type safe way. Arrays, and other collection types, now support range-
based slicing syntax (..) as well, using the relatively new Index and
Range .NET types.

Another important, and relatively new, pair of types in .NET are Spans
and ReadOnlySpans, which are also tightly integrated into the C#

1.3. Book Organization

20

language. These types provide a safe way to access and manipulate the
objects in memory, and their elements or members, without having to
rely on expensive memory operations.

Designing and implementing a well-behaved type entails a lot of work.
It sometimes requires writing a lot of boilerplate code just to create a
simple type in many OOP-focused languages like Java and C#. The
virtual methods defined in the object class are some of those
examples. In principle, but not necessarily in practice, many of these
methods need to be overridden, among many other methods, which
makes creating a new type tedious, above everything else.

One of the biggest trends or themes in C#'s evolution has been to make
this task of creating custom types easier. For example, struct, which
has been a part of C# since version 1.0, is just a special kind of class,
with some compiler-generated code, so that they do not need to be
manually implemented by developers. The recent additions, records
and record structs, are another example of such a trend in C#.

In the .NET world, tuples (or, value tuples) are the easiest compound
types to create and use. These are really "lightweight" classes, whose
use should be preferred over creating more formal types in many cases.
An enum type also allows creating a simple, special kind of, type that is
based on a set of constant values.

Despite all the recent changes, class is still the most important
construct in C#. Programming in C# is fundamentally about defining
types, e.g., using class (and, its cousins like record and struct). In the
Classes chapter, we go through the essential elements of C# class. It
should be noted that a lot of what we describe in the context of class
also apply to record and struct.

Records are used to create immutable reference types, which are
primarily for simple data storage. C# provides a concise syntax for
creating and using records. In particular, it supports the positional
parameters for creating record types. For example, creating a type is

1.3. Book Organization

21

now as simple as just declaring a record constructor. Compiler
automatically generates an entire class and a number of methods.

record Book(string Title, string Author);

Structs are value types, based on the base class ValueType, which in
turn inherits from Object. Struct types themselves do not support
inheritance. There are also special kinds of structs such as readonly
structs, ref structs, and record structs.

C# supports extension methods, which are static methods associated
with other existing types. Extension methods can be called as if they
were instance methods of the target types.

In the first part of the book, we primarily focus on the types. In the rest
of the book, we cover the rest of the important constructs in C#, such as
expressions and statements, and exceptions.

The new operator is one of the most important components of C#
expressions. They are used to create an array, or a new value or object
of a specified type, e.g., class or struct. We also go through the object
initializer and collection initializer syntax in this chapter.

There are many different kinds of expressions in C#, in addition to
those commonly found in other programming language. Expressions,
and operators, are discussed throughout the book, but some of the more
common expressions are collected in the Expressions chapter. A
lambda expression is an anonymous function. They are defined using
the "fat arrow" => operator. Lambda functions can be passed as an
argument to other methods.

C#'s statements are more or less the same as those found in other C-
style languages, with some minor differences. We quickly go through all
statements in C# in the Statements chapter, mainly for completeness.

1.3. Book Organization

22

One of the notable changes with the switch statement, which was
originally based on C’s switch - case statement, is that it now
supports pattern matching, along with is and switch expressions.
Pattern matching was initially popularized by functional programming
languages like Haskell, and it is now an integral part of many
(functional or imperative) programming languages, including C#.

The using statements, and declarations, are used to manage resources
that require cleanup after use, such as file handles or database
connections. When an object which implements the IDisposable
interface goes out of scope, its Dispose method is automatically called.

Finally, we conclude this Mini Reference with some quick descriptions
of C# exceptions and attributes. Exceptions are thrown using the throw
expression, and they indicate unusual or exceptional situations during
the execution of a program. In C#, exception handling is implemented
using the try statement. An attribute is a declarative tag that is used to
convey information to runtime about the behavior of various elements
in your code, such as classes, methods, and properties. C# attributes are
just regular classes inherited from System.Attribute.

One thing to note is that, although we cover a broad range of topics in
this book, we still leave out some important parts of C#, to keep the
book to a manageable size in the spirit of the "mini reference".

These include LINQ (language-integrated query), expression trees,
reflection, async programming, iterators and async stream, generic
math, and delegates and .NET Func and Action types, among other
things. We also leave out many commonly used .NET types such as Lists,
Sets, and Dictionaries, which are really a core part of C#. The readers
are encouraged to consult other resources for these topics and beyond.
Furthermore, we do not discuss unsafe code in this book.

1.3. Book Organization

23

Chapter 2. C# Programs
A C# program can comprise one or more source code files (called the
compilation units), e.g., in one or more directories on file system. All
source files in a program (executable or library) are compiled together,
and hence there are no particular orders among the source files.

Each source code file may contain a set of special declarations and
custom type definitions. Type definitions may be included in zero or
more nested namespaces. A namespace in C# is a logical organizational
unit, which is primarily used to reduce the chance of name collisions.

2.1. Main Methods
An executable C# program, or an "application", should either include a
type declaration (e.g., class or interface) that has a Main() static
method or include a source file which includes the "top-level
statements". This is the entry point to the program.

The Main() static method can return a value of type int, or it may not
return any value (indicated by the void return type). They can accept
an argument of type string[], or they may be defined without any
method parameters. The Main() methods may be synchronous, or they
can be declared as async and return Task or Task<int>.

The valid signatures for the Main() static methods are, therefore, the
following eight combinations:

static void Main() { /* ... */ }
static int Main() { /* ... */ }
static void Main(string[] args) { /* ... */ }
static int Main(string[] args) { /* ... */ }
static async Task Main() { /* ... */ }
static async Task<int> Main() { /* ... */ }

2.1. Main Methods

24

static async Task Main(string[] args) { /* ... */ }
static async Task<int> Main(string[] args) { /* ... */ }

2.2. Top-Level Statements
Since C# 9, one source file in a program may use top-level statements as
long as the program does not include any other entry point methods. It
is a syntactic sugar to help remove some boilerplate code. The top-level
statements are automatically wrapped in the Main method of an
implicitly defined startup class.

• Top-level statements can access the command line arguments using
the implicitly defined variable args of type string[].

• If the top-level statements return an integer value, that value
becomes the integer return code to the operating system/runtime.

• The top-level statements may contain async expressions.

For example,

Console.WriteLine("Hello World!");

A file including this one line of code, using the implicit global using
feature available since C# 10, is more or less equivalent to something
like the following:

namespace Namespace1 {
 class Program1 {
 static void Main(string[] args) {
 Console.WriteLine("Hello World!");
 }
 }
}

2.2. Top-Level Statements

25

As of C# 11, there are some restrictions:

• Only one file in your application may use top-level statements.

• All top-level statements in that file should be placed before any
other namespace members such as type declarations.

• A program cannot have both top-level statements and an explicit
entry point, e.g., a Main method.

2.3. Declarations
A C# program comprises a series of namespace declarations. A
namespace can include other declarations, or "members". When the
non-namespace member declarations are included in a program with
no explicitly specified enclosing namespace, they belong to the "global
namespace".

Namespace members can be type declarations or other (nested)
namespace declarations. Type declarations are used to define classes,
structs, records, enums, interfaces, and delegates. A type declaration
can include other members. For instance, class declarations can contain
declarations for constants, fields, properties, events, indexers,
operators, methods, instance and static constructors, finalizers, and
other nested types.

2.4. Access Control
Access of the top-level type declarations (e.g., within a namespace) can
be controlled using one of the following accessibility declarations:

public Access is not limited within a given program.

internal Access is limited to this assembly. This is the default
access level for the top-level types.

2.3. Declarations

26

file Accessible only from the types declared in this same
source file. (New in C# 11.) When a type has the file
modifier, it is said to be a file-local type.

Note that namespaces do not provide access limitations. That is, they
are all implicitly public.

Access of the members of the type declarations (top-level or nested) is
largely limited by the accessibility of their containing types, and it can
be additionally controlled using some of the following access modifiers,
depending on the types:

public Access not limited.

protected internal Accessible within this assembly or from
the types derived from the containing
class.

internal Access limited within the current
assembly.

protected Access limited to the containing class or
the types derived from the containing
class.

private protected Accessible from the containing class and
its derived types which are within this
same assembly.

private Accessible from the containing type only.

Note that

• All members of an interface or an enum are public by default, and
access modifiers cannot be used.

• Any access modifiers can be used for the members of a class.

2.4. Access Control

27

• Only public, internal, and private can be used for the members
of a struct.

• The default access level is private for the members of a class,
record, and struct.

2.5. Blocks and Scopes

2.5.1. Scopes

C# is a lexically scoped language. The scope of a name is statically
determined to be a particular region of program text, within which the
entity declared by the name can be referred to without qualification of
the name.

Scopes can be nested, and an inner scope may redeclare the meaning of
a name from an outer scope. The name from the outer scope is then
said to be "hidden" in the region of program text covered by the inner
scope, and access to the hidden name is only possible by using the
qualified name.

2.5.2. Blocks

A block statement permits multiple statements to be written in contexts
where a single statement is allowed. A block consists of zero, one, or
more statements written between the delimiters { and }. For example,

{
 STATEMENTS ①
}

① The STATEMENTS consists of zero, one, or more statements.

Note that the scope of a local variable or constant declared in a block is
effectively the same block.

2.5. Blocks and Scopes

28

Chapter 3. Lexical Analysis
C# uses a 16-bit encoding of Unicode code points in character and string
values. A Unicode escape sequence, \U or \u followed by a hexadecimal
number, can be used to represent a Unicode code point in certain
lexical contexts. That is, the Unicode escape sequences are processed in
character literals, string literals, interpolated string expressions, and
identifiers (but, not in keywords). For example, the sequence \u0061 in
a string literal "\u0061pple" represents a lowercase Alphabet a.
Hence this string literal is equivalent to "apple".

3.1. Lexical Elements
The following 5 elements make up the lexical structure of a C# program:

• Line terminators,

• White space,

• Comments,

• Compiler, or pre-processing, directives, and

• Tokens such as keywords and literals.

Compiler directives allow selective compilation of a program text, but
otherwise they have no impact on its syntactic structure.

3.1.1. Line terminators

Line terminator elements divide the characters of a C# compilation unit
into lines. Line terminators are:

• Carriage return (\u000D),

• Line feed (\u000A),

• Next line character (\u0085),

3.1. Lexical Elements

29

• Line separator (\u2028), and

• Paragraph separator (\u2029).

3.1.2. White space

White space in C# is defined as

• Any character with Unicode class Zs, including the ASCII space
character (\u0020),

• The horizontal tab character (\u0009),

• The vertical tab character (\u000B), and

• The form feed character (\u000C).

3.1.3. Comments

C# supports two forms of comments, the C-style delimited comments
and the C++-style single-line comments.

• A delimited comment begins and ends with the character sequences
/* and */, respectively.

• A single-line comment begins with the character sequence // and
extends to the end of the same line.

/* Delimited comment can span
multiple lines */
using /* Or, even just a portion of a line */ System;

// A single line comment.
Console.WriteLine("Hello /* Not a comment */ World.");

Note that comments cannot be included in the string literals. White
spaces and comments act as separators for tokens.

3.1. Lexical Elements

30

3.2. Tokens
Of the 5 basic lexical elements listed in the previous section, only tokens
are significant in the syntactic grammar of a C# program. Tokens can be
classified into identifiers, keywords, literals, operators, and other
punctuation symbols. Literals are explained in the next section.

3.2.1. Identifiers

The C# identifiers comprise Unicode characters, and the rules of
identifiers are generally similar to those found in other C-style
languages. For example, an identifier can start with a letter or an
underscore _ and it can include other letters and numbers, etc. There
are a few things to note:

• Unicode escape sequences are permitted in identifiers.

• Use of more than one consecutive underscores (e.g., x__y) is,
although legal, discouraged.

• An identifier can be optionally preceded with a single @ character.

• The @-form verbatim identifiers are typically used to "escape" the C#
keywords, and otherwise its use is discouraged.

3.2.2. Keywords

Keywords are a set of reserved names in C# which cannot be used as
identifiers in a program (except as @-prefixed verbatim identifiers).

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto
if implicit in int interface

3.2. Tokens

31

internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true
try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

Contextual keywords are another set of names in C# which have special
meanings only in certain contexts. These contextual keywords cannot
be used as identifiers in those special contexts (again, except as @
-prefixed verbatim identifiers).

add alias and ascending async
await by descending dynamic equals
file from get global group
into join let nameof nint
not on or orderby partial
remove select set unint value
var when where yield

3.2.3. Operators and other punctuations

Operators are used to indicate the operations involving one or more
operands in Punctuations are used for grouping and separating.

{ } [] () . , : ;
+ - * / % & | ^ ! ~
= < > ? ?? :: ++ -- &&
-> == != <= >= += -= *= /= %=
&= = ^= << <<= => >> >>=

3.2. Tokens

32

3.3. Literals
Another important class of tokens is literals, which textually represent
(constant) values of certain builtin types. For example, the default
literal represents the default value of a type, which is discussed later.
Interpolated strings are also lexically literals, but they are (non-
constant) expressions in general.

3.3.1. The null literal

The null literal represents a null value. The null value itself does not
have a type, but it can be converted to any nullable reference type or
nullable value type through a null literal conversion.

3.3.2. Boolean literals

There are two Boolean literal values in C#, true and false. The type of
these bool literals is bool.

3.3.3. Integer literals

Integer literals are used to write values of int, uint, long, and ulong.
They have three possible forms: decimal, hexadecimal, and binary.

1_234 ①
5678u ②
-10000000L ③
10_000_000uL ④

① An int integer literal.

② A uint integer literal. Uses the suffix, u or U.

③ A long integer literal. Uses the suffix, l or L.

④ A ulong integer literal. Uses a combination of u/U and l/L.

3.3. Literals

33

Note that (semantically insignificant) underscores _ can be used in the
integer literals except for the beginning and ending positions.
Underscores cannot be repeated one after another.

3.3.4. Real literals

Real literals are used to write values of floating point types float and
double as well as decimal.

1_234.567 ①
1000d ②
10.5e5f ③
19.99m ④

① A double literal.

② A double literal. Can use the suffix, d or D.

③ A float literal. Uses the suffix, f or F.

④ A decimal literal. Uses the suffix, m or M.

Non-consecutive underscores _ can be used in the real literals as well,
except for the beginning and ending positions of both integer and
fraction parts. Underscores do not affect the values of the real literals.

3.3.5. Character literals

A char literal corresponds to a single Unicode character. It is lexically
represented as a character in quotes, as in 'a' or 'B'. A hexadecimal
escape sequence represents a single Unicode UTF-16 code unit.

3.3.6. String literals

C# supports a few different forms of string literals. They are discussed
in detail in the strings chapter.

3.3. Literals

34

3.4. Compiler Directives
In C#, the complier directives, also known as "pre-processing
directives", are processed as part of the lexical analysis phase (e.g., and
not as a separate pre-processing step). They can be used to conditionally
skip sections of compilation units, to report error and warning
conditions, or to mark certain regions of source code.

The following pre-processing directives are available:

#define, #undef

Used to define and undefine conditional compilation symbols.

#if, #elif, #else, #endif

Used to skip sections of code based on the compilation symbols.

#line

Used to control line numbers emitted for errors and warnings. Since
C# 10, the #line directive can accept up to 5 decimal numbers as
arguments, e.g., the start line, start character, end line, end
character, and character offset.

#error

Used to issue errors or warnings.

#nullable

Used to enable or disable the nullable context.

#region, #endregion

Used to explicitly mark the beginning and end of a section of source
code, respectively. Primarily to be used by IDEs.

#pragma

Used to specify predefined compilation symbols by the compiler.

3.4. Compiler Directives

35

Chapter 4. Namespaces
A compilation unit, e.g., a C# source code file, is organized according to
the following linear structure:

• Zero or more extern alias directives,

• Zero or more global using directives (which affect all compilation
units in the program),

• Zero or more (source file-specific) using directives,

• Zero or more global attributes, and

• Zero or more namespaces and their member declarations, or

• A file-scoped namespace and its member declarations.

C# programs use, by default, the (anonymous) global namespace unless
the member declarations are included in an explicit namespace
declaration (file-scoped or otherwise).

4.1. Namespace Declarations
As of C# 10 and later, a namespace can be declared with or without an
explicit block. The scope of the namespace without a block extends to
the entire compilation unit/file. The "normal" block-scoped namespace
consists of the keyword namespace, a namespace name and body, and
an optional semicolon ;. For example,

namespace War { ①
 // Any member declarations
}

① The name of this namespace is War. Note that multiple (possibly
nested) namespaces with explicit blocks can be included in a single
compilation unit.

4.1. Namespace Declarations

36

The file-scoped namespace, on the other hand, starts with the keyword
namespace, a name, and a semicolon ;. The rest of the compilation unit
follows the same general structure, e.g., zero or more extern alias
directives, using directives (but, not global using directives),
followed by any member type declarations, and they all belong to this
namespace. For instance,

namespace Peace; ①
// ...

① This namespace declaration extends to the end of the source file. If a
source file includes a (possibly-nested) file-scoped namespace
declaration, it cannot include any other namespace declarations in
the same compilation unit.

Nested file-scoped namespaces can be declared with the dot qualified
names. For example,

namespace Crime.Punishment;
// ...

The above declaration is equivalent to the following, for instance:

namespace Crime {
 namespace Punishment {
 // ...
 }
}

4.2. extern Alias Directives
An extern alias directive introduces an alias for an external
namespace. For example,

4.2. extern Alias Directives

37

extern alias Fruit; ①
Fruit::Apple apple; ②

① It introduces an external alias Fruit.

② Apple is a type declared within the namespace Fruit. The
namespace/type names can be used in this compilation unit as if
they are locally declared.

4.3. using Directives
Using the using directives, one can use namespaces and types defined
in other namespaces without having to fully qualify them. The scope of
a (non-global) using directive extends over the member declarations
within the innermost enclosing namespace (including a file-scoped
namespace), if any, or within the whole compilation unit otherwise.

4.3.1. The using namespace directive

A using namespace directive imports the types of a given namespace
into the current namespace body (or, the compilation unit). The types
contained in the using-declared namespace can be referenced directly.

using NAMESPACE_NAME ;

For example,

namespace Olympic.Soccer { class Match {} };
namespace Stats {
 using Olympic.Soccer;
 class SoccerStats {
 IList<Match> Matches { get; set; }
 }

4.3. using Directives

38

}

4.3.2. The using static directive

A using static directive imports the nested types and static members
of a type so that the names of the members and types can be used
without qualification.

using static TYPE_NAME ;

For example,

namespace Arithmetic {
 public class Adder {
 public static void Add(int a, int b) => a + b;
 }
}
namespace App {
 using static Arithmetic.Adder;
 class Calculator {
 public int Sum(int a, int b) => Add(a, b);
 }
}

4.3.3. The using alias directive

A using alias directive introduces an identifier, or an alias, for a
namespace or type within the innermost containing namespace (or,
within the compilation unit). The identifiers introduced by the using
alias directive can be used to reference the given namespace or type.

using IDENTIFIER = NAMESPACE_OR_TYPE_NAME ;

4.3. using Directives

39

For instance,

namespace Europe.Ukraine {
 public class Citizen {}
}
namespace World {
 using Person = Europe.Ukraine.Citizen;
 class Farmer: Person {}
}

4.4. Global using
The using declarations can be made effective across an entire
program, using the keyword global. The global using declarations
can be used for any of the three using declaration types, using
namespace, using static, and using alias. But, global using can
only be used in a compilation unit, but not within an explicitly declared
namespace, and its scope extends over the entire program. For
example,

global using Machine;
global using static Robot.Arm;
global using Orange = Modern.Black;

4.5. Implicit using
Starting with C# 10, one can automatically add common global using
directives for the C# project you are building, using the implicit usings
feature. The "implicit" aspect refers to the fact that the global using
directives are added to a generated file in the project’s obj directory.

In case of the Microsoft.NET.Sdk, for example, the following
namespaces are implicitly declared with global using:

4.4. Global using

40

• System

• System.Collections.Generic

• System.IO

• System.Linq

• System.Net.Http

• System.Threading

• System.Threading.Tasks

4.6. Member Declarations
As indicated before, as of C# 9 and later, top-level statements can be
used in one of the source code files in a program in liu of a type that
includes the Main method, e.g., as an entry point to the program. With
this exception (which is merely a syntactic sugar), all statements in a
namespace (explicitly declared or otherwise) must be either other
(nested) namespace declarations or type declarations.

A type declaration is

• A class declaration,

• A struct declaration,

• A record declaration,

• An enum declaration,

• An interface declaration, or

• A delegate declaration.

Access to these namespace top-level type declarations can be explicitly
controlled using the access modifiers. Otherwise, their default access
level is internal.

4.6. Member Declarations

41

Chapter 5. C# Type System
C#, and .NET, has a unified type system. Every type in the C# language
inherits, either directly or indirectly, from the object base type
(System.Object on .NET).

The types in C# are divided into two main categories, reference types
and value types. Variables of the value types may directly contain their
data, whereas variables of the reference types store references to their
data. Values of reference types are treated as objects simply by viewing
the values as type object. On the other hand, values of value types are
treated as objects by performing boxing and unboxing operations.

Generic types are discussed later. Generic type parameters can
designate either a value type or a reference type.

5.1. Value Types
C#'s value types can be divided into simple types, enum types, struct
types (including record structs), and nullable types. Simple types
comprise the builtin bool type and other numeric types. Nullable value
types can contain a null value.

By default, when assigning a value, passing an argument to a method,
or returning a method result, the values are copied. Note, however, that
if a value type contains a data member of a reference type, the
reference to the instance of the reference type is copied.

5.1.1. The System.ValueType type

A value type cannot explicitly derive from other types. All value types
implicitly inherit from the class System.ValueType, which itself is not
a value type. System.ValueType, in turn, inherits from the ultimate
base class, System.Object.

5.1. Value Types

42

5.1.2. Default constructors

All value types implicitly declare a public parameterless instance
constructor called the default constructor. The default constructor
returns a zero-initialized instance known as the type’s default value

5.1.3. Boxing and Unboxing

Through boxing and unboxing, a value of any type, value type or
reference type, can be treated as object. This provides a unified view
of the C# type system. Boxing a value of a value type creates an object
on the heap, which can be referenced via a reference variable.
Unboxing does the reverse operation. That is, it returns the value
contained in the object referenced by the given variable.

5.1.4. Nullable value types

A nullable value type T? can represent a null value in addition to all
values of its underlying (non-nullable) value type T. This syntax T? is
shorthand for the generic System.Nullable<T> struct. For example,
you can assign any of the following three values to a bool? variable:
true, false, or null. An instance of a nullable value type T? has two
public readonly properties:

public bool HasValue { get; }
public T Value { get; }

5.2. Reference Types
All types in C#, including reference types, derive from the .NET base
class System.Object. With value types, each variable has its own copy
of the data. With reference types, on the other hand, two variables can
reference the same object. Operations on one variable can therefore
affect the object referenced by other variables.

5.2. Reference Types

43

C# provides three built-in reference types, object, string, and
dynamic. Furthermore, custom reference types can be declared with
the following keywords:

• array,

• class,

• record (or, record class),

• interface, and

• delegate.

Array types are somewhat special in that they do not have to be
declared before they are used. Array types are constructed by
appending square brackets to a type name. For example, int[] is a
(single-dimensional) array of int, int[,] is a two-dimensional array of
int, and int[][] is an array of arrays of int.

5.2.1. Nullable reference types

In the nullable context, all variables of a reference type are non-
nullable. You can explicitly declare a nullable variable by appending
the type name with the ? symbol, which denotes a nullable reference
type. For example,

string firstName = "Pele"; ①
string? middleName = null; ②

① The variable firstName is non-nullable.

② string? is a nullable counterpart of the reference type string. The
variable middleName is nullable.

For nullable reference types, the compiler uses flow analysis to ensure
that any variable of a nullable reference type is checked against null
before it’s accessed or assigned to a non-nullable reference type.

5.2. Reference Types

44

5.3. Dynamic Types
All C# types, builtin or user-defined, use static binding. That is, the type
of a variable or an expression is determined at compile time. The
dynamic type is an exception. It uses dynamic binding at run time. In
most cases, dynamic can be considered identical to object (since all
types ultimately inherit from object).

For example,

dynamic theSecret = 42;
dynamic theGreatestUnknown = "meh";

Syntactically, an expression of the dynamic type can be implicitly
converted to any type at run time. If the conversion fails, however, a
runtime exception is thrown. If dynamic binding is not desired, the
expression can be converted to object first, and then to the desired
type. For instance,

dynamic realSecret = 42 * 42 * 42;
int huh = realSecret; ①
string oops = realSecret; ②

① This implicit conversion will succeed at run time.

② This will throw an exception at run time.

dynamic knownUnknown = "moo...";
var ox = (string)(object) knownUnknown; ①
var cow = (int)(object) knownUnknown; ②

① Conversion succeeds at compile time.

② Build fails for this conversion.

5.3. Dynamic Types

45

Chapter 6. Constants
A constant is a variable representing a constant value, that is, a value
that can be computed at compile time. Constant members are discussed
later, e.g., in the class constant member section.

Local constants can be declared using a local constant declaration
statement.

const TYPE NAME = EXPR ; ①

① A constant is declared with the keyword const. The words with all
upper case letters, in notations like this, are placeholders. That is,
TYPE, NAME, and EXPR will need to be replaced with a type, name (or,
identifier), and expression in a real statement. In the local constant
declaration, the right hand side EXPR must be a constant expression.

More than one constant can be declared in a single statement. For
example,

const TYPE NAME1 = EXPR1 , NAME2 = EXPR2 ;

The above statement is equivalent to the following two declarations:

const TYPE NAME1 = EXP1 ;
const TYPE NAME2 = EXP2 ;

The scope of a local constant is the block in which the declaration
occurs, similar to local variables. Within the scope of a local constant, it
is a compile-time error to declare another local variable or constant
with the same name.

46

Chapter 7. Variables
Variables represent storage locations. Every variable has a type that
determines what values can be stored in the variable.

7.1. Variable Categories
Variables belong to a few different categories:

• Local variables,

• Static variables,

• Instance variables, and

• Array elements.

In addition, function parameters are also variables.

Local Variables

A local variable can be declared with a local variable declaration in
a block. A local variable declared this way is not automatically
initialized and thus has no initial value.

Static Variables

A field declared with the static modifier is a static variable. The
initial value of a static variable is the default value of its type.

Instance Variables

A non-static field is an instance variable. The initial value of an
instance variable of a class (or, record or struct) is the default value
of the variable’s type.

Array Elements

The initial value of each of the elements of an array is the default
value of the type of the array elements.

7.1. Variable Categories

47

7.2. Local Variable Declarations

7.2.1. Local variables

A local variable declaration declares one or more local variables,
similar to a local constant declaration:

TYPE NAME ; ①
TYPE NAME1 , NAME2 ; ②

① As indicated, we use this somewhat unusual notation to represent C#
syntax in this book. TYPE and NAME need to be replaced with a
proper type and a valid variable name in a real statement,
respectively. The statement ends with a semicolon ;.

② More than one variable can be declared in one statement with the
same type. This particular example only includes two variables, but
it illustrates that the variables are separated by commas ,.

Variables can be declared with initializers.

TYPE NAME = EXPR ;
TYPE NAME1 = EXPR1 , NAME2 = EXPR2 ;

When all variables have initializers, the explicit type name can be
omitted in lieu of var. For example,

var NAME = EXPR ;
var NAME1 = EXPR1 , NAME2 = EXPR2 ;

The identifier var is a contextual keyword in the context of local
variable declarations. The type of an implicitly typed local variable is
inferred from the type of the associated initializer expression.

7.2. Local Variable Declarations

48

A discard variable _ may be used as an implicitly declared variable, for
example, when you intend to ignore the result of an expression. Discard
variables are often used in deconstruction, or in pattern matching
expressions. Here’s a trivial example.

var _ = 1 + 2;

7.2.2. Ref local variables

A ref local variable is used to refer to values returned using return
ref.

ref TYPE NAME = REF_EXPRESSION ;
ref var NAME = REF_EXPRESSION ;

You define a ref local by using the ref keyword in two places:

• Before the variable declaration.

• Immediately before the call to the method that returns the value by
reference.

7.2.3. Ref readonly local variables

A ref readonly local variable is similar to a ref local variable, but
they are not writeable.

ref readonly TYPE NAME = REF_EXPRESSION ;
ref readonly var NAME = REF_EXPRESSION ;

Note that you cannot declare "readonly local" variables in C# (which
some people might consider a serious limitation considering that the C#
language provides so much support for immutability everywhere else).

7.2. Local Variable Declarations

49

Chapter 8. Local Functions
Local constants and local variables can be declared in members of a
type. Likewise, one can declare local functions and static local functions
anywhere local constants and variables can be declared. The difference
between static and non-static local functions is

• (Non-static) local functions can use, and capture, variables from the
enclosing scope. That is, local functions are closures.

• Static local functions, on the other hand, cannot reference the
outside variables.

lambda functions are essentially anonymous local functions. These two
syntactic forms are more or less interchangeable, but using one or the
other may be preferred depending on the context.

8.1. Local Functions
A local function is declared as follows:

• Local function header, comprising

◦ Optional attributes, and optional local function modifiers,

◦ The return type or void,

◦ The function name,

◦ A type parameter list, in case of a generic local function,

◦ A formal parameter list in a pair of parentheses, followed by

◦ An optional type parameter constraint clause, and

• Local function body, comprising

◦ A function body block, or

◦ An expression body ending with a semicolon ;.

8.1. Local Functions

50

For example,

static (int, int) DoAdditionTwice(int a, int b) {
 var fstTime = LocalAdd();
 var sndTime = LocalAdd();
 return (fst, snd);

 void LocalAdd() => a + b; ①
}

① The LocalAdd local function uses the local variables of the enclosing
scope, namely, the two parameters of DoAdditionTwice.

Local functions are closures just like lambda functions. Local function
modifiers can be either async or static, or both.

8.2. Static Local Functions
Static local functions are a special form of local functions. They are
explicitly prohibited from using, or capturing, local variables,
parameters, and this from the enclosing scope. They cannot use
instance members of the type. Syntactically, a static local function
declaration includes the static modifier. For example,

static int AbsoluteValue(int a) {
 return LocalAbs(a);

 static void LocalAbs(int x) =>
 x > 0 ? x : -x; ①
}

① The LocalAbs local function does not use any variables of the
enclosing scope, and hence it can be declared as static.

8.2. Static Local Functions

51

Chapter 9. Formal Parameters
Function parameters are also variables. A parameter comes into
existence when we invoke an anonymous function or a function
member (e.g., method, constructor, accessor, or operator). Parameters
may be initialized with values of the arguments given in the invocation.
Function arguments are normally passed by value. But, they can use
pass-by-reference semantics using the keywords, in, out, or ref.

9.1. Parameter List
The formal parameter list consists of comma-separated fixed
parameters and an optional params array parameter at the end. A fixed
parameter consists of

• Optional attributes,

• An optional modifier, in, out, ref, this, in this, or ref this,

• The parameter type,

• The parameter name, followed by

• An optional default argument (= VALUE).

Each fixed parameter declares a variable of the given type with the
given name, which is local to the function body.

A fixed parameter with a default value is known as optional parameter.
Arguments are required for non-optional parameters. Optional
parameters, if any, can only be placed after any required parameters,
before the optional params array. Parameters with in, out, ref, this,
in this, or ref this modifiers cannot have default arguments.

The this modifiers, namely, this, in this, or ref this, are only
allowed on the first parameter of a static method in a non-generic, non-
nested static class. Such a method is called an extension method.

9.1. Parameter List

52

9.2. Argument List
Invocation of a function or method is an expression.

EXPRESSION (ARGUMENT_LIST)

EXPRESSION should be "callable", e.g., a method or a value of a delegate
type. ARGUMENT_LIST can be empty. It follows more or less the same
structure as the parameter list, and each given argument must have a
corresponding parameter in the parameter list.

C# supports two kinds of argument syntax, positional arguments and
named arguments. A named argument has a form PARAMETER_NAME :
VALUE, whereas only VALUE is specified for a positional argument.
When an argument is in the same position in the argument list as the
corresponding parameter in the parameter list, it can use either named
or positional argument syntax. Otherwise, only the named argument
syntax is allowed. For example, given the following function,

static void Metodo(int a = 1, char b = 'b') {
 Console.WriteLine($"a = {a}; b = {b}");
}

We can call this function in any of the following ways:

Metodo(); ①

Metodo(2); ②
Metodo(a: 2);

9.2. Argument List

53

Metodo(b: 'c'); ③

Metodo(4, 'd'); ④
Metodo(a: 4, 'd'); ⑤
Metodo(4, b: 'd');
Metodo(a: 4, b: 'd');
Metodo(b: 'd', a: 4); ⑥

① Both parameters are optional, hence a:1 and b:'b' in this call.

② Positional vs name argument syntax. These two method invocations
are equivalent to each other, with a:2 and b:'b'.

③ The position of this argument is 0 whereas the position of its
corresponding parameter is 1. Hence, this particular method call
cannot use the positional syntax for the parameter b. This call is
equivalent to Metodo(1, b: 'c') or Metodo(a: 1, b: 'c').

④ All following five method calls are equivalent, with a:4 and b:'d'.

⑤ The method argument a in this call is called the "non-trailing named
argument" because it precedes a positional argument, 'd' (for b).

⑥ Both a and b in this call must use the named argument syntax.

9.3. The params Parameter
The last parameter in a formal parameter list in C# can be a params
array parameter, which consists of

• Optional attributes,

• The keyword params,

• A one-dimensional array type, and

• A parameter name.

9.3. The params Parameter

54

The params parameter is a value parameter. (But, note that array is a
reference type.) In a method invocation, an argument for the params
parameter can be specified either as an array value or as zero, one, or
more arguments of the array’s element type. For example, given the
following function,

static int AddAll(params int[] operands) => operands.Sum();

It can be called with an int array argument,

var ints = new int[] { 1, 2, 3 };
var sum1 = AddAll(ints);
Console.WriteLine($"sum = {sum1}");

Alternatively, the function can be called as follows:

var sum = AddAll(1, 2, 3);
Console.WriteLine($"sum = {sum}");

Note that these two forms of function invocations are completely
equivalent, despite the apparent syntactic difference. That is, for
example, calling this function with an empty argument list (since the
params parameter is always optional) and calling it with an empty
array will return the same result.

9.4. Value Parameters
A formal parameter declared without any parameter modifiers is a
value parameter by default. A value parameter corresponds to a local
variable that gets its initial value from the corresponding argument
supplied in the function invocation. The argument therefore should be
an expression that is implicitly convertible to the parameter type.

9.4. Value Parameters

55

9.5. in Parameters
Parameters with the in, out, or ref modifiers are passed by reference.
The in keyword specifies that the called method does not modify the
value. An in parameter corresponds to a local ref readonly variable.
The in parameter is declared using the in modifier in the parameter
specification, and it can include a default value. For example,

static void PrintCoord(in Coord cord) => ①
 Console.WriteLine($"Lat = {cord.Lat}; Lon = {cord.Lon}");
record struct Coord(float Lat, float Lon);

① The in parameter cord uses the call-by-reference semantics. The
PrintCoord function cannot modify its value.

This function can be called with or without the in keyword.

var coord = new Coord(40.0f, -100.0f);
PrintCoord(coord);
PrintCoord(in coord);

Although it uses reference semantics, it cannot change the value of the
in argument. Therefore, one can expect certain performance increase
without having to worry about data mutability.

9.6. out Parameters
A parameter declared with the out modifier is an output parameter.
The corresponding argument is passed by reference. For example,

static void SetCoord(out Coord c) =>
 c = new(0.0f, 0.0f); ①

9.5. in Parameters

56

① The out parameter cannot be referenced before it is assigned, and it
must be assigned a value before the function returns.

To use an out parameter, both the method definition and the calling
method must explicitly use the out keyword. You can declare a new
out variable in the argument list of a method invocation. For instance,

SetCoord(out var c); ①
Console.WriteLine($"Lat = {c.Lat}; Lon = {c.Lon}");

① We can also use the explicit type, e.g., SetCoord(out Coord c);.
This is more or less equivalent to Coord c; SetCoord(out c);.

9.7. ref Parameters
The ref parameter works in a way similar to the out parameter. But,
unlike in the case of out parameters, an argument that is passed to a
ref, or in, parameter must be initialized before it’s passed in. To use a
ref parameter, both the method definition and the method invocation
must explicitly include the ref keyword. For example,

static void SwapCoords(ref Coord c1, ref Coord c2) =>
 (c1, c2) = (c2, c1);

Then, we can call this method as follows:

Coord coord1 = new(10.0f, 20.0f),
 coord2 = new(-30.0f, -60.0f);
SwapCoords(ref coord1, ref coord2); ①

① This will swap the values of coord1 and coord2. Note that Coord is
a value type (a struct), and this would not have been possible but for
the ref semantics.

9.7. ref Parameters

57

9.8. Returns by Reference

9.8.1. Ref returns

C# methods, by default, return values in the similar way that arguments
are passed by value. In contrast, ref returns are values that a method
returns by reference to the caller. That is, instead of copying the value
returned by a method, its reference is returned. (Or, more precisely, its
reference is copied.) There are three aspects for the ref returns to work.

• The return type in the method signature needs to be prefixed with
ref. For example, public ref MyStruct MyMethod().

• The expression of the return statement in the method body needs to
by marked as ref. For example, return ref updatedStruct.

• In order for the caller to modify the object’s state, the ref return
value needs to be assigned to a ref local variable.

9.8.2. Ref readonly returns

The called method may also declare the return value as ref readonly
to return the value by reference, and at the same time enforce that the
calling code cannot modify the returned value. The calling method can
avoid copying the returned value by storing the value in a local ref
readonly variable. For example,

static class RefReturnDemo {
 static ref readonly Coord Move(ref Coord moving) =>
 ref moving; // return ref
 public static void PrintAfterMove(Coord here) {
 ref readonly var t = ref Move(ref here);
 Console.WriteLine($"Lat = {t.Lat}; Lon = {t.Lon}");
 }
}

9.8. Returns by Reference

58

Chapter 10. Builtin Value Types
We will go through a few simple types in this chapter. The builtin
string type is discussed in the next chapter.

10.1. The bool Type
The C# bool type is an alias for the .NET System.Boolean struct type,
whose value can be either true or false. The default value of the bool
type is false. That is, default(bool) returns false.

10.1.1. The nullable bool? type

The nullable bool? type can be used for the three-valued logic, for
example, when you work with databases that support a three-valued
Boolean type. The predefined & and | operators support the three-
valued logic for the bool? operands.

10.2. The char Type
The C# char type is an alias for the .NET System.Char struct type,
which represents a Unicode character in UTF-16 encoding. The default
value of the char type is \0, that is, \u0000.

10.2.1. Char literals

You can specify a char value with:

• A character literal.

• A Unicode escape sequence, or

• A hexadecimal escape sequence, e.g., \x followed by the
hexadecimal representation of a character code.

10.1. The bool Type

59

10.3. Integral Types
C# supports 11 integral types: Four unsigned integer types, byte,
ushort, uint, and ulong, and four signed integer types, sbyte, short,
int, and long, which are represented using two’s complement format.
The char type is also an integral type. In addition, C# includes two
native integer types, nint and nunit.

byte (System.Byte)

Unsigned 8-bit integers with values from 0 to 255 (== Pow(2,8)-1).

sbyte (System.SByte)

Signed 8-bit integers with values from -128 (== -Pow(2,(8-1))) to
127 (== Pow(2,(8-1))-1).

ushort (System.UInt16)

Unsigned 16-bit integers with values from 0 to 65535.

short (System.Int16)

Signed 16-bit integers with values from -32768 to 32767.

uint (System.UInt32)

Unsigned 32-bit integers with values from 0 to 4294967295.

int (System.Int32)

Signed 32-bit integers with values from -2147483648 to 2147483647.

ulong (System.UInt64)

Unsigned 64-bit integers with values from 0 to
18446744073709551615.

long (System.Int64)

Signed 64-bit integers with values from -9223372036854775808 to
9223372036854775807.

10.3. Integral Types

60

The checked and unchecked operators and statements are used to
control overflow checking for integral-type arithmetic operations and
conversions.

10.4. Native Integer Types
C# now include two new new contextual keywords, nint and nuint,
which represent native signed and native unsigned integer types,
respectively, which are intended for use in low-level libraries. These
contextual keywords are only treated as keywords when name lookup
does not find a viable result at that program location.

The C# types nint and nuint correspond to the underlying .NET types
System.IntPtr and System.UIntPtr, respectively, with compiler
support for additional conversions and operations for those types as
native integer types on a specific platform, or operating system.

10.5. Floating Point Types
C# supports two floating-point types, float and double, which are
represented using the 32-bit single-precision and 64-bit double-
precision IEC 60559 formats, respectively. Floating point number
literals are described in the Lexical Analysis chapter.

10.6. The decimal Type
The decimal type is a 128-bit real number type, suitable for high-
precision calculations. Internally a decimal is represented as an integer
scaled by a power of ten. Decimal numbers are guaranteed to have at
least 28-digit precision. The decimal type has greater precision but may
have a smaller range than the floating-point types.

If a decimal arithmetic operation produces a result whose magnitude is
too large for decimal, a System.OverflowException is thrown.

10.4. Native Integer Types

61

Chapter 11. Strings
The C# string keyword is an alias for the System.String type in .NET.
A string represents text, which is implemented as a read-only sequence
of char objects. The Length property of a string returns the number of
char objects, and not the number of Unicode characters. Likewise, the
[] operator can be used for read-only access to individual chars.

Strings are immutable. That is, you cannot update the value of a string
object. The + operator concatenates strings and returns a new string.
The equality operators == and != are defined to compare the values of
string objects. Hence, although string is a reference type, strings
behave more like values rather than references. Empty strings can be
initialized with the constant, Empty, or the empty string literal, "".

var s1 = String.Empty, s2 = "";

11.1. Quoted String Literals
String literals can be written in three different forms in C#, namely,
quoted, verbatim, and raw string literals. In addition, there is a special
literal syntax for "UTF-8 encoded strings", which is new in C# 11.
Quoted string literals start and end with double quotation marks "". A
quoted string literal must escape certain special characters, e.g., \n for a
newline and \t for a tab, etc.

11.2. Verbatim String Literals
Verbatim string literals start with @ and they are also enclosed in
double quote characters. They are sometimes called "@-quoted strings".
Special characters in verbatim string literals need not, and should not,
be escaped, which make them easier to write. In particular, verbatim

11.1. Quoted String Literals

62

string literals preserve new line characters as part of the string text.
Hence, verbatim strings are convenient for multi-line strings, or strings
that contain many backslash characters, etc. A double quotation mark
in an @-quoted string can be escaped as two quotation marks "".

For example,

Console.WriteLine(@"""Hello world"" is
 really a cliche now.");

This statement will print out

"Hello world" is
 really a cliche now. ①

① Notice that the leading white space characters as well as the newline
at the end of the first line are included in the output.

11.3. Raw String Literals
A new form of raw string literal has been introduced in C# 11, which
starts with a three or more double-quote character sequence, e.g., """,
and ends with the same character sequence, e.g., with the same number
of double quotes.

The opening double-quote sequence can be immediately followed by an
optional new line, in which case the enclosed string content should also
end with a new line. These new lines are not part of the string literal.
When the opening double-quote sequence is not followed by a new line,
the raw string literal cannot include new lines, and the closing double
quote sequence should be on the same line.

For a multiline raw string literal, the starting position of the ending
double-quote sequence sets the "trim line" for the enclosed string literal

11.3. Raw String Literals

63

content. That is, the spaces before that position in the string literal are
not considered part of the string. For example,

var xml = """"
 <element attr="content">
 <body>My body</body>
 </element>
 """";

11.4. UTF8 String Literals
C# represents all strings using UTF16 encoding. Hence it requires
encoding and decoding to produce and consume UTF8 encoded strings
(e.g.,byte[]), which are commonly used, for example, for
communication purposes. As of C# 11, one can now write an UTF8-
encoded string in a literal form in a C# program. Syntactically, it is a
regular string literal with a suffix u8 or U8.

var str = "Heelloo, cliche~~"u8;

It should be noted that, despite the name, the type of a UTF8 string
literal is ReadOnlySpan<byte>, not string, which is essentially a
readonly span over a byte array representing a UTF8-encoded string.

11.5. String Interpolation
Interpolated strings are identified by the $ prefix and they can include
(to-be-)interpolated expressions in braces {}. String interpolation
achieves the same results as the String.Format method, but it is
generally preferred because it often improves the readability and
maintainability of code.

11.4. UTF8 String Literals

64

11.5.1. Constant interpolated strings

Since C# 10, when all interpolated expressions in an interpolated string
are constant, it is considered a constant expression.

const int year = 2022;
const string wc = $"World{" "}Cup {year}";
const string greeting = $"Welcome to {wc}!";

11.5.2. Verbatim string interpolation

C# also allows verbatim string interpolation, that is, string interpolation
over verbatim string literals, using the $@ or @$ syntax. For instance,

var myAnswer = "Huh?";
var conversation = @$"Tom: What do you say?
 Me: {myAnswer} {myAnswer}";

11.5.3. Raw string interpolation

String interpolation can be used with (single-line or multi-line) raw
string literals as well. In such a case, the number of dollar signs ($)
present at the start of the literal determines the number of braces ({)
needed to start an interpolation expression. Any brace sequence with
fewer braces than that is just treated as content, and they are included
in the output. For example,

var json = $$"""
 {
 "content": { "title": "Raw Oyster" },
 "length" : {{value.Length}}
 };
 """

11.5. String Interpolation

65

Chapter 12. Generics
C#, and .NET, allows defining a set of related types with type
parameters, commonly known as generics. A "constructed type" of a
generic type is generated at compile time, if necessary, e.g., with
particular type arguments. A constructed type can be used in most
places in the language in which a type name can appear. The most
common use of generics is to construct collection types.

In general, generics help maximize code reuse, type safety, and
performance. The .NET class library, for example, contains several
generic collection classes in the System.Collections.Generic
namespace. In C#, one can declare generic interfaces, generic classes,
generic records, generic structs, generic local functions, generic
methods, generic events, and generic delegates, among others.

12.1. Generic Type Parameters

12.1.1. Type parameters

A generic type (and, a generic method, etc.) includes one or more type
parameters (within angular brackets <>). By declaring particular types
for these type parameters, a specific constructed type is created.

A type parameter is an identifier designating a value type or reference
type that the parameter is to be bound to. Since a type parameter can be
instantiated with many different type arguments, type parameters have
slightly different operations and restrictions than other (real) types. For
example, a type parameter cannot be used directly to declare a base
class or interface in a generic type declaration.

As a type, type parameters are purely a compile-time construct. At run
time, each type parameter is bound to a run-time type that was
specified by supplying a type argument to the generic type declaration.

12.1. Generic Type Parameters

66

The run-time execution of all statements and expressions involving
type parameters uses the type that was supplied as the type argument
for that parameter.

12.1.2. Constraints on type parameters

Type constraints indicate what capabilities a type argument should
have. Constraints are specified using a contextual keyword, where. If a
type argument is used that does not satisfy the given constraint, the
compiler will issue an error (or, a warning in some cases).

12.2. Type Parameter Constraints
The support for generic type constraints, both in terms of syntax and
semantics, has been greatly extended over the past few C# releases. The
following types of type parameter constraints are currently supported
as of C# 11.

12.2.1. The notnull constraint

class C<T> where T : notnull { }

The type argument T must be a non-nullable type. You can use the
notnull constraint to specify that the type argument must be a non-
nullable value type or non-nullable reference type. Unlike most other
constraints, if a type argument violates the notnull constraint, the
compiler generates a warning instead of an error.

12.2.2. The default constraint

class C<T> where T : default { }

12.2. Type Parameter Constraints

67

The default constraint implies that the base method does not have a
class or struct constraint. This constraint resolves the ambiguity when
you need to specify an unconstrained type parameter when you
override a method or provide an explicit interface implementation.

12.2.3. The new() constraint

class C<T> where T : new() { }

The new() constraint asserts that T must have a public parameterless
constructor. When used together with other constraints, the new()
constraint must be specified last.

12.2.4. The enum constraint

class C<T> where T : System.Enum { }

You can use any System.Enum types as a base class constraint. With the
enum constraint, the type parameter T can be used with the
System.Enum static methods. T can also be used in a context where a
specific enum type is expected.

12.2.5. The delegate constraints

class C1<T> where T : System.Delegate { }
class C2<T> where T : System.MulticastDelegate { }

The generic type argument T must be a System.Delegate or
System.MulticastDelegate type. The delegate constraint enables
you to write code that works with delegates in a type-safe manner.

12.2. Type Parameter Constraints

68

12.2.6. The struct constraint

class C<T> where T : struct { }

The type argument T must be a non-nullable value type. Because all
value types have an accessible parameterless constructor, the struct
constraint implies the new() constraint, and they cannot be combined.

12.2.7. The class constraint

class C<T> where T : class { }

This constraint asserts that T must be a non-nullable reference type. It
applies to class, record, interface, delegate, or array. When a
type argument is a nullable reference type, a warning is issued.

12.2.8. The class? constraint

class C<T> where T : class? { }

It asserts that T must be a reference type, either nullable or non-
nullable.

12.2.9. Interface type constraints

class C<T> where T : I1, I2, I3<T> { }

Specific interfaces, one or more, can be specified as part of a type
constraint. In such a case, the type argument must be either an
interface that inherits, or a non-nullable type that implements, the
given interfaces, e.g., I1, I2, and I3<T> in this example.

12.2. Type Parameter Constraints

69

As shown, the constraining interfaces can be generic. T, in I3<T>, must
be a non-nullable type that implements the specified interface, I3.

class C<T> where T : I1?, I2?, I3<T>? { }

This constraint is equivalent to the previous example, T : I1, I2,
I3<T>, except that T can be a nullable or non-nullable reference type as
well as a non-nullable value type.

12.2.10. Base class type constraints

class C<T> where T : B1 { }

The type argument must be, or derive, from the specified base class,
e.g., B1. T must be a non-nullable reference type derived from B1.

class C<T> where T : B1? { }

Likewise, the type argument must be, or derive, from the specified base
class, B1. T may be a nullable or non-nullable type.

12.2.11. Specific type constraints

class C<T, U> where T : U { }

The type argument T must be, or derive from, the type U.

• If U is a non-nullable reference type, T must be non-nullable
reference type.

• If U is a nullable reference type, T may be nullable or non-nullable.

12.2. Type Parameter Constraints

70

12.3. Type Variance in Generics
In C#, type variance enables implicit reference conversion for array
types, delegate types, and generic type parameters so that broader, or
more specific, types can be used. Variances, either covariance or
contravariance, are supported for reference types, but they are not
supported for value types.

12.3.1. Covariance

Covariance enables you to use a more derived type than that specified
by the generic parameter. This allows for implicit conversion of classes
that implement covariant interfaces and implicit conversion of delegate
types. An interface that has a covariant type parameter enables its
methods to return more derived types than those specified by the type
parameter.

As an example, because type T is covariant in IEnumerable<T> and
string inherits from object, an object of the IEnumerable<string>
type, for instance, can be implicitly assigned to an object of the
IEnumerable<object> type.

12.3.2. Contravariance

Contravariance enables you to use a less derived type than that
specified by the generic parameter. This allows for implicit conversion
of classes that implement contravariant interfaces and implicit
conversion of delegate types.

A type can be declared contravariant in a generic interface or delegate
only if it defines the type of a method’s parameters and not of a
method’s return type. In, ref, and out parameters must be invariant,
meaning they are neither covariant nor contravariant.

12.3. Type Variance in Generics

71

Chapter 13. Interfaces
An interface essentially defines a behavioral contract, which can be
implemented by classes, records, and structs, in term of its members:

• Methods,

• Properties,

• Indexers, and

• Events.

An interface does not generally provide implementations of the
members it defines. Those members must be explicitly implemented by
classes, records, or structs that implement the interface. A single (non-
interface) type may implement multiple interfaces.

For the last few releases of C#, the concept of interface has been
gradually generalized. An interface can now include

• Constants,

• Operators,

• Static constructors,

• Static methods, properties, indexers, and events, in addition to the
instance methods, properties, indexers, and events,

• Static fields, and

• Nested types.

Some of these members can have default implementations. Beginning
with C# 11, the concept of the "interface contract" has been further
broadened. The contract is no longer limited to an object but rather it is
extended over the relationship between two or more objects. In
particular, C# now supports static abstract or virtual methods in
interfaces, with or without default implementations.

72

13.1. Interface Declarations
An interface declaration statement declares a new interface type:

• A header including

◦ Optional attributes, and other optional interface modifiers,

◦ The keyword interface or partial interface,

◦ The name of the interface,

◦ A list of type parameters, if the interface is generic,

◦ Any base interfaces, and

◦ Type parameter constraints, if needed, followed by

• An interface body, which consists of

◦ A list of member declarations written between the delimiters {}.

• An optional semicolon ;.

For example,

public interface INode { void Append(INode node); }

An interface declaration which includes a type parameter list, or which
is nested inside a generic class, record, or struct declaration, is a generic
interface declaration. A generic interface declaration can include a type
parameter constraint clause, if needed. For example,

interface Div<T> : Node<T> where T : INumber<T> {
 //
}

13.1. Interface Declarations

73

13.1.1. Interface modifiers

An interface declaration can optionally include an access modifier. In
addition, the new modifier can be used within a class to indicate the
interface hides an inherited member by the same name.

The partial type declarations are mainly used by code generators, and
they are used to split a single type declaration over two or more source
code files. An interface can also be declared as unsafe. We do not
discuss unsafe code, as well as partial interface and partial class
declarations and partial methods, in this book.

13.1.2. Type parameter variance

In case of interface and delegate declarations, type parameters can
include variance annotations, namely, in and out.

• If the variance annotation is out, the type parameter is covariant,

• If the variance annotation is in, then it is contravariant, and

• Otherwise, the type parameter is invariant by default.

For example,

interface I1<out T1, in T2, T3> {} ①

① T1 is covariant, T2 is contravariant, and T3 is invariant.

13.1.3. Base interfaces

An interface can optionally inherit from other interface types. When at
least one explicit base interface is specified, they are preceded by a
colon :. The base interfaces of an interface comprises the explicitly
inherited base interfaces and their base interfaces, defined recursively.
An interface inherits all members of its base interfaces.

13.1. Interface Declarations

74

13.2. Interface Members
The members of an interface are those included in the interface
declaration and the members of all base interfaces of the interface. An
interface declaration declares zero or more members:

constants,
static constructors, static fields,
static or instance methods, static or instance properties,
static or instance indexers, static or instance events,
operators, and nested types.

All interface members implicitly have public access, but it can be
changed using explicit access modifiers. An interface member can also
include other modifiers such as abstract or new, depending on their
specific types.

When an interface declares a method, property, indexer, or event
member with the same name or signature as an inherited member, the
derived interface member is said to hide the base interface member. To
suppress a compiler warning, the declaration of the derived interface
member can include a new modifier to indicate that the derived
member is intended to hide the base member.

One can provide a default implementation for a method, property,
indexer, event, and operator member of an interface. If an instance
member has a default implementation, it is considered virtual.
Otherwise, all instance members are abstract by default. In contrast,
all static methods are sealed by default. But, they can be explicitly
declared as abstract or virtual.

A static Main method of an interface can be used as an entry point to a
program. All interface members can be decorated with attributes.

13.2. Interface Members

75

13.2.1. Interface method declarations

Interface methods are declared as follows:

• Optional attributes, and optional (access) modifiers,

• The return type, including void,

• The name of the method,

• A type parameter list, in case of a generic method,

• A formal parameter list, enclosed in parentheses, (and),

• Type parameter constraints, if any, and

• A semicolon ;, or a default implementation.

13.2.2. Interface property declarations

An interface property declaration consists of:

• Optional attributes, and optional (access) modifiers,

• The type of the property,

• The name of the property, followed by

• Interface accessors, enclosed in curly braces { and }.

The accessors of an interface property declaration can end with
semicolons ;, or they can have default implementations. An interface
property accessor can be indicated as read-only, write-only, or read-
write, using the keywords get and set. For example,

public interface IInterface {
 string ReadOnly { get; }
 string WriteOnly { set; }
 string ReadWrite { get; set; }
}

13.2. Interface Members

76

13.2.3. Interface indexer declarations

An interface indexer declaration:

• Optional attributes, and optional (access) modifiers,

• The type of the element,

• The keyword this,

• A formal parameter list, enclosed in square brackets, [and], and

• Interface accessors, as defined above.

13.2.4. Interface event declarations

Interface events are declared as follows:

• Optional attributes, and optional (access) modifiers,

• The keyword event,

• The type and name of the event, and

• A semicolon ;, or a default implementation.

13.2.5. Other member types

In addition, an interface can include constants, static constructors,
static fields, operators, and other nested types. They are more or less
identical, both syntactically and semantically, to those found in classes,
records, and structs, with the exception of their default access
modifiers. Static methods and operators are further discussed in the
next section.

13.2.6. Interface member access

A method, property, or event member M of an interface I is accessed via
member access expression of the form I.M. In case of an indexer
argument list A, it is accessed as I[A].

13.2. Interface Members

77

13.3. Interface Static Members
Static method, property, indexer, and event members, as well as
operators, of an interface are implicitly non-virtual and sealed.

13.3.1. Static abstract and virtual members

As of C# 11, the static method, property, indexer, event, and operator
members of an interface can now be declared as abstract or virtual.
They can also be explicitly declared as sealed to indicate its non-
abstract/non-virtual nature.

Classes, records, and structs that implement an interface with
abstract members are required to provide implementations of these
members. The static members, just like instance members, can then be
accessed off of type parameters that are constrained by the interface.

13.3.2. Accessing static abstract interface members

When T is constrained by an interface I and M is an accessible static
abstract or virtual member of I, M may be accessed on a type
parameter T as T.M. For instance,

interface I1<T> {
 static virtual T Meth() => default; ①
}

① A static virtual method, with a (literally) default implementation.

interface I2<T> {
 static abstract T Prop { get; } ①
}

① A static abstract read-only property.

13.3. Interface Static Members

78

class C<T> : I2<T> where T : I1<T> { ①
 public static T Prop => T.Meth(); ②
}

① T : I1<T> is an interface type constraint.

② Note the syntax, T.Meth(). We can use the type parameter T to
access a static virtual or abstract member as if it is a real type.

13.3.3. An example and an informal explanation

This new feature will likely see many different uses in the coming days,
but it will be instructive to review the primary use case that prompted
this change in the first place. As far as .NET is concerned, the canonical
example is generic math, which was released with C# 11 as a showcase
for the use of static abstract/virtual members in an interface.

Let’s do something similar for demonstration. Let’s suppose that we
have a number of different types for representing natural numbers.
(And, in fact, we do in C#, e.g., ushort, uint, and ulong.) We may even
want to add an infinite-precision natural number type in the future.
Now, the task is to implement a Sum method, which takes a pair of
arguments of a natural number type and returns its sum.

Just to be clear, it’s not about math. We will end up using operator
overloading (for +) in this example, but again it’s not about operators or
binary operations. It’s really about an abstraction that does not
naturally fit into the OOP style. If you want to design a negate function
for a number type A, for instance, it is natural to declare it as an
instance method for A. That is, we can do something like a.negate()
for a of type A. But, what about addition? Like a plus b? In the hard-core
OOP style, we will have to implement it as a method, for example,
something like a.Add(b). This is, however, rather unnatural since you
have to arbitrarily pick one of the operands as the "object". It will be a
lot more natural to implement it as a non-object oriented function, like

13.3. Interface Static Members

79

Add(a, b). In C#, static methods are really functions. (And, operators
are just (special kind of) static methods.) Now, as of C# 11, we can do a
lot more with static methods, including declaring them as part of public
interface and being able to override them when necessary, etc.

Going back to our toy problem, let’s start from the top. Here’s the Sum
function that we would like to ultimately implement.

public static class Demo<T> where T : INat<T> {
 public static T Sum(T l, T r) => l + r;
}

This static class Demo is implemented as a generic type with parameter
T. The implementation of Sum relies on the fact that we can add two
values of type T. We will need to add that requirement as a generic type
constraint. In this example, we use an interface type constraint, T :
INat<T>. So, how should we define INat<T>? Here’s our solution:

public interface INat<T> where T : INat<T> {
 static abstract T operator +(T l, T r);
}

First of all, it should be noted that we could not have done this before
C# 11 when static methods were not part of interface-defined API. This
is only possible now because we have static virtual and static abstract
methods that are a genuine part of the interface.

Second, there is a strange-looking pattern in this generic interface
declaration. The type argument T of INat<T> is constrained to be a type
that inherits or implements INat<T> itself. This is idiomatic. If you look
at our Demo<T> above, T should be constrained to be of INat<T> to
support the desired add (+) operation. Clearly, INat<T> itself has to
support the same operation (as an interface static method) with the
same constraint for T. Hence, this idiomatic pattern.

13.3. Interface Static Members

80

Let’s create a type that implements INat<T>. Here’s an example:

public struct NatNum : INat<NatNum> {
 public NatNum(uint v = 0u) => V = v;
 public uint V { get; set; }
 static NatNum INat<NatNum>.operator +(NatNum l, NatNum r)
=> new NatNum(l.V + r.V);
}

Now, the kicker is that the Sum function that we implemented earlier
just works with this new type.

var (a, b) = (new NatNum(1), new NatNum(2));
var sum = Demo<NatNum>.Sum(a, b);
Console.WriteLine($"sum = {sum.V}");

We will leave it as an exercise to the readers to try and create a few
different types that implement INat<T>, including an infinite precision
natural number type, and test their values with the Sum function.

13.4. Default Implementations
An interface can provide default implementations for its (static or
instance) members. A class, record, or struct that implements such an
interface is required to have a single most specific implementation for
the interface method, either directly implemented by the class, record,
or struct, or inherited from its base types or interfaces.

This enables API authors to add methods to an interface in later
versions without breaking source or binary compatibility with existing
implementations of that interface.

13.4. Default Implementations

81

13.5. Interface Implementations
C# also supports explicit interface member implementations, which use
the fully qualified names for the interface members. For example,

public interface ICoder {
 void Code(string lang);
}
public class ChatBot: ICoder {
 void ICoder.Code(string lang) {
 // ...
 }
}

Explicit interface members can only be accessed via the interface type.
For example, the implementation of ICoder.Code provided by the
ChatBot class can only be invoked via the ICoder interface type.

ICoder smartChatBot = new ChatBot(); ①
smartChatBot.Code("C#"); ②

① The variable, smartChatBot, is declared as the ICoder type, and not
as ChatBot, in this example.

② We can call the method Code declared in the ICoder interface on
this variable smartChatBot.

13.5. Interface Implementations

82

Chapter 14. Objects
System.Object is the ultimate base class of all .NET classes (including
records, structs, and enums, etc.).

public class Object {}

Every method defined in Object is available in all objects. Derived
classes can, and many do, override some of these methods.

For example,

Equals Supports comparisons between two objects.
The default implementation uses simple
reference comparison.

GetHashCode Generates a unique number corresponding
to the value of the object to support the use
of a hash table.

ToString Returns a human-readable text string that
describes an instance of the class.

Finalize Performs cleanup operations before an
object is garbage-collected. As stated in the
beginning, the use of a Dispose method is
generally preferred over finalizers.

MemberwiseClone Creates a shallow copy of the current object.

In addition, Object includes the default and copy constructors as well
as some other default implementations, which can be used by any class
in the .NET system.

83

Chapter 15. Arrays
An array is a builtin reference type which contains zero, one, or more
elements of a single type. An object of an array type can be dynamically
created at run time using the new operator, e.g., by specifying the length
of the new array and its element type. The length of an array object
cannot be changed once created.

15.1. Array Types
An array type can be declared, syntactically, with an element type
followed by a pair of square brackets ([]). E.g., int[].

15.1.1. System.Array

All array types inherit from the abstract base class, System.Array,
which itself is not an array type. An implicit reference conversion exists
from any array type to Array. Likewise, an explicit reference
conversion exists from Array to any array type.

15.1.2. Generic collection interfaces

A single-dimensional array T[] implements the interfaces IList<T>
and IReadOnlyList<T>, and their base interfaces. Therefore, T[] can
be implicitly converted to IList<T> or IReadOnlyList<T>, or to any
of their base interfaces.

More generally, if a type S can be implicitly converted to a type T, then
S[] implements both IList<T> and IReadOnlyList<T>, and S[] can
be implicitly converted to IList<T> or IReadOnlyList<T>, or to any
of their base interfaces. Likewise, if a type S can be explicitly converted
to a type T, then can be explicitly converted to IList<T> or
IReadOnlyList<T>, or to any of their base interfaces.

15.1. Array Types

84

15.1.3. Multidimensional arrays

An array is an inherently linear data structure. Its elements are stored
in a linear contiguous memory space. C# also supports multi-
dimensional arrays as a generalization of one-dimensional arrays.

Syntactically, a series of commas are used between the square brackets
of an array type. The number of commas plus one denotes the number
of dimensions of the array type, called the rank. The following example
allocates a one-dimensional, a two-dimensional, and a three-
dimensional array.

int[] a1 = new int[10];
int[,] a2 = new int[10, 5];
int[,,] a3 = new int[10, 5, 2];

The a1 array contains 10 elements, the a2 array contains 50 (10 * 5)
elements, and the a3 array contains 100 (10 * 5 * 2) elements.

The element type of an array can be any type, including an array type.
A one-dimensional array with elements of another one-dimensional
array type is sometimes called a jagged array. The following example
allocates an array of arrays of int:

int[][] a = new int[3][];
a[0] = new int[10];
a[1] = new int[5];
a[2] = new int[20];

The first line creates an array with three elements, each of type int[]
and each with an initial value of null. The subsequent lines then
initialize the three elements with references to individual array
instances of varying lengths.

15.1. Array Types

85

15.2. Array Creation
The new operator initializes all elements of an array to the element
type’s default value, which, for example, is "zero" for a numeric type
and null for a nullable reference type. For example,

int[] a = new int[3]; ①

① All 3 elements of a are initialized with int 0.

Alternatively, the new operator can be used with an array initializer, in
which the initial values of the array elements are specified between a
pair of curly braces { and }. The following example allocates and
initializes an int[] with 3 elements.

int[] a = new int[] {1, 2, 3}; ①

① Since the length of the array can be inferred from the number of
value between { and }, we need not explicitly specify the length.

Local variable and field declarations can be shortened further such that
the array type does not have to be explicitly specified again.

int[] a = new[] {1, 2, 3}; ①
char[] b = {'x', 'y', 'z'}; ②

① No explicit type needs to be specified when the type is known.

② We can even drop new[]. This is a special syntax for arrays.

An empty array can be created as follows:

var empty = Array.Empty<int>();

15.2. Array Creation

86

15.3. Array Elements

15.3.1. Indexing

The elements of an array can be accessed through indices, from 0 to
length - 1. For example,

int[] a1 = new[] { 1, 1, 2, 3, 5 };
for (var i = 0; i < a1.Length; i++) {
 Console.WriteLine($"{i}: {a1[i]}"); ①
}

① The loop variable i is used to access the i-th element of a.

An array can also be enumerated using a foreach statement.

15.3.2. Slicing

An array, and other sequence collection types, support both indexing
and slicing operations, e.g., through the System.Index and
System.Range types and their methods. For example,

int[] a2 = { 2, 4, 6, 8, 10 };
Array.ForEach(a2[..2], Console.WriteLine); ①
Array.ForEach(a2[1..4], Console.WriteLine); ②
Array.ForEach(a2[^2..], Console.WriteLine); ③

① a2[..2] selects the first two items of a2.

② a2[1..4] selects items of indices, 1, 2, and 3.

③ a2[^2..] selects the last two items.

15.3. Array Elements

87

Chapter 16. Spans and
ReadOnlySpans
System.Span<T> and System.ReadOnlySpan<T> enable read-write
and read-only access to contiguous regions of memory, respectively.
They are comparable to, and have similar performance characteristics
of, the builtin array types.

16.1. System.Span<T>
Span<T> is a generic ref struct, a value type, representing a contiguous
region of arbitrary memory in a type-safe and memory-safe way.

The Span<T> indexer is declared with a ref T return type, which
provides semantics like that of indexing into arrays, returning a
reference to the actual storage location rather than returning a copy of
what lives at that location:

public ref T this[int index] { get { ... } }

16.2. System.ReadOnlySpan<T>
ReadOnlySpan<T> is also a generic ref struct similar to Span<T>, but it
is readonly.

The ReadOnlySpan<T> indexer returns a ref readonly T instead of a
ref T, enabling it to work with immutable data types like string.
ReadOnlySpan<T> makes it very efficient to slice strings without
allocating or copying.

public ref readonly T this[int index] { get { ... } }

16.1. System.Span<T>

88

Chapter 17. Tuples
C#'s tuples are a builtin value type corresponding to the generic types,
System.ValueTuple<T1, T2, …>, on .NET. (Note that, in contrast,
System.Tuple<T1, T2, …> are reference types.) A tuple provide
concise syntax to group one or more data elements in a lightweight data
structure. One of the most common use cases of a tuple is to "return
multiple values" from a method (e.g., instead of using out parameters).

To define a tuple type, you specify types of all its fields and, optionally,
the field names, within a pair of parentheses. Tuple elements are public
fields. Hence tuples are mutable value types. For example,

var copa = (2022, "World Cup"); ①
(int age, bool isTall) = (21, true); ②

① The variable copa is initialized with (2022, "World Cup"), whose
type is (int, string) (or, System.ValueTuple<int, string>).

② A tuple (21, true), whose type is (int, bool) (or,
System.ValueTuple<int, bool>), is deconstructed and the
variables age and isTall are initialized with the tuple’s elements.

17.1. Tuple Fields
Unnamed tuple fields can be accessed with the default names, Item1,
Item2, and so on., from the left. Any alternative, and presumably more
meaningful, field names can be explicitly specified in a tuple
initialization expression, using the name:value syntax. The field names
can also be specified in the definition of a tuple type.

In some cases, the field names can be inferred from the names of the
corresponding variables in a tuple initialization expression. This is
known as tuple projection initializers. For example,

17.1. Tuple Fields

89

var t1 = ("dog", 9.5); ①
var t2 = (First: 3, Second: "world"); ②
int wins = 5;
int losses = 1;
var t3 = (wins, losses); ③
var x = new {Country: "USA", Code: "US"}
var t4 = (x.Country, x.Code); ④

① The fields of t1, of type (string, double), have the default
names, Item1 and Item2, respectively.

② The two fields of t2 can be accessed as t2.First (or, t2.Item1)
and t2.Second (or, t2.Item2), respectively. The field names are not
part of the type.

③ The tuple field names can be inferred in expressions like this. The
first field of t3 has names wins or Item1. Likewise, the second field
has names losses or Item2.

④ Likewise, the names of the fields of t4 are Country or Item1 and
Code or Item2, respectively.

17.2. Tuple Equality
Tuple types support the == and != operators. These operators compare
their respective members following the order of tuple elements. Tuple
assignment and tuple equality comparisons don’t take field names into
account.

Two tuples are comparable when both of the following conditions are
satisfied:

• Both tuples have the same number of elements, and

• For each tuple position, the corresponding elements from the left-
hand and right-hand tuple operands are comparable with the ==
and != operators.

17.2. Tuple Equality

90

For example, all three Console.WriteLine() calls in the following
example will print true:

Console.WriteLine((1, 2) == (1, 2));
(byte a, int b) t1 = (1, 2);
(short a, long b) t2 = (1, 2);
Console.WriteLine(t1 == t2);
var t3 = (Left: 1, Right: 2);
var t4 = (Right: 1, Left: 2);
Console.WriteLine(t3 == t4);

17.3. Tuple Deconstruction
A value of one tuple type can be assigned to another tuple type if:

• Both tuple types have the same number of elements, and

• Each element on the right hand side is assignable to the
corresponding element on the left hand side.

C# supports deconstructing tuples, along with some other data types
(e.g., records), which lets you unpackage all items in a tuple in a single
operation. Here’s a simple example of tuple assignment and
deconstruction.

(short, short) point1 = (1, -1); ①
(int, int) point2 = point1; ②
(uint, int) point3 = ((uint, int)) point1; ③
long x1 = 0, y1 = 0;
(x1, y1) = point2; ④

① The type of variable point1 is (short, short).

② The value point1 can be assigned to point2 because short and
short are implicitly convertible to int and int, respectively.

17.3. Tuple Deconstruction

91

③ An explicit conversion is required to assign point1 to point3
because short is not implicitly convertible to uint.

④ A tuple can be deconstructed in assignment. The type of x1 and y1 is
long. int can implicitly convertible to long.

As tuples are often used to "return multiple values" from a method,
tuple deconstruction is also commonly used to assign the multiple
returned values to multiple variables in one go.

17.3.1. Assignment and declaration in the same
deconstruction

The assignment and initialization statements syntactically distinct, but
conceptually they are more or less equivalent. Initializations involve
variable declarations and initial value assignments. As of C# 10, one can
combine assignment and initialization through deconstruction in one
statement. For example,

int min = 0; ①
(min, int max) = (33, 77); ②

① The variable min is declared here, and it is initialized with value 0.

② This statement is a combination of an assignment (for the existing
variable min) and a variable initialization (for a new variable max).
This kind of statement is often informally called a "multiple
assignment", regardless of whether variables are assigned or
initialized, since multiple variables (min and max in this example)
end up being assigned new values in one statement.

17.3.2. Discard variables

When deconstructing a tuple or calling a method with out parameters,
you may not be interested in all elements of a given tuple. In this kind
of scenarios, you can use discards to ignore certain variables that you

17.3. Tuple Deconstruction

92

do not intend to use. A discard is a write-only variable whose name is _
(the underscore character). The discard variables can be used more
than once in a single deconstruction or out variable.

For example,

static (int year, bool olympic, bool worldcup)
 SportsYear(int year) => (year, false, true); ①
var (year, _, copa) = SportsYear(2026); ②
Console.WriteLine($"Year: {year}, World Cup: {copa}");

① This function returns a tuple of type (int, bool, bool).

② Since we are only interested in year and worldcup, we ignore the
second element using a discard variable _.

17.3.3. Deconstruct method

C# has built-in support for deconstructing tuples, records, and
DictionaryEntry types. One can also provide a similar deconstruction
for any type by implementing a Deconstruct method. The method
returns void, and each value to be deconstructed is indicated by an out
parameter in the method signature.

The Deconstruct method can be overloaded to allow an object of the
given type to be deconstructed into multiple different combinations of
variables and types. One can also add a Deconstruct method to an
existing type as an extension method.

17.3. Tuple Deconstruction

93

Chapter 18. Enums
An enum, or enumeration, is a value type defined by a set of (named)
constants. All enum types inherit from the System.Enum abstract base
class, which in turn inherits from type System.ValueType. Enum is
itself not an enum type, and automatic boxing and unboxing
conversions are supported from any enum type to Enum and from Enum
to an enum type, respectively.

18.1. Enum Declarations
To define a new enum type, an enum declaration is used, as follows:

• Optional attributes, and an optional access modifier,

• The enum keyword,

• An enum type name, and

• Optional underlying type specification, followed by

• An enum body that includes the named members of the enum.

The following example declares an enum type Crypto with three
constant values, Bitcoin, Ether, and Ripple.

enum Crypto {
 Bitcoin,
 Ether,
 Ripple, ①
}

① The trailing comma, e.g., for the last member, is optional.

These 3 constants have values of 3 consecutive numbers, 0, 1, and 2, of
the int type starting from Bitcoin. One can also assign an explicit
integral value(s) to a specific member(s) using an assignment syntax.

18.1. Enum Declarations

94

Each member can be accessed through the usual member access syntax
(the "dot notation"). For instance, we can refer to the zero-th element of
Crypto as Crypto.Bitcoin.

18.2. Underlying Types
Each enum type has a corresponding underlying type. By default, an
enum type’s underlying type is int unless it is explicitly specified in the
enum declaration. The underlying type must be one of the integral types
other than char. For instance, the following example declares an enum
type named USCoin with an underlying type of byte.

enum USCoin: byte {
 Penny = 1, Nickel = 5, Dime = 10, Quarter = 25,
}

Unlike in many other programming languages supporting enumeration
types, C#'s enums are rather permissive in terms of typing. In fact, the
set of values that an enum type can take on is that of the underlying
type, and it is not limited to the explicitly declared named members. For
example, any value of the underlying type of an enum can be cast to the
enum type, and it is a valid enum value of that type.

The reverse is also true. Any member of an enum type can also be
explicitly cast to its underlying integral type. (Note, however, that an
enum type is a distinct and separate type from its underlying type.) For
instance, using the above USCoin example,

var nick = (short)USCoin.Nickel; ①
var coin = (USCoin)10; ②
var doce = (USCoin)12; ③

① The value of nick is 5 of type short.

18.2. Underlying Types

95

② The value of coin is USCoin.Dime.

③ The type of doce is USCoin and it has a value 12.

The default value of any enum type is the integral value zero (0)
converted to the enum type. The integer literal 0 is implicitly converted
to any enum type regardless of whether a named constant
corresponding to zero exists or not. For example, the following is a
valid statement, e.g., without requiring an explicit casting:

USCoin none = 0;

18.3. Enum Modifiers
Enum types do not permit derivation. The modifiers static, sealed,
and abstract therefore do not make sense and they are not allowed
for enum. Otherwise, all other type and access modifiers can be used.

For example, the top-level enum declarations (either within a file scope
or in a namespace) can be public, file, or internal (default). For
nested enums, new, public, protected, internal, and private can
be used. Note that enum members do not have any separately declared
accessibility. All members of an enum type are accessible if that enum
type is accessible.

18.4. Enum Members
An enum type declaration includes zero, one, or more enum members,
whose names should be unique across the given enum type. Enum
members are named and scoped in the same way as the fields within a
class. The scope of an enum member is the body of its containing enum
type. Within that scope, enum members can be referred to by their
simple names.

18.3. Enum Modifiers

96

Each enum member is associated with a constant expression initializer,
whose type should be compatible with the underlying type of the
containing enum type. The type of each member is the given underlying
type, and its value should be in the valid range of this underlying type.

If an enum member is declared with no initializer, then its associated
value is set implicitly:

• If it is the first member declared in the enum type, its associated
value is 0,

• Otherwise, the associated value of the enum member is obtained by
increasing the associated value of the textually preceding enum
member by 1.

Multiple enum members can share the same associated value. For
example,

enum Color : uint {
 Red = 5, ①
 Blue, ②
 Navy = Blue, ③
 // Green = -10, ④
}

① The value of the enum member Red is explicitly set to 5.

② Blue is automatically assigned a constant value 6 since its
immediate preceding member has value 5.

③ The members Color.Blue and Color.Navy have the same 6.

④ Green would have been an invalid member since its associated
value is outside the range of uint.

All members of a given enum type can be iterated over, for instance,
using the foreach statement. Here’s a simple example using the above
Color enum:

18.4. Enum Members

97

foreach(var c in Enum.GetValues(typeof(Color))) {
 Console.WriteLine($"Name: {Enum.GetName(typeof(Color), c)},
Value: {(uint)c}");
}

18.5. Enum Operations
An enum type declaration cannot include method or property
members. But since an enum type (automatically) derives from the
class System.Enum, it can use the inherited methods and properties of
this class.

In particular, the following operators can be used on the values of
enum types:

• Comparison operators ==, !=, <, >, <=, >=,

• Binary +,

• Binary -,

• Logical ^, &, |,

• Bitwise unary ~,

• Prefix and postfix ++, --, and

• The sizeof operator.

18.5.1. Extension methods on enums

Furthermore, extension methods can be defined over enum types.

18.5. Enum Operations

98

Chapter 19. Classes
Classes are one of the most fundamental constructs in C# for creating a
new (reference) type, which structurally defines the state (e.g., fields of
a class) and possible behavior (e.g., methods of a class) of an instance of
the type, also known as an object. A class may contain data members
(constants and fields), function members (methods, properties, events,
indexers, operators, instance and static constructors, and finalizers),
and other nested types.

Class types support inheritance and polymorphism, a mechanism
whereby derived classes can extend and specialize base classes. All
members of a base class, except for constructors and finalizers, are
inherited by derived types.

19.1. Class Declarations
A new class declaration comprises

• A header including

◦ Optional attributes, and other optional class modifiers,

◦ The keyword class or partial class,

◦ The name of the class,

◦ A list of type parameters, if the class is generic,

◦ An explicit base class specification, if any,

◦ Any interfaces that the class implements, and

◦ Type parameter constraints, if needed, followed by

• A class body, which consists of

◦ Member declarations written between the delimiters {}.

• A class declaration can end with an optional semicolon ;.

19.1. Class Declarations

99

The following is a declaration of a class named Point:

public class Point {
 private int x, y; ①
 public Point(int x, int y) { ②
 this.x = x;
 this.y = y;
 }
}

① Private fields.

② A public instance constructor.

19.1.1. Class modifiers

A class declaration can include zero, one, or more access modifiers
and/or other class modifiers: new, abstract, sealed, and static. The
new modifier can be used for nested types only. It specifies that the class
hides an inherited member by the same name.

19.1.2. Abstract classes

An abstract class cannot be instantiated (e.g., using the new operator),
and it is only used as a base class for other classes. Only abstract classes
can include abstract members. When a non-abstract class is derived
from an abstract class, directly or indirectly, the derived class needs to
provide the implementations of all inherited abstract members.

19.1.3. Sealed classes

A sealed class cannot be used as a base class for inheritance. Hence, it
cannot include abstract or virtual members. All C# classes are non-
sealed by default, but it is generally a good practice to mark the classes
as sealed that are not specifically designed to be derived. The compiler
can make certain optimizations on the sealed classes.

19.1. Class Declarations

100

19.1.4. Static classes

The static modifier is used to declare a static class. A static class does
not define a type, and it cannot be instantiated.

• A static class cannot be declared as sealed or abstract.

• A static class declaration cannot include the base class specification.

• A static class cannot cannot implement interfaces.

• A static class can contain only static members. (Note that constants
and nested types are considered static members.)

• A static class cannot have protected, protected internal, or
private protected members.

19.2. Type Parameters
A class declaration that includes a type parameter list is a generic class
declaration. A type parameter is a placeholder for a type argument
supplied to construct a new class. A type argument is substituted for
each type parameter when constructing a specific type. Furthermore,
any class nested inside a generic class, record, or struct declaration is
itself a generic class declaration.

A class definition may specify a set of type parameters by following the
class name with angular brackets <> enclosing a list of type parameter
names. The type parameters can then be used in the body of the class
declarations to define the members of the class. In the following
example, TFst and TSnd are type parameters of a generic class Pair:

public class Pair<TFst,TSnd> {
 public TFst First;
 public TSnd Second;
}

19.2. Type Parameters

101

As stated, when a generic class declaration is used to construct a type, a
type argument must be provided for each type parameter:

var pair = new Pair<string, int> { ①
 Fst = "number",
 Snd = 666,
};
var key = pair.Fst; ②
var val = pair.Snd; ③

① The variable pair is of a type Pair<string, int>. A generic type
with specific type arguments such as Pair<string, int> is called
a constructed type.

② key is a variable of the type string since TFst is string.
pair.Fst, with a dot . operator, is a member access expression.

③ val is an int type since TSnd is int.

19.3. Base Classes

19.3.1. Inheritance

A class declaration may include a direct base class of a class type. Not
specifying an explicit base class in the declaration is the same as
deriving from type object. Except for class object, every class has
exactly one direct base class. The base classes of a class are the direct
base class and its base classes.

The direct base class of a class type shall be at least as accessible as the
class type itself. For example,

public class A {} ①
class B : A {} ②

19.3. Base Classes

102

① The base class of A is implicitly object (System.Object).

② An internal class B derives from A, which has the same or broader
accessibility than B (e.g, public vs internal). Class A is said to be
the direct base class of B in this example.

class C<U,V> {} ①
class D<T> : C<int,T[]> {} ②

① The base class of a generic class C<U,V> is object.

② The generic class D<T>, with type parameter T, inherits from a
constructed class C<int,T[]>, which is a specialization of C<U,V>
with U and V replaced with int and T[], respectively. The direct
base class of a constructed class D<string>, for example, is a
constructed, and non-generic, class C<int, string[]>.

A class inherits the members of its base class. Inheritance means that a
class implicitly contains all members of its base class, except for the
instance and static constructors, and the finalizer of the base class. A
derived class can add new members to those it inherits, but it cannot
remove the definition of an inherited member.

An implicit conversion exists from a class type to any of its base class
types. Therefore, a variable of a class type can reference an instance of
that class or an instance of any derived class.

19.3.2. Interface implementations

A class declaration can also (directly) specify one or more interface
types that the class implements. In case of generic class declarations,
each implemented interface type is obtained by substituting each type
parameter in the given interface with the corresponding type argument
of the constructed type. If there are more than one base class and/or
interfaces specified in a class declaration, they are separated by
commas ,.

19.3. Base Classes

103

For instance, the following example illustrates how a class can
implement and extend constructed types:

class C<U, V> {}
interface I1<V> {}
class D : C<string, int>, I1<string> {}
class E<T> : C<int, T>, I1<T> {}

19.4. Static Constructors
C# supports both instance and static constructors. An instance
constructor implements the actions required to initialize an instance of
a class. A static constructor, on the other hand, implements the actions
required to initialize the class itself.

A static constructor is declared like a method with no return type and
the same name as the containing class. A static constructor declaration
includes a static modifier. Static constructors are called by the
runtime (e.g., .NET), and they cannot be called directly. For example,

public class A {
 public static A() {} ①
 public static void Main() {} ②
}

① The static constructor.

② If the class include a Main static method, the static constructor, if
any, is called first before the Main method is executed.

• A static constructor declaration may include attributes and/or an
extern modifier.

• An external static constructor declaration provides no actual
implementation, and it ends with a semicolon ;.

19.4. Static Constructors

104

• For all other static constructor declarations, the body consists of a
block {}.

19.5. Instance Constructors
Instance constructors are members of a class that prescribe any
initialization actions of instances of the class. Instances are created
using the new expression with an instance constructor, which allocates
memory for a new instance, invokes the constructor, and returns a
reference to the newly created instance.

The following statements create two Point objects and store references
to those objects in two variables:

var p1 = new Point(0, 0);
var p2 = new Point(10, 20);

The memory occupied by an object is automatically reclaimed when the
object is no longer in use. It is neither necessary nor possible to
explicitly deallocate objects in C#.

• An instance constructor declaration may include a set of attributes,
access modifiers, and/or an extern modifier.

• An external constructor declaration provides no implementation,
and its constructor body consists of a semicolon ;.

• Otherwise, the constructor body is a block {}, which specifies the
statements to initialize a new instance of the class.

• An instance constructor declaration may include an optional
constructor initializer which specifies another instance constructor
to invoke before executing the constructor body.

Instance constructors can be overloaded. For example, the List<T>
class declares two instance constructors, one with no parameters and

19.5. Instance Constructors

105

one that takes an int parameter. The following statements allocate two
List<string> instances using each of the two constructors.

var list1 = new List<string>();
var list2 = new List<string>(10);

Unlike other members, constructors are not inherited. If no instance
constructor is supplied for a class, then a default constructor, i.e., with
an empty list of parameters, is automatically provided.

Alternative to the new operator expression, an object initializer creates
an object of a given type and initializes fields or properties of the object
in one statement.

19.6. Finalizers
A finalizer is a method member that implements the actions required to
clean up an instance of a class, after it is used. Finalizers are not
inherited. A class can have at most one finalizer. The finalizer for an
instance is invoked automatically during garbage collection, and the
timing of finalizer invocations is not deterministic. In general, the
using statement provides a better approach to resource cleanup, and
finalizers are not much used in the modern C# programming.

A finalizer is syntactically similar to a parameterless constructor, and it
has the same name as type with tilde ~ as a prefix. Finalizers cannot
have access modifiers. For example,

class WorkingClass {
 ~WorkingClass() {
 Console.WriteLine("Done working. For good.");
 }
}

19.6. Finalizers

106

19.7. Class Members
A class declaration may include constants, fields, methods, properties,
events, indexers, operators, instance constructors, finalizers, static
constructors, and nested types. The members of a class are

• The members declared in the class, and

• The members inherited from the base class.

The members inherited from the base class include

• The constants, fields, methods, properties, events, indexers,
operators, and the nested types of the base class, but not

• The static and instance constructors and finalizers of the base class.

19.8. Constants
A constant is a class member that represents a constant value, that is, a
value that can be computed at compile time. For example,

class A {
 public const double X = 1.0, Y = 2.0, Z = 3.0;
}

This declaration is equivalent to

class A {
 public const double X = 1.0;
 public const double Y = 2.0;
 public const double Z = 3.0;
}

19.7. Class Members

107

19.9. Class Fields
A static or instance field is a variable that is associated with a class or
with an instance of a class, respectively. For example,

class A {
 public static int A = 1, B = 10; ①
 public string greeting = "hello"; ②
}

① A static field declaration.

② An instance field declaration. Note that an interface cannot include
any instance fields.

This is equivalent to

class A {
 public static int A = 1;
 public static int B = 10;
 public string greeting = "hello";
}

Read-only fields may be declared with a readonly modifier.
Assignment to a readonly field can only occur as part of the field’s
declaration or in a constructor in the same class.

19.10. Methods

19.10.1. Method member declarations

A method member implements a computation or action that can be
performed by a class or an object of the class. A method is declared as
follows:

19.9. Class Fields

108

• Method header, comprising

◦ Optional attributes, and optional method modifiers,

◦ Optional keyword partial,

◦ The method return type or void,

◦ The method name,

◦ A type parameter list, if the method is generic,

◦ A formal parameter list within parentheses (), followed by

◦ An optional type parameter constraint clause, and

• Method body, comprising

◦ A method body block,

◦ An expression body ending with a semicolon ;, or

◦ A semicolon ;.

As with many other declarations in C#, only certain combinations of
these parts are syntactically valid. Allowed method modifiers are new,
static, virtual, sealed, override, abstract, extern, and async, in
addition to the access modifiers. Again, only valid combinations of
these modifiers are allowed. A method with the async modifier is an
async method.

19.10.2. Method parameters

Method parameters are described in an earlier chapter, Formal
Parameters. Extension methods are discussed later.

19.10.3. Static and instance methods

When a method declaration includes the static modifier, that method
is a static method. When no static modifier is present, the method is
an instance method. An instance method operates on a given instance
of a class, and that instance can be accessed as this.

19.10. Methods

109

19.10.4. Virtual methods

When an instance method declaration includes the virtual modifier,
that method is a virtual method. The implementation of a virtual
method can be superseded by derived classes. The process of
superseding the implementation of an inherited virtual method is
known as overriding that method.

19.10.5. Override methods

When an instance method declaration includes the override modifier,
the method is said to be an override method. An override method
overrides an inherited virtual method with the same signature. Only an
override method can override an inherited method. Otherwise, the
new modifier should be used, which makes the method hide the
inherited method. If a method with the same signature of an inherited
method is defined without the new modifier, the compiler will issue a
warning.

19.10.6. Sealed methods

A sealed method, with sealed override modifier, overrides an
inherited virtual method with the same signature. Sealed methods
cannot be further overridden by its derived classes.

19.10.7. Abstract methods

A declaration of an instance method including the abstract modifier is
an abstract method. An abstract method is implicitly a virtual
method. Abstract methods are allowed only in abstract classes.

An abstract method declaration introduces a new virtual method but
does not provide an implementation of that method, and its method
body simply consists of a semicolon ;. Non-abstract derived classes are
required to provide their own implementation by overriding the

19.10. Methods

110

abstract method.

19.10.8. External methods

The extern modifier declares external methods, which are
implemented externally. The method body of an external method
simply consists of a semicolon ;.

19.10.9. Method body

The method body of a method declaration can be a block body, an
expression body, or just a semicolon ;.

class Oracle {
 public void Welcome() { } ①
 public int Secret() => 42; ②
 extern string Farewell(int secret); ③
}

① The Welcome method has a block body, which is a block statement.

② The Secret method has an expression body, which consists of a fat
arrow => followed by an expression, an int literal 42 in this case.

③ The extern Farewell method has an empty body ;.

If a method does not return a value, or if it returns an object of the
System.Threading.Tasks.Task type in case of an async method,
then the effective return type of the method is void. If a method returns
a value of type T, or Task<T> in case of an async method, then the
effective return type of the method is T.

• When the effective return type of a method is void,

◦ If the method has a block body,

▪ The return statements cannot include an expression.

19.10. Methods

111

▪ If execution of the method completes normally, that method
simply returns to its caller.

◦ If the method has an expression body, => E,

▪ The expression E must be a statement expression, and the
body is equivalent to a block body of the form { E; }.

• When the effective return type of a method is not void,

◦ If the method has a block body,

▪ Each return statement must include an expression which is
implicitly convertible to the effective return type.

▪ Control cannot flow off the end of the method body.

◦ If the method has an expression body, => E,

▪ The expression E must be implicitly convertible to the
effective return type, and the body is equivalent to a block
body of the form { return E; }.

19.11. Properties
Properties are similar to fields, but they do not denote data storage
locations. Rather, they are (direct or indirect) accessor methods to
stored or computed data. Syntactically, properties are more like
methods with some resemblance to fields.

• Property header, comprising

◦ Optional attributes, and optional property modifiers,

◦ The property type,

◦ The property name, and

• Property body, comprising

◦ An accessor block with an optional property initializer, or

◦ An expression body, ending with a semicolon ;.

19.11. Properties

112

Valid property modifiers are the same as those of methods, with the
same or similar meanings. For example, properties can be static
properties or instance properties, depending on whether they are
declared with the static modifier or not. Likewise, properties can be
virtual or abstract. Or, they can be declared as new, override, or
sealed override, and so forth. Properties, and fields, can also be
marked as required.

Property accessors can be one of get, set, get; set, and get; init.
The corresponding properties are known as the "read-only", "write-
only", "read-write", and "init-only" properties, respectively. Property
initializers may only be specified for auto-implemented properties.

19.11.1. Expression-bodied properties

A property body may consist of an expression body, using the fat arrow
=> syntax. For example,

class WitchOfTheWest {
 public int Age => 42; ①
}

① The syntax is rather similar to that of a parameterless expression-
bodied method, except for the absence of parentheses.

This expression body syntax declares a readonly property. That is, this
class declaration is equivalent to the following:

class WitchOfTheWest {
 public int Age {
 get => 42;
 }
}

19.11. Properties

113

19.11.2. Auto properties

An automatically implemented property (or, auto-property for short), is
a property with semicolon-only accessor bodies. An auto-property can
be readonly (get), read-write (get; set), or init-only (get; init).
When an auto-property is declared, the compiler automatically creates
a hidden backing field, and implements the declared accessors using
that backing field.

class WizardPuppy {
 public string? Name { get; } ①
 public string? Breed { get; init; } ②
 public string? Spell { get; set; } ③
}

① An instance readonly auto-property.

② An instance init-only auto-property.

③ An instance read-write auto-property.

Note that, in this simplified example, all three properties can be null,
or not explicitly set, when we first try to access any of these properties.
Hence, they are declared as nullable types (e.g., nullable string).

An auto-property may optionally have a property initializer, which is
essentially a variable initializer for the underlying backing field. For
example,

class WizardPuppy {
 public string Name { get; } = "Toto";
 public string Breed { get; init; } = "Pug";
 public string Spell { get; set; } = "Meow";
 public WizardPuppy(string name) => Name = name;
}

19.11. Properties

114

Property values can be set, or updated, in the constructor as well,
regardless of whether they are already explicitly set through property
initializers or not. The read-write properties like Spell in this example
can be updated, depending on their accessibility, in other methods
and/or using the property accessor syntax.

Note that the readonly and init-only properties are both read-only
properties. The only difference is that the values of init-only properties
can be additionally set in object initializers whereas that is not
permitted for readonly properties.

19.11.3. Accessor body

In general, the property body can be an accessor body, which consist of
one or two accessor declarations:

• Accessor header, comprising

◦ Optional attributes, and optional accessor access modifiers,

◦ An accessor, e.g.,get, set, or init, and

• Accessor body, comprising

◦ An accessor body block,

◦ An expression body, ending with a semicolon ;, or

◦ A semicolon ;, in case of extern, abstract, or auto-properties.

Valid sets of accessor member access modifiers are determined by the
access modifier of the containing properties. The detailed rules are
omitted, but in general, an accessor cannot be more accessible than its
containing property.

public class WizardOfOz {
 private string residence = "Emerald City";
 private string vehicle = "Hot air balloon";

19.11. Properties

115

 public string Residence { ①
 get => residence; ②
 set => residence = value; ③
 }

 internal string Vehicle { ④
 get { ⑤
 return vehicle; ⑥
 }
 private set { ⑦
 vehicle = value; ⑧
 }
 }
}

① A public property of the string type, with a block body. Since it
includes both get and set accessors, it is a read-write property.

② An expression-bodied get accessor. Its accessibility is public since
its containing property Residence is public.

③ A public expression-bodied set accessor. Note that assignment is an
expression in C#. The identifier value is a contextual keyword,
representing the target value in an assignment expression. For
example, in wizard.Residence = "Omaha", the value is the string
"Omaha".

④ An internal read-write property.

⑤ A get accessor with a block body. Its accessibility is internal.

⑥ Although we simply return the value of a class instance field,
vehicle, in this example, we can implement more complicated logic
in this getter block body.

⑦ A private setter with a block body. The type of value is string, the
same as that of its containing property, Vehicle. Note that one of
the accessors can have a separate access modifier.

19.11. Properties

116

19.12. Indexers
An indexer is an instance member of a class that enables an object of
the class to be indexed with a subscript [] operator, just like array
objects. An indexer is declared like a property except that the name of
the member is this followed by a parameter list between [].

• Indexer header, comprising

◦ Optional attributes, and optional indexer modifiers,

• Indexer declarator, comprising

◦ The indexer element type,

◦ The this or INTERFACE.this, followed by

◦ A formal parameter list within square brackets [], and

• Indexer body, comprising

◦ An accessor definition block body, or

◦ An expression body, ending with a semicolon ;.

An indexer can also be read-only, write-only, or read-write. Valid
indexer modifiers are the same as those of methods or properties,
except that indexers cannot be declared as static. Indexers can be
virtual or abstract, or new, override, abstract override, or
sealed override, and so forth. The formal parameter list specifies the
parameters of the indexer. Indexers can be overloaded just like method
members. That is, a class can declare multiple indexers as long as their
formal parameter lists are different.

19.13. Events
An event member enables an object or class to provide notifications.
Event handlers can be attached to, and removed from, the event using
the += and -= operators, respectively.

19.12. Indexers

117

An event is declared like a (static or instance) field except that the
declaration includes the event keyword and that the type must be a
delegate type. The event field stores a reference to a delegate that
represents the event handlers that have been added to the event. If no
event handlers are present, the field is null. The notion of raising an
event is equivalent to invoking the delegate represented by the event.

Here’s a simple end-to-end example:

delegate void PanicHandler(string message); ①

① A delegate type to be used with our event example.

sealed class PanicButton {
 public event PanicHandler Click; ①
 public PanicButton() => ②
 Click += new PanicHandler(HandlePanic);
 public void DoPanic(string message) => ③
 Click(message);
 static void HandlePanic(string message) => ④
 Console.WriteLine(message);
}

① An event member of the delegate type PanicHandler.

② A public constructor, in which we initialize the event member
Click. The += operator is used to assign a delegate object, the
HandlePanic static method in this example.

③ A test method used to raise an event. A delegate is callable.

④ An example event handler.

var button = new PanicButton();
button.DoPanic("We're not in Kansas anymore"); ①

19.13. Events

118

① Testing the event. This will simply print out the message argument
to the console, per our simple implementation.

19.14. Operators
An operator member is a public and static method that defines the
meaning of applying a particular expression operator to instances of a
class. Note that C# has a set of operators predeclared for overloading,
and operator overloading does not use the new static method
overriding framework.

19.15. Operator Overloading
There are three categories of overloadable operators.

Unary Operators

• The method takes a single formal parameter.

• The name comprises the keyword operator followed by an
operator symbol:

◦ +, -, !, ~, ++, --, true, and false.

Binary Operators

• The method takes two formal parameters.

• The name comprises operator and an operator symbol:

◦ + , - , * , / , % , &, |, ^ , <<, >>, ==, !=, >, <, >=, <=`

Conversion Operators

• The method takes a single formal parameter.

• The name comprises

◦ Either implicit operator or explicit operator for
implicit and explicit conversions, respectively, followed by

◦ The class name.

19.14. Operators

119

19.16. Nested Types
A nested type is a type defined within another type. The default
accessibility of a nested type is always private regardless of the kind
of the containing type, e.g., class, record, struct, or interface.

For example,

public class Outer {
 struct Secret { } ①
 public class Shared { } ②
}

① The accessibility of Secret is private, and it can only be accessed
within the containing class Outer.

② Shared is declared as public. The full name of this nested type is
Outer.Shared. For instance, an instance of this class can be created
with new Outer.Shared().

Nested types can be nested. For instance,

var voice = new Child.Inner.Voice(Tone: "Baritone");
public class Child {
 public class Inner {
 public record Voice(string Tone);
 }
}

A nested type can access all the members that are accessible to its
containing type, including the containing type’s private and
protected members.

19.16. Nested Types

120

Chapter 20. Records
A record class, or record for short, is an immutable reference type
that provides synthesized methods to support value semantics for
equality. Records are primarily used for creating, storing, and
manipulating simple, immutable data that contains a fixed set of values.
C# provides a concise syntax for creating and using records. In
particular, it supports the positional parameters for creating record
types. That is, one can use the positional record syntax, to declare and
create a record with init-only properties.

Records are distinct from classes in various respects. Most importantly,
records supports value-based equality by default. Two objects of a
record type are equal if the record type definitions are identical, and if
for every field, the values in both records are equal. On the other hand,
two variables of a class type, which uses the reference-based equality by
default, are equal if the objects they refer to are the same object.

When you define a record type, the compiler synthesizes several
members of the record, e.g., for copying and comparing records:

• Methods for value-based equality comparisons,

• Override for System.Object.GetHashCode,

• Copy and Clone members, and

• PrintMembers and System.Object.ToString.

Furthermore, when you declare a positional record, the compiler
synthesizes additional methods:

• A primary constructor whose parameters match the positional
parameters on the record declaration,

• Public init-only properties for the positional parameters, and

• A Deconstruct method to extract properties from the record.

121

Here’s an example of a record class using the positional syntax:

public record Book(string Title, decimal Price);

This record can be used as follows, for instance:

var book = new Book("C# Mini Reference", 9.99m);

20.1. Record Declaration
A new record class can be declared in two different ways: With and
without a record body. Here’s a record declaration syntax.

• A header including

◦ Optional attributes, and optional record modifiers,

◦ The keyword record, record class, partial record, or
partial record class,

◦ The name of the record,

◦ An optional type parameter list,

◦ An optional positional parameter list,

◦ An explicit base record specification, if any,

◦ Any interfaces that the record implements, and

◦ Type parameter constraints, if needed, followed by

• A semicolon ;, or

• A record body, which consists of

◦ A list of member declarations within the delimiters {}, and

◦ An optional semicolon ;.

20.1. Record Declaration

122

Record parameters can use in and params modifiers. But, out and ref
modifiers (as well as this-kind modifiers for extension methods) are
not allowed. All positional properties are immutable. A positional
record declaration, record Team(string Country, int Rank), for
example, is more or less equivalent to the following:

record class Team {
 public string Country { get; init; } = default!;
 public int Rank { get; init; } = default!;
}

20.2. Inheritance
Classes can only inherit from classes and records can only inherit from
records (other than object). Records can also be sealed to prevent
further derivation.

A derived record declares positional parameters for all parameters in
the base record primary constructor. The base record declares and
initializes those properties. The derived record does not hide them, but
only creates and initializes properties for the parameters that are not
declared in its base record. Here’s a simple example:

abstract record Person(string FirstName, string LastName);

record Teacher(string FirstName, string LastName, int Grade)
 : Person(FirstName, LastName); ①

① Record Teacher inherits from the abstract record Person. Teacher
includes an init-only positional property Grade, but not FirstName
and LastName. These two properties are inherited from Person.

20.2. Inheritance

123

20.3. Primary Constructors
A record type which has at least one positional parameter has a public
constructor whose signature corresponds to those parameters. This is
called the primary constructor for the type, and it hides the implicitly
declared default constructor, if present. When invoked through the new
operator, the primary constructor

• Executes the instance initializers appearing in the record body, and

• Invokes the base class constructor with the arguments provided in
the base record clause, if specified.

If a record has a primary constructor with more than one positional
parameters, then any user-defined constructor, except for a copy
constructors, must have an explicit this constructor initializer.

20.4. Immutability
A positional record automatically declares init-only properties, based
on the positional parameters, which are immutable. Compiler-
generated methods are implemented such that they preserve the
record’s immutability.

Read-only properties, whether created from positional parameters or
explicitly specified via readonly or init-only accessors, have shallow
immutability. After initialization, you cannot change the values of these
properties. However, the data that a reference-type property refers to
can still change, e.g., via other references pointing to the same data.

20.5. Value Equality
In general, the kind of type you declare governs how equality is defined
unless you override or replace equality methods:

20.3. Primary Constructors

124

• For class types, two objects are equal if they refer to the same object.

• For struct types, two objects are equal if they are of the same type
and store the same values. This relies on reflection on run time.

• For record types, two objects are equal if they are of the same type
and store the same values. This relies on the compiler-synthesized
methods based on the declared data members.

20.6. Record Deconstruction
For records with two or more positional parameters, the compiler
produces a Deconstruct method. The Deconstruct method has out
parameters that match the names of all public properties in the record
type, including all positional properties. The Deconstruct method can
be used to deconstruct the record into its component properties.

When a record has a base record, the Deconstruct method includes all
positional parameters including those inherited from the base record.

20.7. Non-Destructive Mutations
Record classes and record structs support with expressions. A with
expression with a record-type argument instructs the compiler to create
a copy of the given record, but with specified properties modified. You
use the object initializer syntax to specify the values to be changed. The
with expression can set positional properties or the init or set
accessor properties. The result of a with expression is a shallow copy.

You can also use with expressions to create a (shallow) copy of a
record. For example,

var copied = TemperatureRecord with { };

20.6. Record Deconstruction

125

Chapter 21. Structs
In C#, value types like bool, char, and double can be created using
structs. Unlike these simple types, however, structs are compound data
types that can contain data members and function members.

Structs, or structures, are rather similar to classes and record classes in
the way they are declared and used, with some crucial differences. For
example, a variable of a struct type directly stores the data of the struct,
whereas a variable of a class/record type stores a reference to a
dynamically allocated object on the heap. In particular, with the
exceptions of in, out, and ref parameters, it is not possible to create
references to structs.

Furthermore, struct types do not support inheritance, and all struct
types implicitly inherit from type System.ValueType. Here’s a simple
example of struct.

struct Point {
 public int x, y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

Generally speaking, copying the entire value of a (large) struct is less
efficient than copying an object reference. That is, assignment,
parameter passing, and returning values can be more expensive with
structs than with classes or other reference types.

On the flip side, since the variables of a struct type have their own
copies of the data, it is not possible for operations on one to affect the
others. In case of classes or records, which uses reference semantics, an

126

operation on one variable can potentially affect the same object
referenced by other variables. This can cause some unexpected, and
possibly undesirable, behavior, especially in a multi-threading
environment. For example,

var a = new Point(0, 5); ①
var b = a; ②
a.x = 100; ③
Console.WriteLine(b.x); ④

① A value is created through the new operator.

② The assignment of a value creates a new and separate copy. b is a
Point struct which has the same value as value as a.

③ Updating the value of a does not affect the value of b. If Point were
a class, then a and b would have pointed to the same object in
memory and it would have ended up changing the member value x.

④ This will print out 0, not 100, as expected.

21.1. Struct Declarations
A struct declaration statement comprises, in the following order:

• A header including

◦ Any attributes, and any struct modifiers such as new, readonly,
ref, and record, including access modifiers,

◦ The keyword struct or partial struct,

◦ The name of the struct,

◦ A list of any type parameters, if it is a generic declaration,

◦ An optional positional parameter list,

◦ Specification of any interfaces that the struct implements, and

21.1. Struct Declarations

127

◦ Any type parameter constraints, if needed for any of the type
parameters, followed by

• A struct body, which consists of

◦ A list of member declarations within curly braces {}.

A struct declaration is largely similar to that of a class or record, and
the meanings of each corresponding component are more or less the
same. One of the biggest differences is that a struct declaration cannot
specify an explicit base type. All structs inherit from ValueType, which
in turn inherits from Object. On the other hand, a struct can directly
implement one or more interface types.

Another major difference from the class declaration is that a struct can
be declared as readonly. A readonly struct type is immutable.

• All data members of a readonly struct must be read-only:

◦ Any field declaration must have the readonly modifier.

◦ Any property must be read-only, either readonly or init-only.

• All other instance members, with the exception of constructors, are
implicitly readonly.

A struct cannot be declared as static. Record structs and)) are
discussed later in this chapter, along with ref structs and readonly ref
structs. The new modifier has the same semantics as in the class
declaration, and it can only be used with nested struct types.

21.2. Struct Members

21.2.1. Struct constructors

Structs are created by invoking struct constructors with the new
operator. However, unlike in the case of reference types, the new
expression does not necessarily allocate dynamic memory on the heap.

21.2. Struct Members

128

Instead, a struct constructor simply returns the struct value itself, e.g.,
created on the stack.

As of C# 10 and C# 11, there have been some big improvements on the
way the struct-type values are created. In many ways, struct
constructors are now more in line with class constructors. In addition,
structs now support the positional record constructor syntax, using the
record modifier, which was initially introduced for record classes.

Public parameterless instance constructors, and instance field and
property initializers, can now be included in struct declarations, across
all different struct kinds, struct, readonly struct, ref struct,
readonly ref struct, record struct, and readonly record
struct. If no parameterless instance constructor is declared, one is
implicitly provided by the compiler which returns the value that results
from setting all fields to their zero values.

21.2.2. Auto default structs

Beginning with C# 11, any fields that are not explicitly assigned by the
user in struct constructors are automatically initialized with their
default values.

21.2.3. Struct members

The members of a struct are the members declared in the struct in
addition to the inherited members from ValueType and Object. A
struct can include constants, fields, properties, methods, events,
indexers, operators, other nested types, as well as static and instance
constructors. Finalizers are not supported in structs, however.

21.2.4. Readonly instance members

As a generalization of the readonly struct, any (non-readonly) struct
can include readonly instance members.

21.2. Struct Members

129

21.3. Ref Structs
A ref struct, or readonly ref struct, cannot be boxed. Once
created, it remains on the stack throughout its lifetime. A ref struct
can’t be the element type of an array. A ref struct variable can’t be
captured by a lambda expression or a local function. A ref struct
variable can’t be used in iterators. In addition, ref structs cannot
implement any interfaces. A ref struct can be made disposable (e.g.,
in the context of the using statement) by including an accessible void
Dispose() method.

Furthermore, as of C# 11, you can declare a ref or ref readonly field
in a ref struct.

21.4. Record Structs
Value type records can be created using the record struct or
readonly record struct declarations. Record struct types are value
types, like other struct types. Record structs cannot be declared as ref
structs. Record struct parameters can use in modifier, but not out or
ref. The params array parameter is permitted.

Positional properties are immutable in record classes and readonly
record structs, but they are mutable in record structs.

record struct Grade(string Name, decimal Score);

The Grade struct includes two read-write properties, Name and Score.

readonly record struct Secret(string User, string Pass);

The Secret struct includes two init-only properties, User and Pass.

21.3. Ref Structs

130

Chapter 22. Extension Methods
An extension method is a static method

• Which is defined in a non-generic, non-nested static class, and

• Whose first parameter includes modifiers this, in this, or ref
this, but no others. (Semantics of in and ref modifiers are
described in the formal parameters chapter.)

An extension method may be invoked using the instance method
invocation syntax, with the receiver expression as the first argument.

22.1. this Extension Methods
this T self

T can be any type, either value types or reference types, or generic
type parameters.

This type of extension methods use the default call-by-value semantics.
In case of value types, the values are copied. In case of reference types,
the references are copied, but they point to the same object. Here’s an
example value type:

record struct Tick(int Seconds); ①

① We deliberately use a mutable type for illustration.

Here’s a this type extension method:

static class ExtensionV1 {
 public static int TickThis(this Tick self) =>
++self.Seconds;
}

22.1. this Extension Methods

131

Here’s a simple demo program:

var tick = new Tick(10);
var (s0, s1, s2) = (tick.Seconds, tick.TickThis(),
tick.Seconds);
Console.WriteLine($"{s0}, {s1}, {s2}");

This will print out 10, 11, 10. This is because Tick is a value type. What
happens inside the extension method does not affect its value outside
the method.

Here’s the same example with a class, which is a reference type:

record class Tock(int seconds) {
 public int Seconds { get; set; } = seconds;
}
static class ExtensionR {
 public static int TockThis(this Tock self) =>
++self.Seconds;
}
var tock = new Tock(10);
var (t0, t1, t2) = (tock.Seconds, tock.TockThis(),
tock.Seconds);
Console.WriteLine($"{t0}, {t1}, {t2}");

This program will print out 10, 11, 11. This is because Tock is a
reference type. Pass-by-value semantics have different implications for
reference types.

22.2. ref this Extension Methods
ref this T self

T must be a struct type or a generic type parameter constrained to be
a struct.

22.2. ref this Extension Methods

132

The ref parameters use pass-by-reference semantics. Here’s an
example, using the same mutable value type, Tick,

static class ExtensionV2 {
 public static int TickRefThis(ref this Tick self) =>
++self.Seconds;
}
var tick = new Tick(10);
var (r0, r1, r2) = (tick.Seconds, tick.TickRefThis(),
tick.Seconds);
Console.WriteLine($"{r0}, {r1}, {r2}");

The output of this program will be 10, 11, 11. Similar to the reference
type Tock, the extension method with ref this parameter ends up
modifying the original value of the value tick.

22.3. in this Extension Methods
in this T self

T must be an actual struct type.

Here’s an example of the in this extension methods:

static class ExtensionV3 {
 public static int TickInThis(in this Tick self) =>
self.Seconds;
}

The in modifier has the same effect as the ref modifier. Both make the
modified parameter use pass-by-reference semantics. But, unlike the
ref this parameter, the in this parameter cannot be modified.
When we call this extension method, e.g., tick.TickInThis(), the
same tick value is passed into the method. There is no copy.

22.3. in this Extension Methods

133

Chapter 23. The new Operator
A new expression starts with the keyword new, and it returns a new
instance of an (explicitly or implicitly) specified type. The new operator
is used with a few different categories of types:

• Arrays,

• Objects of class, record, and struct types, with

◦ Object initializers,

◦ Collection initializers, and

• Delegates.

23.1. New Array Expressions
An array object can be created in a number of different ways:

int[] a1 = new int[3]; ①
int[] a2 = new int[3] { 1, 2, 3 }; ②
int[] a3 = new int[] { 1, 2, 3 }; ③
int[] a4 = new[] { 1, 2, 3 }; ④
int[] a5 = { 1, 2, 3 }; ⑤

① This creates an int array of three elements, with the default value (0
for int) for each element.

② This creates an int array of three elements, with the given values.

③ The same as above. The number of elements can be inferred from
the initializer expression, { 1, 2, 3 }.

④ The same. The element type can be inferred from the initializer, or
from the explicitly specified type int[].

⑤ The same. This is the most succinct syntax, but this syntax cannot be
used with the implicit variable declaration using var.

23.1. New Array Expressions

134

23.2. New Object Expressions
The new object expression has the following general syntax.

new TYPE INITIALIZER
new TYPE (ARGUMENT_LIST) INITIALIZER

INITIALIZER can be either an object initializer or a collection
initializer. Note that an object initializer may contain collection objects
with collection initializer syntax, and vice versa.

23.3. Object Initializers
An object initializer consists of a sequence of member initializers,
enclosed in { and } and separated by commas ','.

{ MEMBER_INITIALIZER, MEMBER_INITIALIZER, }

MEMBER_INITIALIZER can be one of the following four forms. The
square bracket syntax is used for indexers.

IDENTIFIER = EXPRESSION
IDENTIFIER = INITIALIZER
[ARGUMENT_LIST] = EXPRESSION
[ARGUMENT_LIST] = INITIALIZER

For example,

public record Ball(int Size = 0) { ①
 public required string Sports { get; init; } ②
 private int magic = 1;
 public int this[int index] { ③

23.2. New Object Expressions

135

 get => magic;
 set => magic = value;
 }
}
Ball ball1 = new Ball() { Sports = "Soccer" }; ④
Ball ball2 = new() { Sports = "Football", Size = 10 }; ⑤
Ball ball3 = new Ball(20) { ⑥
 Sports = "Ping Pong",
 [0] = 2,
};
Ball ball4 = new(30) { ⑦
 Sports = "Tennis",
 [0] = 3,
 [1] = 30,
};

① This record class has a primary constructor with an optional
parameter, Size. Size is also a public init-only property.

② The required property need to be specified in the initializer.

③ An indexer, with a dummy implementation.

④ One initializer syntax, new + constructor + object initializer.

⑤ Target typed new() + object initializer.

⑥ Another initializer syntax, new + constructor + object initializer.

⑦ Target typed new + (constructor arguments) + object initializer.

23.4. Collection Initializers
Here are a few different collection initializer examples:

List<int> list1 = new List<int> { 1, 2, 3 };
List<int> list2 = new() { 10, 20, 30 };
Dictionary<int, string> dictionary1 = new Dictionary<int,
string> {

23.4. Collection Initializers

136

 [3] = "tres",
 [5] = "sinco",
};
Dictionary<int, string> dictionary2 = new() {
 [8] = "ocho",
 [10] = "diez",
};

23.5. Anonymous Object Initializers
The new operator can also be used to create an object of an anonymous
type. An anonymous object initializer implicitly declares an anonymous
type and it returns an instance of that type. An anonymous type is a
nameless class type that inherits directly from object. For example,

var sorceror = new { Rank = 99, Name = "Gandalf the White" };
Console.WriteLine(sorceror);
// { Rank = 99, Name = Gandalf the White }

The anonymous object initializer in this example declares an
anonymous type which has two readonly properties, Rank of type int
and Name of type string, and it creates an instance with the given
values, 99 and "Gandalf the White", respectively.

23.6. New Delegate Expressions
Similarly, a delegate instance can be created using the following syntax:

new DELEGATE_TYPE (EXPRESSION)

23.5. Anonymous Object Initializers

137

Chapter 24. Expressions
A C# expression comprises a sequence of operators and operands and it
evaluates to a value according to the prescribed rules.

There are three kinds of operators, the unary operators, binary
operators, and ternary operators, which take one, two, and three
operands, respectively. C# includes most commonly-used operators for
arithmetic, comparison, and boolean logic, etc. Moreover, C# defines
many additional operators for various purposes such as typeof, await,
and with operators. Some of them are described in this chapter, and
some others are described throughout the book. Many of the C#
operators can be "overloaded" for custom types, as discussed earlier.

The order of evaluation of operators in an expression is determined by
the precedence and associativity of the operators The operands in an
operation are normally evaluated from left to right. The result of an
expression can be a variable, a value, a property or index access (which
is reclassified as a value), an anonymous function, a null literal, or
"nothing" (void).

24.1. Expression Statements
Certain kinds of expressions, called the statement expressions, can also
be used as standalone statements. For example,

• Method invocation expressions,

• Object creation using the new operator,

• Assignments (both simple and compound assignments),

• Increment/decrement expressions (both prefix and postfix),

• Await expressions, and

• Throw expressions.

24.1. Expression Statements

138

Execution of an expression statement evaluates the expression, discards
the evaluated value, and then transfers control to the end point of the
expression statement.

24.2. The checked and unchecked
Statements
The checked and unchecked statements are used to control the
overflow checking context for integral-type arithmetic operations and
conversions.

• In a checked context, an overflow produces a compile-time error or
throws a System.OverflowException.

• In an unchecked context, overflows are ignored and any high-order
bits that do not fit in the destination type are discarded. This is the
default behavior in C#.

checked {
 Console.WriteLine(int.MaxValue + 1); ①
}
unchecked {
 Console.WriteLine(int.MaxValue + 1); ②
}

① This checked statement will not compile.

② This overflows at run time, and it will likely print out -2147483648.

24.3. Classifications of C# Expressions
Most C# operators can be overloaded. Operator overloading permits
user-defined operator implementations to be specified for operations
where one or both of the operands are of a user-defined type. C#
operators can be categorized as follows.

24.2. The checked and unchecked Statements

139

• Arithmetic operators,

• Comparison operators,

• Assignment operators,

• Boolean logic operators,

• Bitwise operators,

• Ternary operator,

• Default value operator,

• true and false operators,

• null forgiving operator,

• null coalescing operator,

• Type-testing operators,

• sizeof operator,

• nameof operator,

• typeof operator,

• as operator,

• is operator, and

• switch expressions.

These operators are explained in this chapter. In addition, the following
operators and expressions are described, or briefly mentioned,
throughout the book.

• Member access operator,

• await operator,

• new operator,

• with expressions,

• Lambda expressions,

24.3. Classifications of C# Expressions

140

• local functions,

• Throw expressions, and

• Patterns.

We do not discuss the operators that are only allowed in the unsafe
code such as stackalloc and other pointer-related operators.

24.4. The Operator Precedence
When an expression contains multiple operators, the precedence of the
operators controls the order in which the individual operators are
evaluated. For example, the expression 1 + 2 * 3 is evaluated as 1 +
(2 * 3), which results in 7. This is because the multiplication operator
* has higher precedence than the addition operator +.

24.5. The checked Operators
Since C# 11, the following operators can be optionally declared as
checked when overloaded:

• The ++ and -- unary operators,

• The - unary operator,

• The +, -, *, and / binary operators, and

• Explicit conversion operators.

24.6. Arithmetic Operators

24.6.1. Unary plus operator

T operator +(T x);

24.4. The Operator Precedence

141

The unary plus operator is predefined for int, uint, long, ulong,
float, double, and decimal types.

24.6.2. Unary minus operator

T operator -(T x);

The unary minus operator is defined for int, long, float, double, and
decimal types.

24.6.3. Prefix increment and prefix decrement

var x = 0;
++x; // Prefix increment
--x; // Prefix decrement

24.6.4. Postfix increment and postfix decrement

var x = 0;
x++; // Postfix increment
x--; // Prefix decrement

24.6.5. Multiplication operator

T operator *(T x, T y);

The multiplication operator is defined for int, uint, long, ulong,
float, double, and decimal types.

24.6. Arithmetic Operators

142

24.6.6. Division operator

T operator /(T x, T y);

The division operator is defined for int, uint, long, ulong, float,
double, and decimal types.

24.6.7. Remainder operator

T operator %(T x, T y);

The remainder operator is defined for int, uint, long, ulong, float,
double, and decimal types.

24.6.8. Addition operator

T operator +(T x, T y);

The addition operator is defined for int, uint, long, ulong, float,
double, and decimal types, as well as for enums, delegates, and string
types.

24.6.9. Subtraction operator

T operator -(T x, T y);

The subtraction operator is defined for int, uint, long, ulong, float,
double, and decimal types, as well as for enum and delegate types.

24.6. Arithmetic Operators

143

24.7. Relational Operators

x == y true if x is equal to y, false otherwise
x != y true if x is not equal to y, false otherwise
x < y true if x is less than y, false otherwise
x > y true if x is greater than y, false otherwise
x <= y true if x is less than or equal to y, false otherwise
x >= y true if x is greater than or equal to y, false
otherwise

24.8. Assignment Operators
The assignment operators assign a new value to a variable, a property,
an event, or an indexer element. They are right-associative.

Simple assignment operator

=

It assigns the value of the right operand to the variable, property, or
indexer element given by the left operand.

Compound assignment operators

+=, -=, *=, /=, %=, &=, |=, ^=, <⇐, >>=, >>>=

It performs the indicated operation on the two operands, and then
assign the resulting value to the variable, property, or indexer
element given by the left operand.

Event assignment operators

+=, -=

An event access can be only used on the left hand side of assignment
with these two operators.

24.7. Relational Operators

144

Null-coalescing assignment operator

??=

It assigns the value of its right-hand operand to its left-hand operand
only if the left-hand operand evaluates to null.

24.9. Logical Operators

24.9.1. Logical operators

The logical operators, AND (&), OR (|), and exclusive OR (^), are
overloaded and they can be used among integer values, enum values,
and bool values.

Boolean Operands

• true & true returns true. x & y for All other combinations of
operand values yields false.

• false | false returns false. Otherwise, x | y for all other
pairs of x and y yields true.

• Either true ^ false or false ^ true returns true.
Otherwise, x ^ y is false.

Nullable Boolean Operands

The logical AND & and OR | operators are also predefined between
nullable bool values. The null value more or less acts like false
except that true & null, null & true, null & null, false |
null, null | false, and null | null evaluate to null.

Integer Operands

The & operator computes the bitwise logical AND, the | operator
computes the bitwise logical OR, and the ^ operator computes the
bitwise logical exclusive OR of the two operands.

24.9. Logical Operators

145

Enum Operands

These three logical operators all also predefined for all enum types.
Their values are computed by

1. First converting the operands to their underlying types,

2. Computing the result of the given logical operation, and

3. Converting back the result to the original enum type.

24.9.2. Conditional logical operators

Conditional logical operators, && and ||, in C# evaluate their first
operands first, and based on those values, they may or may not
evaluate their second operands. This is often known as "short
circuiting".

• The logical AND operation x && y corresponds to the operation x &
y, except that y is evaluated only if x is not false.

• The logical OR operation x || y corresponds to the operation x |
y, except that y is evaluated only if x is not true.

24.10. Bitwise Operators
The bitwise logical AND &, OR |, and exclusive OR ^ operators are
included in the previous section.

24.10.1. Logical negation operator

The logical negation operator (!) is predefined as follows:

bool operator !(bool x);

This operator computes the logical negation of the operand. That is, if
the operand is true, it returns false, and vice versa.

24.10. Bitwise Operators

146

24.10.2. Bitwise complement operator

The bitwise complement operator (~) is predefined for certain integer
types, e.g., int, uint, long, and ulong. For example,

int operator ~(int x);

Every enum type E implicitly provides the following bitwise
complement operator:

E operator ~(E x);

The result of evaluating ~x, where x is an expression of an enum type E
with an underlying type U, is exactly the same as evaluating`
(E)(~(U)x)`.

24.11. Shift operators
There are three kinds of binary bit shifting operators, as of C# 11:

• Left shift (<<),

• Right shift (>>), and

• Unsigned right shift (>>>) operators.

They are predefined for int, uint, long, and ulong types. When
declaring an overloaded shift operator for a class, record, or struct,

• The first operand must be the given type, and

• The second operand is always of the int type.

For any of the predefined operators, the number of bits to shift in x
SHIFT n is computed as follows:

24.11. Shift operators

147

• When x is int or uint, the shift count is given by the low-order five
bits of n. That is, the shift count is the same as n & 0x1F.

• When x is long or ulong, the shift count is given by the low-order
six bits of n, which is equal to n & 0x3F.

The >>> operator shift bits right without replicating the high order bit
on each shift. In case of primitive integer types, this is equivalent to
casting an integer to the comparable unsigned type, shifting using a
regular right shift operator, and casting the result back to the original
type, if necessary.

For example,

0b11111 << 2
0b11111 >> 3
-0b11111 >>> 3

24.12. True and False Operators
A pair of operators, true and false, can be used to customize the way
instances of a type evaluates in Boolean expressions. The pair should be
implemented together, and they are a generalization of the implicit
bool conversion.

The true operator is to return true if the operand is "definitely true".
Otherwise, it returns false, that is, if it is false or if it can be true or
false, etc. Likewise, the false operator is to return true if and only if
the operand is "definitely false".

For example,

public static bool operator true(T x);
public static bool operator false(T x);

24.12. True and False Operators

148

24.13. Conditional Operator
The ternary conditional operator ?: has the following two forms:

EXP_B ? EXP_X : EXP_Y
ref (EXP_B ? ref EXP_X : ref EXP_Y)

The first operand of the ?: operator EXP_B is

• Either an expression that can be implicitly converted to bool, or

• An expression of a type that implements operator true.

The conditional expression first evaluates EXP_B:

• If the result is true, EXP_X is evaluated, and its value, or its ref,
becomes the result of the whole expression.

• Otherwise, EXP_Y is evaluated, and its value, or its ref, is returned
as the result.

Note that the second and third operands, EXP_X and EXP_Y, determines
the type of the conditional expression. The ternary operator is right-
associative.

The second form of the conditional expression produces a ref result,
and it can be assigned to a ref variable. For example,

int? a = 10;
int? b = 20;
ref var c = ref (a != null ? ref a : ref b);

c = 100;
Console.WriteLine($"a = {a}, b = {b}"); ①

① The output will be a = 100, b = 20.

24.13. Conditional Operator

149

24.14. The Index and Range Operators
We can index and slice a sequence at runtime using System.Index and
System.Range objects. An array is a prime example that supports both
indexing and slicing operations.

24.14.1. System.Index

Index is a readonly struct that can be used to index a collection either
from the beginning or from the end. It implements
IEquatable<Index>.

To use the Index type as an argument in an array element access, the
following member is required:

int System.Index.GetOffset(int length);

The hat ^ operator

To use the hat operator ^, that is, indexing from the end, the following
member is required:

public System.Index.Index(int value, bool fromEnd);

24.14.2. System.Range

Range is a readonly struct representing a range that has both start and
end indexes, implicitly or explicitly. It also implements
IEquatable<Index>.

The .. syntax allows for either, both, or none of its arguments to be
absent. The .. syntax for Range will require the Range type, as well as
one or more of the following members:

24.14. The Index and Range Operators

150

public System.Range.Range(System.Index start, System.Index
end);
public System.Range.static Range StartAt(System.Index start);
public System.Range.static Range EndAt(System.Index end);
public System.Range.static Range All { get; }

In addition, if the following member is present a value of type Range
can be used in an array element access expression:

public static T[]
System.Runtime.CompilerServices.RuntimeHelpers.GetSubArray<T>(
T[] array, System.Range range);

24.15. Default Value Operator
A default value expression is used to obtain the default value of a type.
There are two forms.

Explicitly Typed Default

default (TYPE)

The default operator takes a parenthesized type as an operand,
and it returns the default value of the specified type.

Func<string, bool> whereClause = default(Func<string,
bool>);

Default Literal

default

24.15. Default Value Operator

151

The literal default, representing a default value, is untyped. It can
be converted to any type through a default literal conversion.

Func<string, bool> whereClause = default;

24.16. Null-Testing Expressions
Null conditional expressions can be used with potentially nullable
values and references, e.g., to avoid null reference exceptions.

24.16.1. Null conditional member access

A null conditional member access uses two tokens ?. instead of the
normal single token .. Given a member access expression of the form
P.A of the type T, P?.A evaluates as follows, depending on whether T is
a (non-nullable) value type or a reference type.

When T is a value type

((object)P == null) ? (T?)null : P.A

The type of P?.A is T?.

When T is a reference type

((object)P == null) ? null : P.A

The type of P?.A is T, the same as that of P.A.

That is, if P is null, it returns null. Otherwise it returns the value of
the normal member access expression P.A.

24.16. Null-Testing Expressions

152

24.16.2. Null conditional element access

A null conditional element access uses the syntax ?[…] instead of the
normal subscription syntax […]. Given a member access expression of
the form P[A] of the type T, P?[A] evaluates as follows, depending on
whether T is a (non-nullable) value type or a reference type.

When T is a value type

((object)P == null) ? (T?)null : P[A]

The type of P?[A] is T?.

When T is a reference type

((object)P == null) ? null : P[A]

The type of P?[A] is T, the same as that of P[A].

That is, if P is null, it returns null. Otherwise it returns the value of
the normal element access expression P[A].

24.16.3. Null conditional invocation expression

A null conditional invocation is syntactically a normal invocation
expression preceded by null conditional member or element access.

24.16.4. The null coalescing operator

A null coalescing expression A ?? B can be viewed as a syntactic short
form of a conditional expression X ? Y : Z in certain circumstances.
In particular, A ?? B is more or less equivalent to (A != null) ? A :
B. That is, if A is non-null, the result is A. Otherwise, the result is B. There
is also the null-coalescing assignment operator ??=, which is a
compound assignment operator with ??.

24.16. Null-Testing Expressions

153

24.16.5. Null forgiving operator (postfix !)

The unary postfix ! operator is the null-forgiving, or null-suppression,
operator. It is used to suppress all nullable warnings for the preceding
expression. The null-forgiving operator has no effect at run time.
Expressions x! and x!.m evaluate to the results of the underlying
expressions x and x.m, respectively.

24.17. The nameof Operator
A nameof expression returns the name of a given program entity as a
constant string, evaluated at compile time. The program entity itself is
not evaluated, and the nameof operator does not affect the run time
behavior. For example,

var fruit = "avocado";
Console.WriteLine($"{nameof(fruit)} = {fruit}");

It should be noted that the names of the program entities like variables
and methods, etc. are not significant in program execution. That is, it
has no consequences whether you name a particular variable sum or
added or xyz, etc., as long as you use the name consistently. The nameof
operator is an exception, and it is primarily used for diagnostic
purposes during development.

One other special behavior of the nameof operator is that, in certain
cases, it can use a name beyond the name’s normal scope. In particular,
nameof, when used in an attribute, can reference formal parameters or
type parameters of the decorated method. For example,

[MyAttribute(nameof(myParam))] void MyMeth(int myParam) { }
[MyAttribute(nameof(TypeParam))] void MyMeth<TypeParam>() { }

24.17. The nameof Operator

154

24.18. The sizeof Operator
The sizeof operator with a certain type operand returns the number
of bytes that a variable of the given type is supposed to occupy.

sizeof (VALUE_TYPE)

For some predefined types, the sizeof operator yields a constant int
value. For example, sizeof(ulong) is 8 since ulong is a 64-bit (8-byte)
integer type. For an enum type E, the result of the expression
sizeof(E) is a constant value equal to the size of its underlying type.

24.19. The typeof Operator
The typeof operator is used to obtain the System.Type object for a
type. It can be used with an operand of any non-dynamic type TYPE or
the keyword void, in a pair of parentheses. For example,

typeof (TYPE)
typeof (void)

There is only one Type object for any given type. That is, for a type T,
typeof(T) == typeof(T) always yields true. The value of
typeof(void) is distinct from those of typeof(T) for any type T. It
represents the absence of a type.

24.20. The as Operator
The as operator explicitly converts the result of an expression to a
given reference or nullable value type. If the conversion isn’t possible,
the as operator returns null. The expression of the form E as T
produces the same result as E is T ? (T)(E) : (T)null.

24.18. The sizeof Operator

155

24.21. The is Expression
The is operator has two uses in C#. First, it is used to check if the run-
time type of a given expression is compatible with a given type, e.g., E
is T. It returns true if the result of E is the type T, or if it is not null
and it is convertible to T via a reference conversion, a boxing or
unboxing conversion, or a wrapping or unwrapping conversion.

24.21.1. Pattern matching

The is operator can also be used to match a given expression E against
a given pattern P, e.g., E is P. This is known as pattern matching. This
use of the is expression also returns a Boolean value. For example,

if(marriage is not null) {
 Console.WriteLine("Huh???");
}
if(fruit is Apple apple) {
 Console.WriteLine($"I am an apple, {apple}.");
}
if(list is [1, 2, ..]) { ①
 Console.WriteLine("The list starts with 1 and 2.");
}

① The right hand side of the is operator, [1, 2, ..], is a list pattern.
This pattern is available since C# 11.

24.22. The switch Expression
The switch expression is similar to the switch statement, and it also
uses pattern matching. Compared to the switch statement, the switch
expression has a few syntactic improvements:

• The overall structure is, a target expression and the switch
operator followed by a switch block.

24.21. The is Expression

156

• It uses the fat arrow token => in place of the case: elements in the
switch statement.

• It uses the discard variable _ for the default case.

• The body of each pattern-based branch is an expression, and not a
statement.

static float AvgTemp(Month month) => month switch { ①
 Month.June => 70f, ②
 Month.July => 80f,
 Month.August => 90f,
 _ => float.NaN, ③
};

enum Month : byte {
 June = 6,
 July,
 August,
}

① It is a common pattern to use an expression body with a switch
expression. Note that the target expression month comes before the
switch keyword unlike in the switch statement.

② Each branch has a form, "PATTERN => EXPRESSION", and these
branches are separated by commas. This syntax is more concise and
intuitive than its counterpart in the switch statement, which tends
to require repetitive uses of case and break statements. When a
pattern matches, the value of its corresponding expression, e.g., 70f
in this case, becomes the value of the overall switch expression.

③ The discard variable here _ is called the discard pattern, and it
corresponds to the default case. Various pattern types are further
described later in the Pattern Matching chapter.

24.22. The switch Expression

157

Chapter 25. Lambda
Expressions
A lambda expression is an anonymous function definition that can be
used "in place" where a method or a delegate is expected. That is, a
lambda function requires no separate declaration and subsequent
call(s), in two steps.

A lambda expression has a natural type, and it is compatible with a
delegate or expression tree type. In general, its type can be easily
inferred. Although it is syntactically an expression, it can also include a
block of statements. Lambda expressions are closures, and they are
often used with query expressions (e.g., LINQ).

25.1. Lambda Functions
Syntactically, there are two kinds of lambda expressions, an "expression
lambda" and a "statement lambda".

25.1.1. Expression lambdas

A Lambda expression is defined with a Lambda declaration operator
=>. On the left hand side, a function parameter list is specified. On the
right hand side comes an expression in case of expression lambdas.

(PARAMETERS) => EXPRESSION

For example, (int x, int y) => x + y is a lambda function. (This
anonymous function can be cast to the type of Func<int, int, int>,
which is a .NET delegate type that takes two int arguments and returns
an int value. We do not discuss Func and Action types in this book.)

25.1. Lambda Functions

158

25.1.2. Statement lambdas

One can also use a block on the right hand side of a lambda declaration
operator =>. Such expressions are called statement lambdas.

(PARAMETERS) => { STATEMENTS }

The last statement of STATEMENTS can be a return statement.

25.2. Static Lambda Functions
Static lambda expressions, with the static modifier, are analogous to
the static local functions. A static lambda or static anonymous
method can’t capture local variables or other instance state.

static (PARAMETERS) => EXPRESSION
static (PARAMETERS) => { STATEMENTS }

25.3. Closures
A non-static lambda expression can "capture" the variables in the outer
scope. The captured, or "closed-over", variables are stored for use in the
lambda expression even if they would otherwise go out of scope and
potentially be garbage-collected.

For example, here’s a function that prints out the first n numbers of
Fibonacci sequence:

static void PrintFibonacci(int n) { ①
 var f = fibonacci();
 foreach (var i in Enumerable.Range(1, n)) { ②
 Console.WriteLine($"{i}: {f()}"); ③
 }

25.2. Static Lambda Functions

159

 static Func<int> fibonacci() { ④
 var (a, b) = (0, 1); ⑤
 return () => { ⑥
 (a, b) = (b, a + b); ⑦
 return a;
 };
 }
}

① In the context of the top-level statement, this function is a static local
function in the implicitly generated Main method.

② The Enumerable.Range static method can be used to generate a
simple integer sequence.

③ We call the function f, which is returned by fibonacci(), multiple
times to see the effect of the captured variables.

④ A local static function declaration within the PrintFibonacci
function.

⑤ a and b are local variables of int type.

⑥ A lambda function. Note that this is a statement lambda, which takes
no argument and returns an int value. That is, its type is
Func<int>.

⑦ In a non-static lambda function, the outside variables can be used,
and these variables are closed-over after the function has been
called and returned.

25.3. Closures

160

Chapter 26. Statements
Statements control execution of a program. C# supports most of the
common statements found in other C/C++-style programming
languages. For the sake of completeness, we go through some of the C#
statements in this chapter. Statements in C# can be classified into a few
different categories.

Declaration Statements

A declaration statement is used to declare new local variables and
constants and optionally initialize them.

Iteration Statements

An iteration statement is used to repeatedly execute an embedded
statement, e.g., a block of statements.

• The for statement: Executes its body while a specified Boolean
expression evaluates to true.

• The foreach statement: Enumerates the elements of a collection
and executes its body for each element of the given collection.

• The do-while statement: Conditionally executes its body, but at
least once.

• The while Statement: Conditionally executes its body zero or
more times.

Selection Statements

A selection statement is used to select one of a number of possible
execution branches based on the value of a given expression.

• The if statement: Selectively executes a particular block of
statements based on the value of a Boolean expression.

• The switch statement: Selectively executes a block of statements
based on a pattern match with a given match expression.

161

Jump Statements

A jump statement is used to transfer control. In this group are the
goto, break, continue, return, throw, and yield statements.

• The goto statement: Transfers control to a statement with a
target label.

• The break statement: Terminates the innermost iteration
statement or switch statement.

• The continue statement: Finishes the current iteration of the
innermost iteration statement.

• The return statement: Terminates execution of the function in
which it appears and returns control to the caller.

• The ref return statement: Terminates execution of the
function. It returns the result expression by reference to the
caller, and not by value.

Lock Statements

The lock statement acquires the mutual-exclusion lock (or, mutex)
for a given object, executes a statement block, and then releases the
lock.

In addition, a block is syntactically a statement. Some expressions can
be used as expression statements. We also discuss the using statement,
checked and unchecked statements, and try and throw statements in
other chapters. The unsafe and fixed statements are only allowed in
the unsafe code, and they are not included in this book.

26.1. Empty Statement
An empty statement does nothing.

;

26.1. Empty Statement

162

An empty statement is used when there are no operations to perform in
a context where a statement is required. For example, the following is a
valid statement:

for(;;) ; ①

① The for statement syntactically requires a statement following the
for () clause, and an empty statement is used in this example.

26.2. Declaration Statement
A declaration of local constants, local variables, or (static or non-static)
local functions is a statement. Declaration statements are permitted in
blocks, but they are not permitted as embedded statements. All
variables and constants in C# have declared types.

26.3. The for Statement
The for statement is a control flow statement in C# that allows you to
execute a block of statements multiple times.

The for statement has the following syntax:

for (INITIALIZER ; CONDITION ; ITERATOR) STATEMENT

Or since, more commonly, a block statement is used for STATEMENT, the
syntax appears as follows:

for (INITIALIZER ; CONDITION ; ITERATOR) {
 STATEMENTS
}

26.2. Declaration Statement

163

The INITIALIZER expressions, which can be zero, one, or more local
variable declarations or statement expressions, separated by commas,
are evaluated first. Then, if the CONDITION expression evaluates to
true,

• It executes zero, one, or more STATEMENTS,

• It evaluates the ITERATOR expressions, comprising zero, one, or
more statement expressions, and

• It re-evaluates CONDITION.

As long as the value of CONDITION remains true, it repeats the loop.
Otherwise, it terminates the loop. INITIALIZER, CONDITION, and
ITERATOR are all optional.

For example,

for (①
 var i = 0; ②
 i < 10; ③
 i++ ④
) {
 Console.WriteLine(i); ⑤
}

① The for statement starts with the keyword for and ends with a
block.

② The initializer clause is typically used to declare and initialize loop
variables, i in this example.

③ The condition expression evaluates to bool.

④ In the iterator clause, we re-evaluate all expressions at each
iteration.

⑤ The block can be empty. It may include break, continue, or return
statements, etc.

26.3. The for Statement

164

26.4. The foreach Statement
The foreach statement is another iteration statement that executes an
embedded statement, or a block of statements, for each element of a
given collection.

foreach (var IDENTIFIER in EXPRESSION) { ①
 STATEMENTS
}

① A more accurate syntax would be foreach (TYPE/var
IDENTIFIER in EXPRESSION) STATEMENT where STATEMENT
represents a (single) embedded statement. But, this syntactic
notation is used informally in this book to provide some commonly
used syntax. Being precise is not the goal. In this case, as with the
for statement, a block statement is more commonly used in place of
STATEMENT.

One can also specify a proper type of IDENTIFIER instead of the var
keyword to declare this iteration or loop variable. IDENTIFIER
corresponds to a read-only local variable with a scope that extends over
the foreach block. During execution of a foreach statement, the
iteration variable represents the collection element for which an
iteration is currently being performed. The EXPRESSION should be an
enumerator type.

For example,

string[] teams = {"AR", "HR", "FR", "MA"}; ①
foreach (var team in teams) { ②
 Console.WriteLine(team); ③
}

① The variable teams is a string array, which is an enumerable.

26.4. The foreach Statement

165

② The foreach statement starts with the keyword foreach. The block
can contain zero, one, or more statements.

③ The type of the iteration variable team is string.

26.5. The do Statement
The do-while statement executes an embedded statement, or a block
of statements, at least once, and possibly more depending on the given
condition.

do {
 STATEMENTS
} while (BOOLEAN_EXPRESSION)

For example,

string s; ①
do {
 s = Console.ReadLine(); ②
 if (s != null) {
 Console.WriteLine(s);
 }
} while (s != null); ③

① The local variable s is not initialized, and it cannot be used to read
its value until a value is set.

② When it enters the do statement, control is transferred to the
statements in the block. When this statement is executed, s will be
initialized, which can be null (because the Console.WriteLine
method returns the type string?).

③ As long as s is not null, the statements in the block are executed
again.

26.5. The do Statement

166

26.6. The while Statement
The while statement executes a block of statements as long as a given
condition evaluates to true.

while (BOOLEAN_EXPRESSION) { ①
 STATEMENTS
}

① This block can also be a single statement.

Note that, depending on the value of BOOLEAN_EXPRESSION, the
statements in the block may end up being executed zero, one, or more
times. For example,

var (i, max) = (0, 10); ①
while (i < max) { ②
 Console.WriteLine(i++); ③
}

① A "multi-variable" declaration with initialization, using the tuple
deconstruction syntax.

② This while loop start executing the block statement since i < max
(0 < 10) initially.

③ At every iteration, we increase the value of i by 1 using the postfix
increment operator. When the condition i < max no longer holds
true, or when i >= max (10 >= 10), the loop exits.

26.7. The if Statement
The if and switch statements are used to select one of multiple
possible groups of statements for execution based on some expressions.

26.6. The while Statement

167

The if statement has two forms. First,

if (BOOLEAN_EXPRESSION) STATEMENT

STATEMENT can be a block statement, which can include other
statements. In fact, that is the most commonly used kind of statement in
this context. Hence,

if (BOOLEAN_EXPRESSION) {
 STATEMENTS ①
}

① In this notation, STATEMENTS can include zero, one, or more C#
statements.

In an alternative form of the if statement, this if part can be followed
by the keyword else and another statement. That is,

if (BOOLEAN_EXPRESSION) STATEMENT else STATEMENT

Or, more commonly,

if (BOOLEAN_EXPRESSION) {
 STATEMENTS
} else {
 STATEMENTS
}

For instance,

// int[] arr = { 2, 1, 3, 4, 7, 11 };

26.7. The if Statement

168

if (arr.Length > 5) { ①
 Console.WriteLine("It's too long");
}

① The first form of the if statement.

if (arr.Length > 5) { ①
 Console.WriteLine("It's too long");
} else {
 Console.WriteLine("It's too short");
}

① The if-else form of the if statement.

if (arr.Length > 5) { ①
} else if (arr.Length > 2) { ②
}

① The if-else form.

② This else includes a single if statement (not a block). This if
statement includes a block, and it has the first form (without else).

if (arr.Length > 5) {
} else if (arr.Length > 2) { ①
} else { ②
}

① The same as above. This else includes a single if statement. Note
that there is no separate else if or elsif in C#.

② This else belongs to the second if statement.

The else part is associated with the lexically nearest preceding if that
is allowed by the syntax. Here’s a somewhat convoluted example:

26.7. The if Statement

169

if(arr.Length > 5) if(arr.Length > 10) Console.WriteLine("It's
too loong"); else Console.WriteLine("It's just long");

The else belongs to the second if statement. This can be rewritten as
follows, to make this fact clear:

if(arr.Length > 5)
 if(arr.Length > 10)
 Console.WriteLine("It's too loong");
 else
 Console.WriteLine("It's just long");

Regardless, it is a good practice to use a block statement ({}) instead of
a single embedded statement in many of C#'s compound statements.

26.8. The switch Statement
The switch statement is another selection statement that branches
based on the value of switch expression. For example, here’s a typical
syntax of the switch statement.

switch (EXPRESSION) { ①
 case LABEL: ②
 STATEMENTS ③
 case LABEL: case LABEL: ④
 STATEMENTS
 default: ⑤
 STATEMENTS ⑥
}

① A switch statement consists of the keyword switch, followed by a
parenthesized switch expression, EXPRESSION, and a switch block,
enclosed in curly braces {}. (Note that this not a block statement.)

26.8. The switch Statement

170

② The switch block consists of zero or more switch sections Each
switch section consists of one or more labels, case or default
labels, and a list of one or more statements.

③ STATEMENTS needs at least one statement here. C# switch statement
does not allow fall-through from one case label to the next, or exit
the switch statement entirely. The last statement in STATEMENTS
must be a jump statement that moves control out of the switch
statement, such as a break statement.

④ There can be more than one labels in each section.

⑤ There can be at most one default label in a switch statement.

⑥ Although this is the last switch section, the last statement in
STATEMENTS still has to be a jump statement.

For example,

switch (number) {
 case 0: default:
 Console.WriteLine("Don't know. Don't care.");
 break;
 case 1: case 4: case 6:
 Console.WriteLine("Non-prime");
 break;
 case 2: case 3: case 5: case 7:
 Console.WriteLine("A prime number");
 break;
}

26.8.1. Pattern matching

The switch statement is now generalized such that the case LABEL can
be an arbitrary pattern. The traditional form of the switch statement
can be viewed as using constant patterns as labels. Here’s a simple
example:

26.8. The switch Statement

171

static Season MonthToSeason(Month month) {
 switch (month) {
 case >= Month.September:
 return Season.Winter;
 case >= Month.March:
 return Season.Summer;
 default:
 return (Season)0;
 }
}
enum Season { Summer = 2, Winter = 4, }
enum Month { March = 3, May = 5, July = 7, September = 9, }

Note that patterns are scanned from top to bottom. Patterns like >=
Month.September are called the relational patterns. We can try and
rewrite this MonthToSeason function using a switch expression:

static Season MonthToSeason(Month month) => month switch {
 >= Month.September => Season.Winter,
 >= Month.March => Season.Summer,
 _ => (Season)0,
};

26.9. Labeled Statements
A labeled statement permits a statement to be prefixed by a label.
Labeled statements are permitted in blocks, but they are not permitted
as embedded statements.

LABEL : STATEMENT

A labeled statement declares a label with the name given by LABEL. The
scope of a label is the whole block in which the label is declared,

26.9. Labeled Statements

172

including any nested blocks. Execution of a labeled statement
corresponds exactly to the execution of the statement following the
label. A label can be referenced from goto statements within the scope
of the label.

26.10. The goto Statement
Jump statements such as goto unconditionally transfer control. The
goto statement is the only statement in C# that can transfer control
using specific target labels. The goto statement has the following few
different forms:

goto LABEL; ①
goto case EXPRESSION; ②
goto default;

① LABEL is one of the labels defined by labeled statements.

② The last two forms of the goto statement can be used in switch
statements. Note that EXPRESSION should be a constant label, and it
cannot be a general pattern.

Here’s a simple example of using goto:

var counter = 0;
Label: ++counter;
Console.WriteLine($"counter = {counter}");
if (counter < 5) {
 goto Label;
}

This sample code works more or less like a for loop. The most common
use case of goto is, however, exiting from nested loops and blocks such
as for, foreach, do, while, and switch statements.

26.10. The goto Statement

173

For example,

var (i, j) = (0, 0);
while (++i < 10) {
 while (++j < 10) {
 if (i + j > 15) {
 goto Done;
 }
 }
}
Done: Console.WriteLine("Done");

26.11. The break Statement
The break statement exits the nearest enclosing for, foreach, do,
while, or switch statement.

break;

When multiple for, foreach, do, while, or switch statements are
nested within each other, a break statement applies only to the
innermost statement. In order to transfer control across multiple
nesting levels, goto statements with properly-placed target labels can
be used. In certain cases, the return statement can also be used to exit
all nested loops or switch statement.

26.12. The continue Statement
The continue statement starts a new iteration of the innermost
enclosing for, foreach, do, or while statement.

continue;

26.11. The break Statement

174

For example,

int[] lucas = { 2, 1, 3, 4, 7, 11, 18, 29, 47 };
foreach (var i in lucas) {
 if (i % 2 == 0) { ①
 continue;
 }
 Console.WriteLine($"Odd Lucas number: {i}");
}

① This if statement skips all even numbers.

When multiple for, foreach, do, or while statements are nested
within each other, a continue statement applies only to the innermost
loop. In order to transfer control across multiple nesting levels, goto
statements can be used.

26.13. The return Statement
The return statement can only be used inside a function invocation,
and it returns control to the current caller of the function.

return;
return EXPRESSION;

A return statement without an expression can only be used in
functions with void return type. If a return statement specifies an
expression EXPRESSION, the this expression is evaluated first, and its
value is converted to the effective return type of the function by an
implicit conversion. The resulting expression becomes the result value
of the function call expression.

26.13. The return Statement

175

26.14. The lock Statement
The lock statement in C# is often used, in a multithreaded
programming environment, to execute a code segment while holding a
mutual-exclusion (mutex) lock. In particular, a lock statement executes
code in three steps:

• It first obtains a mutex lock for an object,

• Executes the given code, and then

• Releases the lock.

lock (EXPRESSION) STATEMENT

The expression EXPRESSION of a lock statement must be a value of a
reference type. The statement STATEMENT can be a block statement
including zero, one, or more other statements.

For example,

class SocialMedia {
 int likes = 0;
 public void thumbsUp() {
 lock (this) {
 ++this.likes;
 }
 }
 public void thumbsDown() {
 lock (this) {
 --this.likes;
 }
 }
}

26.14. The lock Statement

176

Chapter 27. Pattern Matching
Pattern matching was first introduced in C# 7, and it has been going
though iterations in every major C# release since. For example, a new "
list pattern" is included in C# 11. Pattern matching is currently
supported in

• The is expression,

• The switch expression, and

• The switch statement.

Pattern matching enables an alternative way to express control flow,
e.g., compared to the more traditional if or switch - case
statements, based on the type or "shape" of the data, or the pattern. If
the data satisfies a pattern in a switch-case or conditional expression,
the control flow selects the given branch. One can use the when
keyword to specify additional rules to the given pattern.

A pattern belongs to one of the following dozen or so categories:

• Simple patterns:

◦ Discard pattern

◦ Constant pattern

◦ Relational pattern

◦ Var pattern

◦ Type pattern

◦ Declaration pattern

• Compound patterns:

◦ Logical pattern

◦ Parenthesized pattern

177

◦ Property pattern

◦ Positional pattern

◦ Tuple pattern

◦ List pattern

27.1. Discard Pattern
A discard pattern _ can only be used with a switch expression, and it
matches any expression. Discard patterns are usually used as the last
"catch all" pattern. In an is expression or a switch statement, a var
pattern, var _, can be used as a wild card pattern.

For example,

const int num = 10;
var word = num switch {
 1 => "One",
 2 => "Two",
 _ => "Too big for me", ①
};

① The discard pattern _ is used as the last catch-all pattern. In this
example, the value of word will be "Too big for me".

27.2. Constant Pattern
A constant pattern tests the value of a target expression against a
constant expression such as a literal, a const variable, or an enum
constant.

For example,

enum Season { Summer, Winter }

27.1. Discard Pattern

178

var season = Season.Winter;
if (season is Season.Summer) { ①
 Console.WriteLine("It's very hot");
} else {
 Console.WriteLine("It's very cold");
}

① An enum value Season.Summer is a constant pattern.

As of C# 11, a constant string literal can match an expression of the
Span<char> or ReadOnlySpan<char> types. This is officially called the
"span pattern", but it is really a special case of constant patterns. For
instance,

ReadOnlySpan<char> greeting = "hello";
var language = greeting switch { ①
 "hola" => "Spanish", ②
 "salut" => "French",
 _ => "English",
};

① The type of the expression greeting is ReadOnlySpan<char>.

② "hola" and "salut" are constant string literals.

27.3. Relational Pattern
A relational pattern comprises a relational operator, <, >, <=, and >=,
and a constant expression. The constant expression can be of an
integer, floating-point, char, or enum type. For example,

const int myIQ = 200;
var judgement = myIQ switch {
 > 160 => "Smarter than Einstein", ①
 <= 0 => @"A funny looking pattern. ②

27.3. Relational Pattern

179

 But, unrealistic.",
 _ => "Just another average genius",
};

① This relational pattern > 160 will match if myIQ is bigger than 160.
And, it does because myIQ == 200 in this example.

② Another example of a relational pattern, <= 0, which will match if
myIQ happens to be a non-negative number.

27.4. Var Pattern
A var pattern consists of the contextual keyword var followed by a new
local variable. It matches any expression (when used without when),
and its result is assigned to the specified local variable.

Var patterns are generally used to "capture" a value from the matched
expression. The type of the declared local variable in a var pattern is
the compile-time type of the expression that is matched against the
pattern.

var rand = new Random();
var raw = rand.Next(-10, 10);
var halfAndHalf = raw switch { ①
 < 0 => 0, ②
 var r => r + 1, ③
};

① The halfAndHalf variable ends up being assigned a random
number, with a 50% chance of being 0. Otherwise, it will be an
integer between 1 and 10 with (more or less) equal probabilities.

② A relational pattern.

③ A var pattern, var r. This matches any number, and the value of r
is that matched number.

27.4. Var Pattern

180

Sometimes, var patterns with the when guards may be preferred over
relational patterns, especially when you need to "capture" certain
matched values. For instance, in the following example, we use a var
pattern, var r when r < 0, instead of the relational pattern < 0 in
the previous example.

var rand = new Random();
var raw = rand.Next(-10, 10);
var (value, comment) = raw switch {
 var r when r < 0 => (0, $"Ignoring a negative value,
{r}"),
 var r => (r + 1, "No comment"),
};

27.5. Type Pattern
A type pattern checks the run-time type of a target expression. For
example,

var array = new object[] { "hell", "o" };
if (array is string[]) { ①
 Console.WriteLine("I am a string array.");
} else {
 Console.WriteLine("I am not a string array.");
}

① The type pattern, string[], matches if array is a type string[]. In
this example, since object[] is not string[], the pattern does not
match.

Note that the type pattern is used to check the polymorphic types at run
time (e.g., supertypes vs subtypes, interface types), and hence it is
primarily useful for reference type variables.

27.5. Type Pattern

181

27.6. Declaration Pattern
A declaration pattern is essentially a combination of a type pattern and
a var pattern. It consists of a type followed by a local variable (similar
to the local variable declaration syntax).

A declaration pattern matches if the type of the target expression is
compatible with the given type at run time and, if so, the expression is
cast to the given type first, and then the resulting value is assigned to
the given local variable. For example,

object[] array = new[] { "hell", "o" };
if (array is string[] strArray) { ①
 var upper = strArray.Select(s => s.ToUpper()).ToList();
 upper.ForEach(Console.WriteLine);
} else {
 Console.WriteLine("I am not a string array.");
}

① A declaration pattern, string[] strArray. If array is compatible
with the string[], it will match, which is the case in this particular
example. If the declaration pattern matches, array is cast to
string[], and the value is finally assigned to the local variable
strArray. This captured variable can be used within the if block in
this example.

Note that a declaration pattern is semantically equivalent to a two-step
operation, casting with as and checking if the casting has been
successful. The above example code is, for instances, effectively the
same as the following:

object[] array = new[] { "hell", "o" };
var strArray = array as string[]; ①
if (strArray is not null) { ②
 var upper = strArray.Select(s => s.ToUpper()).ToList();

27.6. Declaration Pattern

182

 upper.ForEach(Console.WriteLine);
} else {
 Console.WriteLine("I am not a string array.");
}

① The as operator is discussed earlier in the Expressions chapter.

② This is a logical pattern. These two lines serve exactly the same
purpose as the declaration pattern in the above example.

27.7. Logical Pattern
You can use the not, and, and or pattern combinators to create
compound patterns, called the logical patterns, much the same way that
we can create complex Boolean expressions using the logical operators,
!, &&, and ||. In terms of operator precedence, the pattern combinators
are ordered, not, and, and or.

27.7.1. Negation not pattern

The pattern not P matches if P does not match, and vice versa. The
following example shows an idiomatic use of the not null pattern to
check if an expression is non-null:

string? name = "Ronaldo";
if (name is not null) { ①
 Console.WriteLine($"Hello, {name}!");
}

① The null-check via x is not null is more or less the same as x !=
null. But, note that the == and != operators can be overloaded,
meaning that depending on the specific type of x, x != null may
return a value that is not what you intend. On the other hand, x is
not null always checks the nullness of x.

27.7. Logical Pattern

183

27.7.2. Conjunctive and pattern

The pattern P1 and P2 matches an expression when both patterns, P1
and P2, match the target expression. For example,

var degree = 37.0;
var h2o = degree switch {
 >= 100 => "hot steam",
 > 0 and < 100 => "bath water", ①
 _ => "frozen ice",
};

① This logical pattern > 0 and < 100 combines two relational
patterns, > 0 and < 100, through logical AND. Note that, in this
particular example, > 0 and < 100 is effectively the same as a
simpler pattern > 0.

27.7.3. Disjunctive or pattern

The pattern P1 or P2 matches an expression if pattern P1 matches, or
if not, P1 or P2 matches if P2 matches. Otherwise, the or pattern does
not match. For instance,

// enum Day { Mon = 1, Tue, Fri = 5 }
// enum Mood { Happy, NotSoHappy, Miserable }

var day = Day.Fri;
var mood = day switch {
 Day.Mon or Day.Tue => Mood.Miserable, ①
 Day.Fri or (Day) 6 or (Day) 7 => Mood.Happy, ②
 _ => Mood.NotSoHappy, ③
};
Console.WriteLine($"My mood = {mood}!");

① An or pattern with two constant patterns.

27.7. Logical Pattern

184

② The pattern Day.Fri or (Day) 6 or (Day) 7 is equivalent to
(Day.Fri or (Day) 6) or (Day) 7 with essentially two or
patterns. We go over the parenthesized pattern in the next section.

③ To cover all values of the Day enum exhaustively.

27.8. Parenthesized Pattern
Patterns can be combined in various ways to create more complex
patterns. One of the simplest ways to do so is to use parentheses ()
around a pattern (e.g., so that it can be combined with other patterns).
This is called a parenthesized pattern. For example, parenthesized
patterns can be used to to emphasize or change the precedence in
logical patterns.

var (rand, r) = (new Random(), 0); ①
while ((r = rand.Next(-10, 10)) is ②
 (>= -5) and (< 0 or >= 5)) { } ③
Console.WriteLine($"Some weird random number = {r}");

① A local variable declaration with tuple deconstruction. The
parentheses are used as part of tuples.

② An assignment expression enclosed in parentheses. The value of this
expression is the same as that of r after the assignment.

③ The two pairs of parentheses used in this line are parenthesized
patterns. The first one is not really needed, that is, (r >= 5) is the
same as r >= 5 in this context. But, the second pair is necessary due
to the fact that and has a higher precedence over or.

27.9. Property Pattern
Property patterns are used to match on an object’s properties or fields
against nested patterns. A property pattern, using curly braces {},

27.8. Parenthesized Pattern

185

matches a target expression when the expression is non-null and every
nested pattern matches the corresponding property or field of the
expression. For example,

var date = DateTime.Now;
if (date is { Month: 12, Day: 25 or 31 }) { ①
 Console.WriteLine("Today is a New Year's Eve! Or, maybe
just a Christmas?");
}

① The property pattern, { Month: 12, Day: 25 or 31 }, would
match date if its properties Month and Day are 12 and 25 or 12 and
31, regardless of the year or the time.

A property pattern is a recursive pattern. That is, you can use property
patterns to match a property of a property of an object, etc. For
instance,

// public record Point(int X, int Y);
// public record Circle(Point O, int R);

var circle = new Circle(new(1, 0), 10);
if (circle is { O: { X: 0 } or { Y: 0 } }) ①
{
 Console.WriteLine("Hey, I'm on the X-axis! Or, maybe am I
on the y-axis?");
}

Alternatively, the above property pattern could have been written
slightly more succinctly using the "extended property pattern"
(available since C# 10). For example,

var circle = new Circle(new(0, 4), 100);
if (circle is { O.X: 0 } or { O.Y: 0 }) ①
{

27.9. Property Pattern

186

 Console.WriteLine("Hey, I don't know~~~");
}

① A pattern { O.X: 0 } is equivalent to { O: { X: 0 }}.

27.10. Positional Pattern
Some types have a Deconstruct method defined that deconstructs
their properties into discrete variables. C# natively supports
deconstruction of tuples. It also automatically creates a Deconstruct
method for record types.

When a value or an object can be deconstructed, a positional pattern
can be used to inspect its properties and match against the
corresponding nested patterns. For instance, using the Point record
type from the previous section,

// public record Point(int X, int Y);

var point = new Point(1, 0);
var affirmation = point switch { ①
 (0, 0) => "I'm Origin", ②
 (_, 0) => "I'm X-axis", ③
 (> 0, _) => "I'm a Half Plane", ④
 (>= -5 and < 5, >= 10 and < 20) => ⑤
 "I'm a Square!",
 _ => "I am FREE~~~", ⑥
};

① The object point is "deconstructible". More specifically, in can be
deconstructed to the X and Y properties.

② Two constant patterns inside a positional pattern.

③ A positional pattern comprising discard and constant patterns.

④ A pattern with a relational pattern and a discard pattern.

27.10. Positional Pattern

187

⑤ A pattern with two logical patterns, each with two relational
patterns connected with and.

⑥ A catch-all discard pattern.

27.11. Tuple Pattern
The tuple pattern is essentially identical to the positional pattern, but
the context is slightly different. In a pattern matching expression or
statement, such as is or switch, the target expression itself may be a
tuple. In such a case, we can use positional patterns directly without
requiring a deconstruction of the target expression first.

Using the same example from the previous section,

var (x, y) = point;
var affirmation = (x, y) switch {
 // ...
}

Or,

var affirmation = (point.X, point.Y) switch {
 // ...
}

27.12. List Pattern
The list pattern, introduced in C# 11, is similar to the positional pattern,
and it lets you match an array or list against a sequence of other
patterns. For example, an expression abc is ['a', 'b', 'c'] is
true when abc is an array or a list of 3 char items, 'a', 'b', and 'c'.

27.11. Tuple Pattern

188

Unlike in the positional pattern, it can match over arrays and lists of the
same element types, but possibly with different lengths.

You can match elements using any pattern, including constant, type,
property and relational patterns. In addition, the discard pattern _
matches any single element, and the slice pattern .. matches any
sequence of zero or more elements. The slice pattern can only be used
within a list pattern. Note further that no more than one slice pattern
can be included in a list pattern.

Here’s an example illustrating some list patterns:

int[] expr = { 1, 2, 3 };
var matched = expr switch {
 [1, 2, 3] => "[1, 2, 3]", ①
 [1, _, 3] => "[1, _, 3]", ②
 [1, 2, > 0] => "[1, 2, > 0]", ③
 [var x, 2, 3] => $"[var x, 2, 3], x: {x}", ④
 [int, _, 3] => "[int, _, 3]", ⑤
 [int x, _, _] => $"[int x, _, _], x: {x}", ⑥
 [1, .., 3] => "[1, .., 3]", ⑦
 [.., 3] => "[.., 3]", ⑧
 [_, ..] => "[_, ..]", ⑨
 [..] => "[..]", ⑩
 _ => "_", ⑪
};
Console.WriteLine($"matched = {matched}");

① This pattern, [1, 2, 3], comprising three constant patterns will
match an array or a list of 3 items, 1, 2, and 3, but no others.

② This pattern, including one discard pattern _ will match a sequence
of 3 items, with the first and third ones 1 and 3, respectively.

③ This pattern includes a relational element pattern in its third
position. The first two elements need to match exactly, whereas the
third element should be an integer greater than 0.

27.12. List Pattern

189

④ Another pattern with the var pattern for its first element.

⑤ Another three element pattern.

⑥ Another three element pattern with a declaration pattern.

⑦ This pattern can match a sequence with 2 or more elements. As long
as its first and last elements are 1 and 3, respectively, it will match.

⑧ Likewise, this pattern will match any sequence with at least one
element whose last element is 3.

⑨ This pattern, [_, ..], will match any sequence of any type as long
as it has at least one element.

⑩ This pattern, [..], matches any sequence.

⑪ The wildcard, or discard, pattern matches any expression.

27.12.1. Slice pattern

The slice pattern has two forms: .. and .. PATTERN. Both will take up
the remaining space after matching other elements and it will try to
match the sequence in that space. In case of .., it matches any
sequence. In case of .. PATTERN, it still needs to match the PATTERN.
Here’s a simple example using the second form of the slice pattern. The
Len<T> function recursively computes the length of the given array.

static int Len<T>(T[] list) => list switch {
 [] => 0,
 [_, .. (T[] tail)] => 1 + Len(tail), ①
};

① This is a commonly-used [head: tail] pattern. Since we are not
interested in the actual value of the head, we use the discard
pattern, and we just add 1 for the discarded head. The second
element of this list pattern is a slice pattern comprising a
parentheses pattern, which in turn includes a declaration pattern.

27.12. List Pattern

190

Chapter 28. Using & Disposable
The using statement is used to obtain a resource, execute statements
using that resource, and then dispose of it at the end. There are two
forms of the using statement.

28.1. The using Statement

using (EXPRESSION) {
 STATEMENTS
}
using (TYPE VARIABLE = EXPRESSION) {
 STATEMENTS
}

The using statement is a compound statement that includes an
embedded statement. As in some previous examples, we have replaced
it with a block statement because that is the most commonly used form.
STATEMENTS represents zero or more statements. TYPE VARIABLE =
EXPRESSION is a local variable declaration. TYPE can be a type,
including dynamic, or the var keyword. VARIABLE is read-only. The
type of EXPRESSION should be a "disposable resource", which is

• Either a class, record, or struct which has an accessible Dispose
instance method, or

• A type that implements the System.IDisposable interface, which
includes a single Dispose method.

The Dispose method needs to implement any cleanup code for the
resource, and the code that is using the resource can explicitly call
Dispose to indicate that it is done using the resource. Or, within the
using statement, the compiler generates the call to Dispose(), which
is automatically called when control leaves the using block.

28.1. The using Statement

191

28.2. The using Declaration
In an alternative form, the using statement can be used as a
declaration, with the following syntax.

using TYPE VARIABLE = EXPRESSION;
// Use the resource until the end of the current block

This is a local variable declaration prefixed with the keyword using. As
with the first form, EXPRESSION evaluates to a disposable resource type.
The scope of the read-only local variable VARIABLE is the block that
encloses this using declaration. The resource is disposed of when
VARIABLE goes out of scope, e.g., at the end of the enclosing block.

In both forms of the using statement, if control leaves the current
block before it reaches the end, either through an exception or other
control flow actions, the Dispose() method is automatically called.

Here’s a simple type that implements IDisposable:

record class PaperCup() : IDisposable {
 public void UseMe() {
 Console.WriteLine("Use me! I'm disposable");
 }
 public void Dispose() {
 Console.WriteLine("I'm being disposed~~");
 }
}

Now, we can use an object of this type in the using statement.

using var cup = new PaperCup();
cup.UseMe();

28.2. The using Declaration

192

Chapter 29. Exception Handling
The C#'s exception framework uses the try - catch - finally
statement to deal with any unexpected or exceptional situations. C#
causes exceptions in certain circumstances during the program
execution when the operation cannot be completed normally.
Exceptions can also be explicitly thrown using the throw expression.

29.1. The Exception Base Class
The System.Exception class is the base type of all exceptions in .NET,
which includes the following instance constructor:

public Exception(string? message, Exception? innerException);

• Message is a readonly property of the string? type that is used to
provide a human-readable description of the reason for the
exception.

• InnerException is a readonly property of the nullable Exception
type. This property is used for "exception chaining". That is, when
the current exception was raised in the catch block of a try-catch
statement, its InnerException property is used to refer to the
original exception that caused the current exception.

29.2. The throw Expression
C# supports both throw expressions and throw statements. The throw
statement with an exception argument is syntactically identical to the
throw expression used as a statement.

throw EXPRESSION;

29.1. The Exception Base Class

193

A throw expression throws the value produced by evaluating
EXPRESSION. It must denote a value of System.Exception or of a type
that has System.Exception as its effective base class.

A throw statement with no argument can be used only in a catch
block. This form of throw statement re-throws the exception that is
currently being handled by that catch block.

throw;

29.3. The try - catch Statement
The try statement with catch clauses is used for catching exceptions
that occur during execution of a block. In addition, a finally clause
can be used to specify a block of cleanup code that is always executed
whether an exception occurred or not. Here’s a general structure of the
try statement.

try { ①
 STATEMENTS
} catch (EXCEPTION) { ②
 STATEMENTS
} catch (EXCEPTION NAME) { ③
 STATEMENTS
} catch (EXCEPTION) when (EXPR) { ④
 STATEMENTS
} catch (EXCEPTION NAME) when (EXPR) { ⑤
 STATEMENTS
} catch { ⑥
 STATEMENTS
} finally { ⑦
 STATEMENTS
}

29.3. The try - catch Statement

194

① A try statement consists of the keyword try followed by a block,
optional catch clauses, and an optional finally clause.
Syntactically, at least one catch or finally clause is required. The
statements in the try block can throw exceptions.

② A catch clause can have a few different forms. In this particular
form, catch (EXCEPTION) { STATEMENTS }, an exception type is
specified, within a pair of parentheses, after the catch keyword,
which are followed by a block. EXCEPTION should be
System.Exception or its subtype. If a thrown exception is a
subtype of EXCEPTION, this catch clause "catches" the exception, and
the corresponding block statements are executed. All other
following catch blocks will be ignored after that catch clause.

③ In the exception specifier, an identifier (NAME) can be optionally
included after the exception type, similar to the local variable
declaration syntax. In such a case, the identifier, which refers to the
caught exception, can be referenced in the catch block.

④ An exception can be caught conditionally using a filter, which
consists of the contextual keyword when followed by a
parenthesized boolean expressions (EXPR). In such a case, the catch
clause can catch the exception only if EXPR evaluates to true in
addition to the exception type match.

⑤ The exception variable can also by optionally specified, and this
local variable can be referenced both in the when clause as well as in
the catch block.

⑥ There can be at most one general catch clause without a particular
exception type in a try statement. This must be the last catch
clause before a finally clause, if any. This catch clause catches
any exception type.

⑦ The statements in the finally block, if present, are always executed
regardless of whether an exception is thrown from the try block.

Here are some quick examples:

29.3. The try - catch Statement

195

class BallException : Exception { ①
 public BallException(int code, string? message) :
base(message) => Code = code;
 public int Code { get; }
}

① You can create an exception type by inheriting from Exception.

static int Deliberately(int color) => color switch { ①
 1 or 2 => throw new BallException(code: color, $"Color
code is {color}"),
 _ => throw new Exception("Curve ball"),
};

① A helper function to deliberately throw some exceptions.

foreach (var i in new[] { 1, 2, 3 }) { ①
 try {
 Deliberately(i); ②
 } catch (BallException ball) when (ball.Code == 1) {
 Console.WriteLine($"ball = {ball.Message}");
 } catch (BallException ball) {
 Console.WriteLine($"ball = {ball.Code},
{ball.Message}");
 } catch (Exception ex) {
 Console.WriteLine($"Exception = {ex.Message}");
 } finally {
 Console.WriteLine("Throw again");
 }
}

① In each of these three cases, a slightly different exception is thrown,
and they are caught by different catch blocks.

② Generally speaking, the try statement is used to guard against
exception-throwing statements.

29.3. The try - catch Statement

196

Chapter 30. Attributes
In C#, user-defined types of declarative information, called attributes,
can be attached to program entities such as types and members, or local
functions, depending on the attribute declarations. This attribute
information can then be retrieved in a run-time environment.

This is similar, for example, to the way the accessibility of a method is
specified via declarative access modifiers such as public, protected,
and private, etc.

• Attributes are defined through the declaration of attribute classes,
which can have positional and named parameters,

• Attributes are attached to various entities in a C# program using
attribute specifications, and

• They can be retrieved at run time as attribute instances.

30.1. Attribute Classes
An attribute class is, by definition, a class inheriting from the abstract
class System.Attribute, either directly or indirectly. Although it is not
required, many attribute class names end with the suffix Attribute by
convention. When the attributes are used, this suffix can be omitted.

For example,

class UselessAttribute : Attribute { } ①
class GenericDemo<T> : Attribute { } ②

① This attribute can be used with a name Useless or
UselessAttribute.

② As of C# 11, we can now create and use generic attributes.

30.1. Attribute Classes

197

An attribute class can be decorated with other attributes, just like other
regular classes. In particular, System.AttributeUsageAttribute can
be used to describe how a given attribute class can be used.
AttributeUsage specifies what kind of program entities which the
given attribute can be used with, using a positional parameter.

For instance,

[AttributeUsage(AttributeTargets.Interface |
AttributeTargets.Class)]
class EmptyAttribute : Attribute {} ①

① The Empty attribute can be used with a class or interface, but no
other entities. For example,

[Empty] class C1 { }
[Empty] interface I1 { }

The AttributeUsage attribute also has a named parameter,
AllowMultiple, which indicates whether the attribute can be specified
more than once for a given entity. If its value is explicitly set to true,
then the given attribute class is a multi-use attribute class, and it can be
specified more than once on the same entity. Otherwise, that attribute
class is a single-use attribute class.

30.1.1. Attribute inheritance

Attributes are "inherited" by default. That is, if a class inherits from a
base class which is decorated by an attribute, then that attribute also
applies to the inherited class.

This behavior can be changed by setting the value of AttributeUsage's
named parameter, Inherited, to false.

30.1. Attribute Classes

198

30.1.2. Reserved attributes

In addition to AttributeUsage, there are a few other attribute classes
defined that affect the language in the System, System.Diagnostics,
System.Diagnostics.CodeAnalysis, and
System.Runtime.CompilerServices namespaces.

System.Diagnostics.ConditionalAttribute

Conditional is a multi-use attribute class which is used to define
conditional methods and conditional attribute classes. This attribute
indicates a condition by testing a conditional compilation symbol.

System.ObsoleteAttribute

Obsolete is used to mark a member as obsolete or deprecated.

System.Diagnostics.CodeAnalysis.SetsRequiredMembersAttrib
ute

SetsRequiredMembers specifies that the given constructor sets all
required members for the current type, and callers do not need to
set any required members themselves. (New in C# 11.)

CallerLineNumberAttribute, CallerFilePathAttribute,
CallerMemberNameAttribute,
CallerArgumentExpressionAttribute

These attributes from the System.Runtime.CompilerServices
namespace are used to supply information about the calling context
to optional parameters.

30.2. Attribute Parameters
Attribute classes can have positional parameters and named parameters.

• Each public instance constructor for an attribute class defines a
valid sequence of positional parameters for that attribute class.

30.2. Attribute Parameters

199

• Each non-static public read-write field and property for an attribute
class defines a named parameter for the attribute class.

30.2.1. Attribute parameter types

The types of positional and named parameters for an attribute class are
limited to the following:

• One of the following types: bool, byte, char, double, float, int,
long, sbyte, short, string, uint, ulong, ushort.

• The type object.

• The type System.Type.

• Enum types.

• Single-dimensional arrays of any of the above types.

30.3. Attribute Specification
Attributes can be specified

• At global scope, to specify attributes on the containing assembly or
module, and

• Locally, for

◦ Type declarations,

◦ Member declarations for interface, class, record, struct,
and enum,

◦ Accessor declarations,

◦ Event accessor declarations,

◦ Elements of formal parameter lists,

◦ Elements of type parameter lists, and

◦ Local function declarations (New in C# 11).

30.3. Attribute Specification

200

30.3.1. Attribute sections

Attributes are specified in attribute sections. An attribute section
consists of a pair of square brackets [], which encloses a comma-
separated list of one or more attributes. Multiple attribute sections can
be applied to a program entity. The order of the attribute sections, as
well as the order of the attributes in a given attribute section, is not
significant. For example, the attribute specifications for the following
four properties are all equivalent:

class Balloon {
 [Up, Down] public int Nav1 { get; }
 [Down, Up] public int Nav2 { get; }
 [Up][Down] public int Nav3 { get; }
 [Down][Up] public int Nav4 { get; }
}

30.3.2. Attribute targets

By default, the target of an attribute is the entity that follows the
attribute specification. But, one can explicitly specify an attribute target
using the following syntax:

[TARGET : COMMA_SEPARATED_LIST_OF_ATTRIBUTES]

The valid values for TARGET are assembly, module, field, event,
method, param, property, return, and type. Since C# 11, attributes
can be specified on the backing fields of the auto-properties using the
field target. Here’s an example.

[Up] class Balloon {
 [field: Down] public int Nav1 { get; }
}

30.3. Attribute Specification

201

A. How to Use This Book
Tell me and I forget. Teach me and I remember.
Involve me and I learn.

— Benjamin Franklin

The books in this "Mini Reference" series are written for a wide
audience. It means that some readers will find this particular book "too
easy" and some readers will find this book "too difficult", depending on
their prior experience related to programming. That’s quite all right.
Different readers will get different things out of this book. At the end of
the day, learning is a skill, which we all can learn to get better at. Here
are some quick pointers in case you need some advice.

First of all, books like this are bound to have some errors, and some
typos. We go through multiple revisions, and every time we do that
there is a finite chance to introduce new errors. We know that some
people have strong opinions on this, but you should get over it. Even
after spending millions of dollars, a rocket launch can go wrong. All
non-trivial software have some amount of bugs.

Although it’s a cliche, there are two kinds of people in this world. Some
see a "glass half full". Some see a "glass half empty". This book has a lot
to offer. As a general note, we encourage the readers to view the world
as "half full" rather than to focus too much on negative things. Despite
some (small) possible errors, and formatting issues, you will get a lot
out of this book if you have the right attitude.

There is this book called Algorithms to Live By, which came out several
years ago, and it became an instant best seller. There are now many
similar books, copycats, published since then. The book is written for
"laypeople", and illustrate how computer science concepts like specific
algorithms can be useful in everyday life.

202

Inspired by this, we have some concrete suggestions on how to best
read this book. This is one suggestion which you can take into account
while using this book. As stated, ultimately, whatever works for you is
the best way for you.

Most of the readers reading this book should be familiar with some
basic algorithm concepts. When you do a graph search, there are two
major ways to traverse all the nodes in a graph. One is called the "depth
first search", and the other is called the "breadth first search". At the
risk of oversimplifying, when you read a tutorial style book, you go
through the book from beginning to end. Note that the book content is
generally organized in a tree structure. There are chapters, and each
chapter includes sections, and so forth. Reading a book sequentially
often corresponds to the depth first traversal.

On the other hand, for reference-style books like this one, which are
written to cover broad and wide range of topics, and which have many
interdependencies among the topics, it is often best to adopt the breadth
first traversal.

This advice should be especially useful to new-comers to the language.
The core concepts of any (non-trivial) programming language are all
interconnected. That’s the way it is. When you read an earlier part of
the book, which may depend on the concepts explained later in the
book, you can either ignore the things you don’t understand and move
on, or you can flip through the book to go back and forth. It’s up to you.
One thing you don’t want to do is to get stuck in one place, and be
frustrated and feel resentful (toward the book).

The best way to read books like this one is through "multiple passes",
again using a programming jargon. The first time, you only try to get
the high-level concepts. At each iteration, you try to get more and more
details. It is really up to you, and only you can tell, as to how many
passes would be required to get much of what this book has to offer.

Again, good luck!

203

Index
@

!, 183
#define, 35
#elif, 35
#else, 35
#endif, 35
#endregion, 35
#error, 35
#if, 35
#line, 35
#line directive, 35
#nullable, 35
#pragma, 35
#region, 35
#undef, 35
$ prefix, 64
$@, 65
&, 59
&&, 183
+ operator, 62
+= and -= operators, 117
+= operator, 118
.. syntax, 150
.NET class library, 66
.NET classes, 83
.NET system, 83
== and !=, 62
== and != operators, 90
=>, 157-159
? symbol, 44
?: operator, 149

??, 153
??=, 153
?[…], 153
@ character, 31
@$ syntax, 65
@-quoted string, 63
@-quoted strings, 62
[], 117
[] operator, 62
[…], 153
\0, 59
\u0000, 59
^, 150
{}, 73, 99, 122
|, 59
||, 183

A

absence of a type, 155
abstract, 75, 100, 109, 115
abstract base class, 84, 94
abstract class, 100
abstract class, 100, 197
Abstract classes, 100
abstract classes, 100, 110
abstract members, 78
abstract members, 100
abstract method, 110-111
abstract method, 110
abstract method declaration,

110

204

Abstract methods, 110
abstract modifier, 110
abstract or virtual, 75, 78
Access Control, 26
access limitations, 27
access modifier, 74, 94, 115-116
access modifiers, 27, 41, 96, 100, 106,

109, 115, 127
accessibility, 27, 103, 116, 120, 197
accessibility declarations, 26
accessor block, 112
Accessor body, 115
accessor body, 115
accessor body block, 115
accessor declarations, 115
accessor definition block, 117
accessor methods, 112
accessor properties, 125
accessors, 76
Action, 158
Addition operator, 143
addition operator, 141, 143
alias, 37, 39
AllowMultiple, 198
and, 183, 185, 188
angular brackets, 66
angular brackets <>, 101
anonymous function, 52, 158
anonymous local functions, 50
anonymous object initializer, 137
Anonymous Object Initializers, 137
anonymous type, 137
anonymous type, 137
args, 25

argument, 53, 55
Argument List, 53
argument list, 53, 57
argument syntax, 53
arguments, 52
arguments, 55, 58
arithmetic, 138
Arithmetic Operators, 141
Arithmetic operators, 140
Array, 84
array, 55, 84
array, 87, 150
array argument, 55
Array Creation, 86
array element access, 150-151
Array Elements, 47, 87
Array elements, 47
array elements, 47, 86
array initializer, 86
array object, 84, 134
array objects, 117
array of arrays, 85
array type, 84-85
Array Types, 84
array types, 84
array value, 55
Arrays, 134
arrays, 189
array’s element type, 55
as, 182
as Operator, 155
as operator, 140, 155, 183
ASCII space character, 30
assembly, 27

205

assignment, 116, 126-127, 144, 185
Assignment and declaration, 92
assignment and initialization, 92
assignment expression, 116, 185
Assignment Operators, 144
Assignment operators, 140
assignment operators, 144
assignment syntax, 94
Assignments, 138
associated value, 97
associativity, 138
async, 24, 51, 109
async expressions, 25
async method, 109, 111
async modifier, 109
attribute, 154, 197-198
attribute class, 197-200
Attribute Classes, 197
Attribute classes, 199
attribute classes, 197, 199
attribute declarations, 197
attribute information, 197
Attribute inheritance, 198
attribute instances, 197
Attribute parameter types, 200
Attribute Parameters, 199
attribute section, 201
Attribute sections, 201
attribute sections, 201
attribute sections, 201
Attribute Specification, 200
attribute specification, 201
attribute specifications, 197, 201
attribute target, 201

Attribute targets, 201
Attributes, 197, 200-201
attributes, 50, 52, 54, 73, 75-77, 109,

112, 115, 117, 122, 127, 197, 201
attributes, 197
AttributeUsage, 198-199
AttributeUsage attribute, 198
Auto default structs, 129
Auto properties, 114
auto-implemented properties, 113
auto-properties, 115, 201
auto-property, 114
automatically implemented property,

114
await, 138
Await expressions, 138
await operator, 140

B

backing field, 114
backing fields, 201
base class, 42, 66, 70, 83, 99-100, 103,

107, 198
base class constraint, 68
base class specification, 99, 101
Base class type constraints, 70
Base Classes, 102
base classes, 99
base classes, 102
base interface, 74
base interface member, 75
Base interfaces, 74
base interfaces, 73-75, 84
base member, 75

206

base record, 123-125
base record primary constructor, 123
base record specification, 122
base type, 193
base types or interfaces, 81
binary, 33
binary bit shifting, 147
Binary Operators, 119
binary operators, 138, 141
Bitwise complement, 147
bitwise complement operator, 147
bitwise logical, 145
bitwise logical AND, 145
bitwise logical OR, 145
Bitwise Operators, 146
Bitwise operators, 140
block, 28, 36, 162, 166-167, 169, 194-

195
block body, 111-112, 116
block of statements, 158, 161, 163,

165-167
block statement, 28, 111, 163, 165,

167-168, 170, 176, 191
block statements, 195
block {}, 105
block-scoped namespace, 36
Blocks, 28
blocks, 36, 163, 172
Blocks and Scopes, 28
boilerplate code, 25
bool, 33
bool literals, 33
bool Type, 59
bool type, 42, 59

bool?, 43
bool? operands, 59
Boolean expressions, 148, 183
Boolean literal, 33
Boolean literals, 33
boolean logic, 138
Boolean logic operators, 140
Boolean Operands, 145
Boolean type, 59
Boolean value, 156
boxed, 130
Boxing, 43
boxing, 42
boxing, 94, 156
Boxing and Unboxing, 43
boxing and unboxing, 43
brace sequence, 65
braces, 65
braces {}, 64
break Statement, 174
break statement, 162, 171, 174
break statements, 157
builtin array types, 88
builtin reference type, 84
builtin types, 33
builtin value type, 89
byte, 60
byte array, 64

C

C# compilation unit, 29
C# expression, 138
C# Expressions, 139
C# identifiers, 31

207

C# keywords, 31
C# language, 49
C# operators, 139
C# program, 24, 26, 29, 31, 197
C# programs, 36
C# project, 40
C# statements, 161, 168
C++-style single-line comments, 30
C-style delimited comments, 30
C-style languages, 31
call-by-reference semantics, 56
call-by-value semantics, 131
called method, 56, 58
caller, 175
calling code, 58
calling context, 199
calling method, 57-58
capture, 159
capture local variables, 159
captured variable, 182
captured variables, 160
Carriage return, 29
case, 157, 171
case label, 171
case: elements, 157
catch, 195
catch block, 193
catch block, 194-195
catch blocks, 195-196
catch clause, 195
catch clauses, 194-195
catch keyword, 195
catch-all pattern, 178
caught exception, 195

char literal, 34
Char literals, 59
char objects, 62
char Type, 59
char type, 59-60
char value, 59
character, 30, 34
character code, 59
character literal, 59
Character literals, 34
character literals, 29
character offset, 35
character sequence, 30, 63
character sequences, 30
characters, 29
checked, 61, 139, 141
checked and unchecked, 162
checked context, 139
checked Operators, 141
class body, 99
class constant member, 46
class constraint, 69
class constructors, 129
class declaration, 41, 128
class declaration, 99-103, 107, 113,

128
Class Declarations, 99
class declarations, 26, 101
class definition, 101
Class Fields, 108
class member, 107
Class Members, 107
Class modifiers, 100
class modifiers, 99-100

208

class name, 101, 119
class object, 102
class or interface, 24
class or record, 128
class or struct constraint, 68
class type, 102
Class types, 99
class types, 125
class? constraint, 69
Classes, 99
classes, 126
classes or records, 126
Classifications, 139
cleanup code, 191, 194
cleanup operations, 83
closing double quote sequence, 63
closures, 50-51, 158
code segment, 176
collection, 150
collection element, 165
collection initializer, 135-136
Collection Initializers, 136
Collection initializers, 134
collection objects, 135
collection types, 66
colon :, 74
comma-separated list, 201
command line arguments, 25
commas, 157
commas ',', 135
commas ,, 103
Comments, 29-30
comments, 30
comparable, 90

comparison, 138
Comparison operators, 140
comparisons, 83
compilation symbols, 35
compilation unit, 36-38, 40
compilation units, 24, 35-36
compile time, 45-46, 66, 107, 154
compile-time construct, 66
compile-time error, 46, 139
Compiler Directives, 35
Compiler directives, 29
Compiler-generated methods, 124
compiler-synthesized methods, 125
complier directives, 35
Compound assignment, 144
compound data types, 126
Compound patterns, 177
compound patterns, 183
compound statement, 191
compound statements, 170
Conditional, 199
conditional attribute, 199
conditional compilation, 35, 199
conditional expression, 149, 153, 177
conditional methods, 199
Conditional Operator, 149
conditional operator ?:, 149
Conjunctive and pattern, 184
const variable, 178
constant, 28, 46, 65, 107, 187
constant expression, 46, 65, 178-179
constant expression initializer, 97
Constant interpolated strings, 65
constant label, 173

209

Constant members, 46
Constant Pattern, 178
Constant pattern, 177
constant pattern, 178-179
constant patterns, 179, 184, 187, 189
constant string, 154
constant string literal, 179
constant string literals, 179
constant value, 46, 97, 107, 155
constant values, 94
Constants, 72, 107
constants, 77, 101, 161, 163
constraining interfaces, 70
Constraints, 67
Constraints on type parameters, 67
constructed class, 103
constructed type, 66, 102-103
constructed types, 104
constructor, 136
constructor arguments, 136
constructor body, 105
constructor initializer, 105
constructors, 106
constructors and finalizers, 99
containing class, 27, 104, 120
containing enum type, 96-97
containing properties, 115
containing property, 115-116
containing type, 27, 120
containing types, 27
contextual keyword, 48, 67, 116, 180
Contextual keywords, 32
contextual keywords, 32, 61
contiguous regions of memory, 88

continue Statement, 174
continue statement, 162, 174-175
Contravariance, 71
contravariance, 71
contravariant, 71, 74
contravariant, 74
contravariant interfaces, 71
control flow, 177
control flow statement, 163
Conversion, 45
conversion, 45, 156
Conversion Operators, 119
conversions, 119, 139
convertible, 156
copy constructors, 83, 124
corresponding argument, 55
corresponding parameter, 53-54
Covariance, 71
covariance, 71
covariant, 71, 74
covariant, 74
covariant interfaces, 71
covariant type parameter, 71
curly braces, 76, 86
curly braces {}, 128, 170, 185
current block, 192
current exception, 193
custom type definitions, 24

D

data elements, 89
data members, 99, 125-126
data mutability, 56
decimal, 33, 61

210

decimal, 61
decimal arithmetic operation, 61
decimal literal, 34
Decimal numbers, 61
decimal Type, 61
decimal type, 61
declaration, 158, 163, 167, 192, 197
Declaration Pattern, 182
Declaration pattern, 177
declaration pattern, 182-183, 190
Declaration Statement, 163
declaration statement, 161
Declaration Statements, 161
Declaration statements, 163
Declarations, 26
declarative access modifiers, 197
declarative information, 197
declared accessors, 114
declared types, 163
decoding, 64
Deconstruct method, 93, 121, 125,

187
deconstructing, 93
deconstructing tuples, 91
deconstruction, 49, 91-92, 187
decorated method, 154
default, 171
default access level, 26, 28, 41
default access modifiers, 77
default accessibility, 120
default argument, 52
default arguments, 52
default case, 157
default constraint, 67-68

default constructor, 43, 106, 124
Default constructors, 43
default implementation, 75-77
Default Implementations, 81
default implementations, 72, 76, 81,

83
default label, 171
default literal, 33
default literal conversion, 152
default names, 89
default operator, 151
default value, 33, 43, 47, 52, 56, 59, 86,

96, 134, 151-152
default value expression, 151
Default Value Operator, 151
Default value operator, 140
default values, 129
delegate, 71, 118, 158
delegate constraint, 68
delegate constraints, 68
delegate declaration, 41
delegate declarations, 74
delegate instance, 137
delegate object, 118
delegate type, 118, 158
delegate types, 71
Delegates, 134
delimited comment, 30
deprecated, 199
derived class, 100
Derived classes, 83
derived classes, 99
derived classes, 110
derived interface member, 75

211

derived member, 75
derived record, 123
derived types, 27, 99
destination type, 139
development, 154
diagnostic purposes, 154
direct base class, 102-103
directories, 24
discard, 187, 190
Discard Pattern, 178
Discard pattern, 177
discard pattern, 157, 178, 187-188,

190
discard pattern _, 189
Discard patterns, 178
discard variable, 157
discard variable _, 49, 157
Discard variables, 49, 92
Disjunctive or pattern, 184
disposable, 130
disposable resource, 191
disposable resource, 192
Dispose instance method, 191
Dispose method, 83, 191
Dispose(), 191
Dispose() method, 192
Division operator, 143
division operator, 143
do Statement, 166
do statement, 166
do-while statement, 161, 166
dollar signs, 65
dot . operator, 102
dot notation, 95

dot qualified names, 37
double, 61
double literal, 34
double quotation mark, 63
double quotation marks, 62
double quote characters, 62
double quotes, 63
double-precision, 61
double-quote character sequence, 63
dynamic, 45, 191
dynamic binding, 45
dynamic memory, 128
dynamic type, 45
Dynamic Types, 45
dynamically allocated object, 126

E

E as T, 155
E is P, 156
E is T, 156
effective base class, 194
effective return type, 111
effective return type, 111-112, 175
element access, 153
element access expression, 153
element type, 84-85
element types, 189
elements, 84, 87
else, 169-170
else part, 169
embedded statement, 161, 165-166,

170, 191
embedded statements, 163, 172
Empty, 62

212

empty argument list, 55
empty array, 55, 86
empty body ;, 111
Empty Statement, 162
empty statement, 162-163
empty string literal, 62
Empty strings, 62
enclosed string, 63
enclosed string literal, 63
enclosing block, 192
enclosing namespace, 26
enclosing scope, 50-51
encoding, 64
end character, 35
end line, 35
ending double-quote sequence, 63
entry point, 24, 41, 75
entry point methods, 25
Enum, 94
enum, 94, 185
enum body, 94
enum constant, 178
enum constraint, 68
enum constraint, 68
enum declaration, 41, 94
enum declaration, 95
Enum Declarations, 94
enum keyword, 94
enum member, 96-97
Enum Members, 96
Enum members, 96
enum members, 96-97
Enum Modifiers, 96
Enum Operands, 146

Enum Operations, 98
enum type, 68, 94-98, 146-147
enum type, 97
enum type declaration, 96, 98
Enum types, 96
enum types, 42, 98, 146
enum types, 94
enum value, 179
enumerable, 165
Enumerable.Range, 160
enumeration types, 95
enumerator type, 165
equality operators, 62
errors, 35
evaluated value, 139
event, 118-119
event access, 144
Event assignment, 144
event field, 118
event handler, 118
Event handlers, 117
event handlers, 118
event keyword, 118
event member, 117-118
event member, 118
Events, 117
events, 72
Exception, 196
exception, 192-196
exception argument, 193
Exception Base Class, 193
exception chaining, 193
exception framework, 193
exception specifier, 195

213

exception type, 195-196
exception type match, 195
exception variable, 195
exception-throwing statements, 196
exceptional situations, 193
Exceptions, 193
exceptions, 193, 196
exclusive OR, 145
executable C# program, 24
execution, 161, 167, 173
execution branches, 161
explicit access modifiers, 75
explicit base class, 102
explicit base type, 128
explicit casting, 96
Explicit conversion, 141
explicit entry point, 26
explicit interface implementation, 68
Explicit interface members, 82
explicit operator, 119
explicit reference conversion, 84
explicit type, 57
explicitly inherited base interfaces,

74
expression, 53, 139, 141, 147, 154,

157-158
expression body, 50, 109, 111-113,

115, 117, 157
expression body syntax, 113
expression lambda, 158
Expression lambdas, 158
expression lambdas, 158
expression operator, 119
expression statement, 139

expression statement, 139
Expression Statements, 138
expression statements, 162
expression tree, 158
expression-bodied method, 113
Expression-bodied properties, 113
Expressions, 183
expressions, 138
extended property pattern, 186
extension method, 52, 93, 131-133
Extension methods, 98, 109
extension methods, 98, 131
extern, 109, 115
extern alias directive, 37
extern Alias Directives, 37
extern alias directives, 36-37
extern modifier, 104-105, 111
external alias, 38
external constructor declaration, 105
external method, 111
External methods, 111
external methods, 111
external namespace, 37

F

false, 33, 140, 145-146, 148
false operator, 148
fat arrow, 157
fat arrow =>, 111, 113
Fibonacci sequence, 159
field, 47, 186
field declaration, 128
field declarations, 86
field names, 89-90

214

field target, 201
fields, 89, 96, 112, 185
field’s declaration, 108
file, 27
file modifier, 27
file scope, 96
file system, 24
file-local type, 27
file-scoped namespace, 36-37
file-scoped namespace declaration,

37
finalizer, 106
finalizer, 106
finalizer invocations, 106
Finalizers, 106, 129
finalizers, 83, 106
finally, 195
finally block, 195
finally clause, 194-195
first argument, 131
first operand, 147, 149
first parameter, 52, 131
fixed, 162
fixed parameter, 52
fixed parameters, 52
float, 61
float literal, 34
Floating point number literals, 61
Floating Point Types, 61
floating point types, 34
floating-point types, 61
for loop, 173
for Statement, 163
for statement, 161, 163, 165

foreach block, 165
foreach Statement, 165
foreach statement, 87, 97, 161, 165-

166
form feed character, 30
formal parameter, 55, 119
formal parameter list, 50, 52, 54, 76-

77, 109, 117
formal parameter lists, 117
Formal Parameters, 109
formal parameters, 119, 131, 154
fully qualified names, 82
Func, 158
Func<int>, 160
Function arguments, 52
function body, 52
function body block, 50
function call, 175
function invocation, 55, 175
function invocations, 55
function members, 99, 126
function name, 50
Function parameters, 52
function parameters, 47
function returns, 57
further derivation, 123

G

garbage collection, 106
garbage-collected, 83, 159
generic, 73, 99
generic attributes, 197
generic class, 73, 101, 103
generic class declaration, 101-102

215

generic class declarations, 103
generic classes, 66
generic collection classes, 66
Generic collection interfaces, 84
generic delegates, 66
generic events, 66
generic interface, 71
generic interface declaration, 73, 80
generic interfaces, 66
generic local function, 50
generic local functions, 66
generic math, 79
generic method, 76
generic methods, 66
generic parameter, 71
generic records, 66
generic structs, 66
generic type, 66, 80, 102
generic type argument T, 68
generic type constraint, 80
generic type constraints, 67
generic type declaration, 66
generic type parameter, 132
Generic Type Parameters, 66
Generic type parameters, 42
generic type parameters, 131
Generic types, 42
generic types, 89
Generics, 71
generics, 66
generics, 66
get, 76, 113
get accessor, 116
get; init, 113

get; set, 113
getter block body, 116
global namespace, 26, 36
Global using, 40
global using, 37, 40
global using declarations, 40
global using directives, 36
global using directives, 40
goto, 173
goto Statement, 173
goto statement, 162, 173
goto statements, 173-175
grouping, 32

H

hat ^ operator, 150
hat operator, 150
hexadecimal, 33, 59
hexadecimal escape sequence, 34, 59
hexadecimal number, 29
hidden name, 28
high-order bits, 139
high-precision calculations, 61
higher precedence, 141, 185
horizontal tab character, 30

I

identifier, 31, 66, 195
identifier var, 48
Identifiers, 31
identifiers, 31-32
IDisposable, 192
IEC 60559 formats, 61
IEnumerable<object>, 71

216

IEnumerable<string>, 71
IEnumerable<T>, 71
IEquatable<Index>, 150
if, 167, 169, 177
if block, 182
if part, 168
if Statement, 167
if statement, 161, 168-170, 175
if-else form, 169
IList<T>, 84
immediate preceding member, 97
Immutability, 124
immutability, 49, 124
immutable, 62, 123-124, 130
immutable data, 121
immutable data types, 88
immutable reference type, 121
implemented interface type, 103
implicit bool conversion, 148
implicit conversion, 45, 71, 175
implicit global using, 25
implicit operator, 119
implicit reference conversion, 71, 84
Implicit using, 40
implicit usings, 40
implicit variable declaration, 134
implicitly declared variable, 49
implicitly typed local variable, 48
In, 71
in, 52, 56-57, 123, 126, 131
in and out, 74
in argument, 56
in keyword, 56
in modifier, 56, 130, 133

in parameter, 56
in Parameters, 56
in this, 52
in this Extension Methods, 133
in this extension methods, 133
in this parameter, 133
in this T self, 133
Index, 150
Index, 150
index and slice, 150
Index type, 150
indexer, 117, 136
indexer argument list, 77
indexer element type, 117
indexer modifiers, 117
Indexers, 117
indexers, 72, 117
Indexing, 87
indexing, 87-88, 150
indices, 87
Inheritance, 102, 123
inheritance, 99
inheritance, 100, 126
Inherited, 198
inherited abstract members, 100
inherited class, 198
inherited member, 74-75, 100
inherited members, 129
inherited method, 110
inherited methods and properties, 98
inherited virtual method, 110
init-only auto-property, 114
init-only properties, 115, 121, 124,

130

217

init-only property, 136
initial value, 47, 55
initial value assignments, 92
initial values, 86
initialization, 105, 124, 167
Initializations, 92
initializer, 97, 134, 136
initializer expression, 48, 134
initializer syntax, 136
initializers, 48
inner scope, 28
InnerException, 193
innermost containing namespace, 39
innermost enclosing namespace, 38
innermost loop, 175
innermost statement, 174
instance, 99, 104, 137
instance constructor, 104
instance constructor, 105-106, 193,

199
instance constructor declaration, 105
Instance Constructors, 105
Instance constructors, 105
instance constructors, 105, 129
instance field, 116, 129
instance field declaration, 108
instance fields, 108
instance initializers, 124
instance member, 75, 117
instance members, 51, 75, 78, 128
instance method, 109-110
instance method declaration, 110
instance method invocation, 131
instance methods, 72

instance properties, 113
instance state, 159
instance variable, 47
Instance Variables, 47
Instance variables, 47
Instances, 105
int, 60
int integer literal, 33
integer literal 0, 96
Integer literals, 33
integer literals, 34
Integer Operands, 145
integer return code, 25
integer sequence, 160
integer types, 61, 147
integral type, 60
Integral Types, 60
integral types, 60
integral types, 95
integral-type arithmetic, 61, 139
interface, 66, 72-75, 77-78, 81, 108
interface, 72, 80
Interface accessors, 76-77
interface body, 73
interface contract, 72
interface declaration, 41
interface declaration, 73-75
interface declaration statement, 73
Interface Declarations, 73
Interface event declarations, 77
Interface events, 77
Interface Implementations, 82
Interface implementations, 103
interface indexer declaration, 77

218

Interface indexer declarations, 77
interface member, 75
Interface member access, 77
interface member implementations,

82
Interface Members, 75
interface members, 75, 82
interface method, 81
Interface method declarations, 76
Interface methods, 76
Interface modifiers, 74
interface modifiers, 73
interface property accessor, 76
interface property declaration, 76
Interface property declarations, 76
Interface Static Members, 78
interface type, 82
interface type constraint, 79-80
Interface type constraints, 69
interface types, 74, 103, 128
interface-defined API, 80
interfaces, 69, 72, 101, 103, 122, 127,

130
internal, 26-28, 41, 116
internal class, 103
interpolated expressions, 65
interpolated string, 65
interpolated string expressions, 29
Interpolated strings, 33, 64
interpolation expression, 65
invalid member, 97
invariant, 71, 74
invariant, 74
Invocation, 53

invocation expression, 153
IReadOnlyList<T>, 84
is, 188
is Expression, 156
is expression, 156, 177-178
is operator, 140, 156
iteration, 165, 167, 174
iteration statement, 161, 165
Iteration Statements, 161
iteration variable, 165-166
iterators, 130

J

jagged array, 85
jump statement, 171
Jump Statements, 162
Jump statements, 173

K

keyword class, 99
keyword const, 46
keyword else, 168
keyword event, 77
keyword foreach, 166
keyword global, 40
keyword interface, 73
keyword namespace, 37
keyword new, 134
keyword operator, 119
keyword params, 54
keyword partial, 109
keyword struct, 127
keyword switch, 170
keyword this, 77

219

keyword try, 195
keyword using, 192
Keywords, 31
keywords, 29, 31, 61

L

label, 172-173
labeled statement, 172-173
Labeled Statements, 172
Labeled statements, 172
labeled statements, 173
labels, 171, 173
Lambda declaration operator, 158
lambda declaration operator, 159
Lambda expression, 158
lambda expression, 130, 158-159
Lambda expressions, 140, 158
lambda expressions, 158
lambda function, 158, 160
Lambda Functions, 158
lambda functions, 50-51
last catch clause, 195
last parameter, 54
last statement, 171
left hand side, 144
left operand, 144
Left shift, 147
left-hand operand, 145
Length property, 62
less derived type, 71
letters and numbers, 31
Lexical Analysis, 61
lexical analysis phase, 35
Lexical Elements, 29

lexical elements, 31
lexical structure, 29
lexically scoped language, 28
lightweight data structure, 89
line, 30
Line feed, 29
line numbers, 35
Line separator, 30
Line terminator elements, 29
Line terminators, 29
linear contiguous memory, 85
linear data structure, 85
lines, 29
List Pattern, 188
List pattern, 178
list pattern, 156, 177, 188-190
list patterns, 189
lists, 189
literal, 178
literal default, 152
literal syntax, 62
Literals, 31, 33
literals, 29, 31, 33
local constant, 46
local constant declaration, 46, 48
Local constants, 46, 50
local constants, 163
Local function, 50
local function, 50-51, 130
Local function body, 50
Local function modifiers, 51
local function modifiers, 50
Local Functions, 50
Local functions, 51

220

local functions, 50-51, 141, 163
local ref readonly variable, 56
local static function, 160
Local variable, 86
local variable, 28, 46-47, 55, 165-166,

180, 182, 192, 195
local variable declaration, 47-48, 182,

185, 191-192, 195
Local Variable Declarations, 48
local variable declarations, 48, 164
Local Variables, 47
Local variables, 47-48
local variables, 46, 48, 50-51, 160-161,

163
lock, 176
lock Statement, 176
lock statement, 162, 176
Lock Statements, 162
logical AND, 184
Logical negation, 146
logical negation, 146
logical negation operator, 146
logical operation, 146
Logical Operators, 145
Logical operators, 145
logical operators, 145-146, 183
Logical Pattern, 183
Logical pattern, 177
logical pattern, 183-184
logical patterns, 183, 185, 188
long, 60
long integer literal, 33
loop, 164, 167
loop variable, 87, 165

low-level libraries, 61
low-order five bits, 148
low-order six bits, 148

M

Main method, 25-26, 41, 104, 160
Main Methods, 24
Main static method, 104
Main() methods, 24
Main() static method, 24
Main() static methods, 24
matched expression, 180
Member access, 140
member access, 152
member access expression, 77, 102,

152-153
member access syntax, 95
Member Declarations, 41
Member declarations, 99
member declarations, 26, 36, 38, 73,

122, 128
member initializers, 135
member or element access, 153
member type declarations, 37
member types, 77
Message, 193
method, 158
method argument, 54
Method body, 109, 111
method body, 58, 110-112
method body block, 109
method call, 54
method declaration, 109, 111
method definition, 57

221

method invocation, 55, 57
Method invocation expressions, 138
method member, 108
Method member declarations, 108
method members, 117
method modifiers, 109
method name, 109
Method parameters, 109
method parameters, 24
method return type, 109
method signature, 58, 93
Methods, 108
methods, 112
method’s parameters, 71
method’s return type, 71
more derived type, 71
more derived types, 71
multi-dimensional arrays, 85
multi-line strings, 63
multi-threading environment, 127
multi-use attribute, 199
multi-use attribute class, 198
Multidimensional arrays, 85
multiline raw string literal, 63
multiple assignment, 92
Multiplication operator, 142
multiplication operator, 141-142
multithreaded programming, 176
mutable, 130
mutable type, 131
mutable value type, 133
mutable value types, 89
mutex lock, 176
mutual-exclusion lock, 162

N

name collisions, 24
name lookup, 61
name of the method, 76
name of the property, 76
named argument, 53
named arguments, 53
named constant, 96
named members, 94-95
named parameter, 198, 200
named parameters, 199
nameless class type, 137
nameof, 154
nameof expression, 154
nameof Operator, 154
nameof operator, 140, 154
namespace, 24, 36
namespace, 26, 36-41
namespace body, 38
namespace declaration, 36-37
Namespace Declarations, 36
namespace declarations, 26, 37, 41
Namespace members, 26
namespace members, 26
namespace name, 36
namespaces, 27, 36, 38, 40
Native Integer Types, 61
native integer types, 60-61
native signed, 61
native unsigned, 61
natural number type, 79, 81
natural numbers, 79
natural type, 158
Negation not pattern, 183

222

nested blocks, 173
Nested file-scoped namespaces, 37
nested loops, 173-174
nested namespaces, 24
nested pattern, 186
nested patterns, 185, 187
nested type, 120
Nested Types, 120
Nested types, 72, 120
nested types, 39, 77, 99-101
nesting levels, 174-175
new, 100, 109, 113, 127, 136
New Array Expressions, 134
new class, 101
new class declaration, 99
New Delegate Expressions, 137
new enum type, 94
new expression, 105, 128, 134
new instance, 105, 134
new interface type, 73
new line, 63
new line characters, 63
new lines, 63
new modifier, 74-75, 100, 110, 128
new object expression, 135
New Object Expressions, 135
new operator, 84, 86, 100, 127-128,

134, 137-138, 140
new operator expression, 106
new record class, 122
new() constraint, 68-69
newly created instance, 105
Next line character, 29
nint, 60-61

non-abstract class, 100
Non-abstract derived classes, 110
Non-Destructive Mutations, 125
non-dynamic type, 155
non-generic, 131
non-nested static class, 131
non-nullable reference type, 67, 69-

70
non-nullable type, 67, 69
non-nullable value type, 67, 69-70
non-optional parameters, 52
non-sealed, 100
non-static, 50, 159-160, 200
non-static field, 47
non-trailing named argument, 54
non-virtual, 78
normal scope, 154
not, 183
not null, 166
not null pattern, 183
not P, 183
notnull constraint, 67
notnull constraint, 67
nuint, 61
null, 145, 152-153, 155-156, 166
null coalescing, 153
null coalescing operator, 153
null coalescing operator, 140
Null conditional, 152-153
null conditional, 153
null conditional element access, 153
Null conditional expressions, 152
null conditional invocation, 153
null conditional member access, 152

223

Null forgiving, 154
null forgiving operator, 140
null literal, 33, 138
null literal conversion, 33
null reference exceptions, 152
null value, 33
null value, 33, 42-43
null-check, 183
Null-coalescing assignment, 145
null-coalescing assignment, 153
null-forgiving, 154
null-forgiving operator, 154
null-suppression, 154
Null-Testing Expressions, 152
nullable, 152
nullable bool? type, 59
Nullable Boolean, 145
nullable context, 35, 44
nullable Exception type, 193
nullable or non-nullable, 69-70
nullable or non-nullable type, 70
nullable reference type, 33, 44, 69-70,

86
Nullable reference types, 44
nullable reference types, 44
nullable types, 42, 114
nullable value type, 33, 43, 155
Nullable value types, 42-43
nullable variable, 44
nullable warnings, 154
nullness, 183
numeric type, 86
numeric types, 42
nunit, 60

O

Object, 83, 128-129
object, 42-43, 45, 103, 137
object, 99
object base type, 42
Object creation, 138
object initializer, 135-136
object initializer syntax, 125
Object Initializers, 135
Object initializers, 134
object initializers, 115
object reference, 126
objects, 42
object’s state, 58
Obsolete, 199
obsolete, 199
one-dimensional array, 85
one-dimensional array type, 54, 85
one-dimensional arrays, 85
opening double-quote sequence, 63
operand, 155
operands, 138-139
operating system, 61
operation, 144
operator, 119
operator member, 75, 119
Operator Overloading, 119
Operator overloading, 139
operator overloading, 79, 119
Operator Precedence, 141
operator precedence, 183
operator true, 149
Operators, 32, 72, 119
operators, 31, 77, 138, 140-141

224

operators and operands, 138
optional modifier, 52
optional parameter, 52, 136
Optional parameters, 52
optional parameters, 199
or, 183, 185
or pattern, 184
or patterns, 185
order of evaluation, 138
original exception, 193
out, 52, 56, 71, 74, 89, 126, 130
out keyword, 57
out modifier, 56
out of scope, 159, 192
out parameter, 57, 93
out Parameters, 56
out parameters, 57, 125
out variable, 57
outer scope, 28, 159
output parameter, 56
overflow, 139
overflow checking, 139
overflows, 139
overloadable operators, 119
overloaded, 139
overloaded, 141
overloaded shift, 147
override, 109, 113
override method, 110
override method, 110
Override methods, 110

P

P1 and P2, 184

P1 or P2, 184
pair of parentheses, 50, 155, 195
Paragraph separator, 30
parameter, 52, 54, 56
parameter constraints, 122
Parameter List, 52
parameter list, 53, 117
parameter modifiers, 55
parameter name, 52, 54
parameter passing, 126
parameter specification, 56
parameter T, 80
parameter type, 52
parameter type., 55
parameterless, 113
parameterless constructor, 69, 106
parameterless instance constructor,

43, 129
Parameters, 52, 56
params, 123
params array, 52
params array parameter, 52, 54, 130
params Parameter, 54
params parameter, 55
parentheses, 76, 89, 185
parentheses (), 109, 185
parentheses pattern, 190
parenthesized boolean expressions,

195
Parenthesized Pattern, 185
Parenthesized pattern, 177
parenthesized pattern, 185
parenthesized patterns, 185
parenthesized switch expression, 170

225

partial class, 99
partial class declarations, 74
partial interface, 73
partial interface, 74
partial methods, 74
partial record, 122
partial record class, 122
partial struct, 127
partial type declarations, 74
pass-by-reference, 52
pass-by-reference, 133
Pass-by-value, 132
passed by reference, 56
passed by value, 58
pattern, 177
pattern, 177
pattern combinators, 183
Pattern Matching, 157
Pattern matching, 156, 177
pattern matching, 156, 188
pattern matching expressions, 49
pattern types, 157
pattern-based branch, 157
Patterns, 141, 185
patterns, 185
performance increase, 56
pointer-related operators, 141
polymorphic types, 181
polymorphism, 99
positional and named parameters,

197
positional argument, 53-54
positional arguments, 53
positional parameter, 124, 198

positional parameter list, 122, 127
positional parameters, 121, 123, 125,

199
positional parameters, 199
Positional Pattern, 187
Positional pattern, 178
positional pattern, 187-189
positional patterns, 188
Positional properties, 130
positional properties, 123, 125
positional record, 121, 124
positional record declaration, 123
positional record syntax, 121
positional syntax, 54, 122
postfix !, 154
postfix decrement, 142
Postfix increment, 142
postfix increment, 167
precedence, 138
precedence, 141
predefined operators, 147
predefined types, 155
prefix decrement, 142
Prefix increment, 142
primary constructor, 121, 124, 136
primary constructor, 124
Primary Constructors, 124
private, 27-28, 120
private and protected members,

120
Private fields, 100
private protected, 27, 101
private setter, 116
program, 161

226

program entities, 197-198
program entity, 201
program execution, 154, 193
program text, 28-29
Properties, 112
properties, 72, 112-113, 185
property, 186
Property accessors, 113
Property body, 112
property body, 115
property initializer, 112, 114
Property initializers, 113
property initializers, 129
property modifiers, 112-113
property name, 112
Property Pattern, 185
Property pattern, 178
property pattern, 185-186
Property patterns, 185
property type, 112
protected, 27, 101
protected internal, 27, 101
public, 26-28, 120
public access, 75
public and static method, 119
public constructor, 118, 124
public fields, 89
public instance constructor, 100
public interface, 80
public parameterless constructor, 68
public properties, 125
punctuation symbols, 31
Punctuations, 32
punctuations, 32

Q

qualification, 28, 39
qualified name, 28
query expressions, 158
quoted string literal, 62
Quoted String Literals, 62
Quoted string literals, 62
quotes, 34

R

random number, 180
Range, 150
Range, 150
range of uint, 97
Range type, 150
rank, 85
Raw string interpolation, 65
raw string literal, 63
Raw String Literals, 63
raw string literals, 62, 65
read-only access, 62
Read-only fields, 108
Read-only properties, 124
read-only properties, 115
read-only property, 78
read-only sequence, 62
read-write auto-property, 114
read-write properties, 130
read-write property, 116
readonly, 88
readonly, 127-128
readonly auto-property, 114
readonly field, 108
Readonly instance members, 129

227

readonly instance members, 129
readonly modifier, 108, 128
readonly or init-only accessors, 124
readonly properties, 43, 115, 137
readonly property, 113, 193
readonly record struct, 129-130
readonly record structs, 130
readonly ref struct, 129-130
readonly ref structs, 128
readonly span, 64
readonly struct, 128-129
readonly struct, 150
readonly struct type, 128
ReadOnlySpan<byte>, 64
ReadOnlySpan<char>, 179
ReadOnlySpan<T>, 88
ReadOnlySpan<T> indexer, 88
ReadOnlySpans, 88
Real literals, 34
real literals, 34
real number type, 61
receiver expression, 131
record, 121-122, 127
record body, 122, 124
record class, 121-122
record class, 136
Record classes, 125
record classes, 126, 129-130
record constructor syntax, 129
Record Declaration, 122
record declaration, 41
record declaration, 121-122
Record Deconstruction, 125
record modifier, 129

record modifiers, 122
Record parameters, 123
record struct, 129-130
Record struct parameters, 130
Record struct types, 130
Record Structs, 130
Record structs, 128, 130
record structs, 125, 130
record type, 121, 124-125
record type definitions, 121
record types, 121, 125
record-type argument, 125
Records, 121, 123
records, 121, 123, 125
recursive pattern, 186
ref, 52, 56-58, 71, 126-127, 130
ref keyword, 49
ref local, 49
ref local variable, 49, 58
Ref local variables, 49
ref modifier, 133
ref modifiers, 131
ref parameter, 57
ref Parameters, 57
ref parameters, 133
ref readonly, 58, 130
ref readonly local variable, 49
Ref readonly local variables, 49
Ref readonly returns, 58
ref readonly T, 88
ref readonly variable, 58
ref result, 149
ref return statement, 162
ref return value, 58

228

Ref returns, 58
ref returns, 58
ref returns, 58
ref semantics, 57
ref struct, 88
ref struct, 129-130
ref struct, 130
ref struct variable, 130
Ref Structs, 130
ref structs, 128, 130
ref structs, 130
ref T, 88
ref T return type, 88
ref this, 52
ref this Extension Methods, 132
ref this parameter, 133
ref this T self, 132
ref variable, 149
reference, 42
reference comparison, 83
reference conversion, 156
reference semantics, 56, 126
reference type, 42-44, 55, 62, 66, 69-

70, 132-133, 152-153, 176
reference type variables, 181
Reference Types, 43
reference types, 42-44, 71, 89, 126,

128, 131-132
reference variable, 43
reference-based equality, 121
reference-type property, 124
references, 42, 62, 124
regular string literal, 64
related types, 66

relational element pattern, 189
relational operator, 179
Relational Operators, 144
Relational Pattern, 179
Relational pattern, 177
relational pattern, 179-180, 187
relational patterns, 181, 184, 188
Remainder operator, 143
remainder operator, 143
required, 113
required members, 199
required parameters, 52
required property, 136
Reserved attributes, 199
reserved names, 31
resource, 191-192
resource cleanup, 106
resulting expression, 175
return ref, 49
return Statement, 175
return statement, 58, 159
return statement, 112, 162, 174-175
return statements, 111
return type, 50, 58, 76
return value, 58
returned value, 58
returning values, 126
Returns by Reference, 58
returns by reference, 58
Right shift, 147
right-associative, 144, 149
right-hand operand, 145
run time, 197
run time behavior, 154

229

run-time environment, 197
run-time execution, 67
run-time type, 66, 156
runtime exception, 45

S

sbyte, 60
scope, 28, 36, 40, 46, 96, 173, 192
scope of a name, 28
Scopes, 28
sealed, 75, 78, 100, 109, 123
sealed class, 100
Sealed classes, 100
sealed classes, 100
sealed method, 110
Sealed methods, 110
sealed override, 110, 113
second operand, 147
selection statement, 161, 170
Selection Statements, 161
semicolon ;, 36-37, 48, 50, 73, 76-77,

99, 104-105, 109-112, 115, 117,
122

semicolons ;, 76
separating, 32
sequence, 150, 188-190
sequence collection types, 87
set, 76, 113
set accessor, 116
SetsRequiredMembers, 199
shallow copy, 83
shallow copy, 125
shallow immutability, 124
shift count, 148

Shift operators, 147
short, 60
Signed 16-bit integers, 60
Signed 32-bit integers, 60
Signed 64-bit integers, 60
Signed 8-bit integers, 60
signed integer types, 60
Simple assignment, 144
simple names, 96
Simple patterns, 177
Simple types, 42
simple types, 42, 59, 126
single type declaration, 74
single-dimensional array, 84
single-line comment, 30
single-precision, 61
single-use attribute class, 198
sizeof Operator, 155
sizeof operator, 140, 155
sizeof(E), 155
Slice pattern, 190
slice pattern, 189-190
slice pattern .., 189
Slicing, 87
slicing, 87, 150
source code, 35
source code file, 24, 36
source code files, 24, 41, 74
source file, 24-25, 27, 37
source files, 24
span pattern, 179
Span<char>, 179
Span<T>, 88
Span<T> indexer, 88

230

Spans, 88
Special characters, 62
special characters, 62
Specific type constraints, 70
specified base class, 70
specified interface, 70
square bracket syntax, 135
square brackets, 77
square brackets, 84-85
square brackets [], 117, 201
stackalloc, 141
start character, 35
start line, 35
startup class, 25
statement, 157, 163
statement block, 162
statement expression, 112
statement expressions, 138
statement expressions, 164
statement lambda, 158, 160
Statement lambdas, 159
statement lambdas, 159
Statements, 161
statements, 161, 166-167, 191
static, 50
static, 51, 100, 109, 117, 128
static abstract, 78, 80
Static abstract and virtual, 78
static abstract interface members,

78
static abstract or virtual methods, 72
Static and instance methods, 109
static anonymous method, 159
static binding, 45

static class, 52, 80, 101
static class, 101
Static classes, 101
static constructor, 104
static constructor, 104
static constructor declaration, 104
static constructor declarations, 105
Static Constructors, 104
Static constructors, 72, 104
static constructors, 77
static field declaration, 108
Static fields, 72
static fields, 77
static lambda, 159
Static lambda expressions, 159
Static Lambda Functions, 159
static local function, 160
static local function declaration, 51
Static Local Functions, 51
Static local functions, 50-51
static local functions, 50
static local functions, 159
static Main method, 75
static members, 39, 78, 101
static method, 52, 109, 118, 131, 160
static method overriding, 119
Static methods, 72, 77
static methods, 75, 80
static modifier, 47, 51, 101, 104,

109, 113, 159
static or instance field, 108
static properties, 113
static variable, 47
Static Variables, 47

231

Static variables, 47
static virtual, 80
static virtual method, 78
statically, 28
string, 62
string, 62, 64
string array, 165
String Interpolation, 64
String interpolation, 64-65
string interpolation, 65
string keyword, 62
string literal, 29, 63-64
String literals, 34, 62
string literals, 29-30, 34
string object, 62
string objects, 62
string text, 63
string type, 59
String.Format method, 64
Strings, 62
strings, 34
struct, 126-130
struct, 129, 132
struct body, 128
struct constraint, 69
struct constructor, 129
Struct constructors, 128
struct constructors, 128-129
struct declaration, 41
struct declaration, 128
struct declaration statement, 127
Struct Declarations, 127
struct declarations, 129
Struct Members, 128

Struct members, 129
struct modifiers, 127
struct type, 126, 132-133
struct types, 42, 125-126, 130
struct value, 129
struct-type values, 129
Structs, 126, 128
structs, 126
structs, 126, 128
subscript [] operator, 117
subscription syntax, 153
Subtraction operator, 143
subtraction operator, 143
suffix, 197
suffix Attribute, 197
switch, 167, 188
switch - case, 177
switch block, 170-171
switch Expression, 156
switch expression, 156-157, 170, 177-

178
switch expressions, 140
switch keyword, 157
switch operator, 156
switch section, 171
switch sections, 171
switch Statement, 170
switch statement, 156-157, 161, 170-

171, 174, 177-178
switch statements, 173
switch-case, 177
synchronous, 24
syntactic grammar, 31
syntactic structure, 29

232

syntactic sugar, 25
synthesized methods, 121
System.Array, 84
System.Attribute, 197
System.AttributeUsageAttribut

e, 198
System.Char struct type, 59
System.Collections.Generic, 66
System.Delegate, 68
System.Enum, 94, 98
System.Enum static methods, 68
System.Enum types, 68
System.Exception, 193-195
System.IDisposable, 191
System.Index, 87, 150
System.IntPtr, 61
System.MulticastDelegate, 68
System.Nullable<T>, 43
System.Object, 42-43, 83
System.Object.GetHashCode, 121
System.OverflowException, 61,

139
System.Range, 87, 150
System.ReadOnlySpan<T>, 88
System.Span<T>, 88
System.String type, 62
System.Type, 155
System.UIntPtr, 61
System.ValueType, 42, 94, 126

T

target expression, 157, 178, 181, 184,
186

target labels, 173-174

Target typed new, 136
Target typed new(), 136
Task, 24
Task<int>, 24
Ternary operator, 140
ternary operator, 149
ternary operators, 138
text, 62
text string, 83
this, 51-52, 109, 117
this constructor initializer, 124
this Extension Methods, 131
this modifiers, 52
this T self, 131
this type extension method, 131
three-valued logic, 59
throw exceptions, 195
throw Expression, 193
throw expression, 193-194
Throw expressions, 138, 141
throw expressions, 193
throw statement, 193-194
throw statements, 193
thrown exception, 195
tilde ~, 106
token ., 152
Tokens, 29, 31
tokens, 30-31, 33
tokens ?., 152
top-level enum declarations, 96
top-level statement, 160
Top-Level Statements, 25
Top-level statements, 25
top-level statements, 24-26, 41

233

top-level type declarations, 26
trailing comma, 94
true, 33, 140, 145-146, 148
True and False Operators, 148
true operator, 148
try - catch - finally, 193
try - catch Statement, 194
try and throw, 162
try block, 195
try statement, 194-196
try-catch statement, 193
tuple, 89, 91
Tuple assignment, 90
tuple assignment, 91
Tuple Deconstruction, 91
tuple deconstruction, 92, 167, 185
Tuple elements, 89
tuple elements, 90
Tuple Equality, 90
tuple equality comparisons, 90
Tuple Fields, 89
tuple initialization expression, 89
Tuple Pattern, 188
Tuple pattern, 178
tuple pattern, 188
tuple projection initializers, 89
tuple type, 89, 91
Tuple types, 90
tuple types, 91
tuples, 89, 185
tuple’s elements, 89
two quotation marks, 63
two’s complement format, 60
type, 39, 42

type argument, 66-67, 69-70, 101-103
type argument T, 67, 69-70
type arguments, 66, 102
type constraint, 69
Type constraints, 67
type declaration, 24, 26, 41
Type declarations, 26
type declarations, 26-27, 41
Type definitions, 24
type name, 66
Type object, 155
type object, 102
type of the property, 76
type operand, 155
type parameter, 66, 71, 74, 101-103
type parameter constraint, 50, 73, 109
Type Parameter Constraints, 67
Type parameter constraints, 73, 76,

99
type parameter constraints, 67, 128
type parameter list, 50, 73, 76, 101,

109, 122
type parameter names, 101
type parameter T, 68, 79
Type parameter variance, 74
Type Parameters, 101
Type parameters, 66
type parameters, 66-67, 73-74, 78, 99,

101, 127-128, 154
Type Pattern, 181
Type pattern, 177
type pattern, 181-182
type Range, 151
type system, 42-43

234

Type Variance, 71
type variance, 71
Type-testing operators, 140
typeof, 138
typeof Operator, 155
typeof operator, 140, 155
typeof(void), 155
types, 38, 42-43

U

uint, 60
uint integer literal, 33
ulong, 60
ulong integer literal, 33
Unary minus operator, 142
unary minus operator, 142
unary operator, 141
Unary Operators, 119
unary operators, 138, 141
Unary plus operator, 141
unary plus operator, 142
Unboxing, 43
unboxing, 42
unboxing, 94, 156
unchecked, 61, 139
unchecked context, 139
unchecked statements, 139
unconstrained type parameter, 68
underlying expressions, 154
underlying integral type, 95
underlying type, 95
underlying type, 95, 97, 147, 155
underlying type specification, 94
Underlying Types, 95

underlying types, 146
underscore _, 31
Underscores, 34
underscores, 31
underscores _, 34
Unicode, 34
Unicode character, 34, 59
Unicode characters, 31, 62
Unicode class, 30
Unicode code point, 29
Unicode code points, 29
Unicode escape sequence, 29, 59
Unicode escape sequences, 29, 31
Unnamed tuple fields, 89
unsafe, 162
unsafe code, 74, 141, 162
Unsigned 16-bit integers, 60
Unsigned 32-bit integers, 60
Unsigned 64-bit integers, 60
Unsigned 8-bit integers, 60
unsigned integer types, 60
Unsigned right shift, 147
untyped, 152
unwrapping, 156
user-defined operator, 139
user-defined type, 139
user-defined types, 197
ushort, 60
using, 130
using alias, 40
using alias directive, 39
using block, 191
using Declaration, 192
using declaration, 40, 192

235

using declarations, 40
using directive, 38
using Directives, 38
using directives, 36-38
using namespace, 40
using namespace directive, 38
using Statement, 191
using statement, 106, 162, 191-192
using static, 40
using static directive, 39
using static directive, 39
using-declared namespace, 38
UTF-16, 34
UTF-16 encoding, 59
UTF-8 encoded strings, 62
UTF16 encoding, 64
UTF8 encoded strings, 64
UTF8 string literal, 64
UTF8 String Literals, 64
UTF8-encoded string, 64

V

valid enum value, 95
Valid indexer modifiers, 117
valid range, 97
Value Equality, 124
value parameter, 55
Value Parameters, 55
value semantics, 121
value type, 42-43, 57, 66, 88, 94, 131-

132, 152-153
Value type records, 130
Value Types, 42
value types, 42-43, 71, 126, 130-131

value-based equality, 121
value-based equality, 121
values, 62
ValueType, 128-129
var, 134, 180
var _, 178
var keyword, 165, 191
Var Pattern, 180
Var pattern, 177
var pattern, 178, 180-182, 190
Var patterns, 180
var patterns, 181
var r, 180
variable, 155
variable declaration, 49
variable declarations, 92
variable initializer, 114
variable name, 48
Variables, 47
variables, 52, 163
variance annotation, 74
variance annotations, 74
Variances, 71
verbatim identifiers, 31-32
Verbatim string interpolation, 65
verbatim string interpolation, 65
Verbatim String Literals, 62
Verbatim string literals, 62
verbatim string literals, 62, 65
verbatim strings, 63
vertical tab character, 30
virtual, 75, 109
virtual method, 110
virtual method, 110

236

Virtual methods, 110
virtual modifier, 110
virtual or abstract, 113
void, 50, 109, 155
void Dispose() method, 130
void return type, 24, 175

W

warnings, 35
when, 181, 195
when clause, 195
when keyword, 177
where, 67
while loop, 167
while Statement, 161, 167
while statement, 167
White space, 29-30
White spaces, 30
wild card pattern, 178
wildcard, 190
with, 138
with expression, 125
with expressions, 125, 140
wrapping, 156

Z

zero, 86
zero values, 129

237

About the Author
Harry Yoon has been programming for over three decades. He has
used over 20 different programming languages in his academic and
professional career. His experience spans broad areas from scientific
programming and machine learning to enterprise software and Web
and mobile app development.

He occasionally hangs out on social media:

• Instagram: @codeandtips [https://www.instagram.com/codeandtips/]

• TikTok: @codeandtips [https://tiktok.com/@codeandtips]

• Twitter: @codeandtips [https://twitter.com/codeandtips]

• YouTube: @codeandtips [https://www.youtube.com/@codeandtips]

• Reddit: r/codeandtips [https://www.reddit.com/r/codeandtips/]

Other C# Books by the Author
• The Art of C# - Basics: Introduction to Programming in Modern C# -

Beginner to Intermediate [https://www.amazon.com/dp/B08X2SCG2Y]

238

https://www.instagram.com/codeandtips/
https://tiktok.com/@codeandtips
https://twitter.com/codeandtips
https://www.youtube.com/@codeandtips
https://www.reddit.com/r/codeandtips/
https://www.amazon.com/dp/B08X2SCG2Y
https://www.amazon.com/dp/B08X2SCG2Y

About the Series
We are creating a number of books under the series title, A Hitchhiker’s
Guide to the Modern Programming Languages. We cover essential
syntax of the 12 select languages in 100 pages or so, Go, C#, Python,
Typescript, Rust, C++, Java, Julia, Javascript, Haskell, Scala, and Lua.

These are all very interesting and widely used languages that can teach
you different ways of programming, and more importantly, different
ways of thinking.

All Books in the Series
• Go Mini Reference [https://www.amazon.com/dp/B09V5QXTCC/]

• Modern C# Mini Reference [https://www.amazon.com/dp/B0B57PXLFC/]

• Python Mini Reference [https://www.amazon.com/dp/B0B2QJD6P8/]

• Typescript Mini Reference [https://www.amazon.com/dp/B0B54537JK/]

• Rust Mini Reference [https://www.amazon.com/dp/B09Y74PH2B/]

• C++20 Mini Reference [https://www.amazon.com/dp/B0B5YLXLB3/]

• Modern Java Mini Reference [https://www.amazon.com/dp/B0B75PCHW2/]

• Julia Mini Reference [https://www.amazon.com/dp/B0B6PZ2BCJ/]

• Javascript Mini Reference [https://www.amazon.com/dp/B0B75RZLRB/]

• Haskell Mini Reference [https://www.amazon.com/dp/B09X8PLG9P/]

• Scala 3 Mini Reference [https://www.amazon.com/dp/B0B95Y6584/]

• Lua Mini Reference [https://www.amazon.com/dp/B09V95T452/]

239

https://www.amazon.com/dp/B09V5QXTCC/
https://www.amazon.com/dp/B0B57PXLFC/
https://www.amazon.com/dp/B0B2QJD6P8/
https://www.amazon.com/dp/B0B54537JK/
https://www.amazon.com/dp/B09Y74PH2B/
https://www.amazon.com/dp/B0B5YLXLB3/
https://www.amazon.com/dp/B0B75PCHW2/
https://www.amazon.com/dp/B0B6PZ2BCJ/
https://www.amazon.com/dp/B0B75RZLRB/
https://www.amazon.com/dp/B09X8PLG9P/
https://www.amazon.com/dp/B0B95Y6584/
https://www.amazon.com/dp/B09V95T452/

Community Support
We are building a website for programmers, from beginners to more
experienced. It covers various coding-related topics from algorithms to
machine learning, and from design patterns to cybersecurity, and more.
You can also find some sample code in the GitLab repositories.

• www.codeandtips.com

• gitlab.com/codeandtips

Mailing List
Please join our mailing list, join@codingbookspress.com, to receive
coding tips and other news from Coding Books Press, including free, or
discounted, book promotions. If we find any significant errors in the
book, then we will send you an updated version of the book (in PDF).
Advance review copies will be made available to select members on the
list before new books are published.

Request for Feedback
If you find any errors or typos, or if any part of the book is not very
clear to you, or if you have any general suggestions or comments
regarding the book, then please let us know. Although we cannot
answer all the questions and emails, we will try our best to address the
issues that are brought to our attention.

• feedback@codingbookspress.com

Please note that creating and publishing quality books takes a great
deal of time and effort, and we really appreciate the readers' feedback.

Revision 1.1.3, 2023-04-04

240

https://www.codeandtips.com
https://gitlab.com/codeandtips
mailto:join@codingbookspress.com
mailto:feedback@codingbookspress.com

	C# Mini Reference 2023: A Quick Guide to the Modern C# Programming Language for Busy Coders
	Copyright
	Preface
	Chapter 1. Introduction
	1.1. C# and .NET
	1.2. Nullable Context
	1.3. Book Organization

	Chapter 2. C# Programs
	2.1. �Main Methods
	2.2. �Top-Level Statements
	2.3. �Declarations
	2.4. �Access Control
	2.5. �Blocks and Scopes

	Chapter 3. Lexical Analysis
	3.1. �Lexical Elements
	3.2. �Tokens
	3.3. �Literals
	3.4. �Compiler Directives

	Chapter 4. Namespaces
	4.1. �Namespace Declarations
	4.2. �extern Alias Directives
	4.3. �using Directives
	4.4. �Global using
	4.5. �Implicit using
	4.6. �Member Declarations

	Chapter 5. C# Type System
	5.1. �Value Types
	5.2. �Reference Types
	5.3. �Dynamic Types

	Chapter 6. Constants
	Chapter 7. Variables
	7.1. Variable Categories
	7.2. �Local Variable Declarations

	Chapter 8. Local Functions
	8.1. �Local Functions
	8.2. �Static Local Functions

	Chapter 9. Formal Parameters
	9.1. �Parameter List
	9.2. �Argument List
	9.3. The �params Parameter
	9.4. �Value Parameters
	9.5. �in Parameters
	9.6. �out Parameters
	9.7. �ref Parameters
	9.8. �Returns by Reference

	Chapter 10. Builtin Value Types
	10.1. The �bool Type
	10.2. The �char Type
	10.3. �Integral Types
	10.4. �Native Integer Types
	10.5. �Floating Point Types
	10.6. The �decimal Type

	Chapter 11. Strings
	11.1. �Quoted String Literals
	11.2. �Verbatim String Literals
	11.3. �Raw String Literals
	11.4. �UTF8 String Literals
	11.5. �String Interpolation

	Chapter 12. Generics
	12.1. �Generic Type Parameters
	12.2. �Type Parameter Constraints
	12.3. �Type Variance in �Generics

	Chapter 13. Interfaces
	13.1. �Interface Declarations
	13.2. �Interface Members
	13.3. �Interface Static Members
	13.4. �Default Implementations
	13.5. �Interface Implementations

	Chapter 14. Objects
	Chapter 15. Arrays
	15.1. �Array Types
	15.2. �Array Creation
	15.3. �Array Elements

	Chapter 16. �Spans and �ReadOnlySpans
	16.1. �System.Span<T>
	16.2. �System.ReadOnlySpan<T>

	Chapter 17. Tuples
	17.1. �Tuple Fields
	17.2. �Tuple Equality
	17.3. �Tuple Deconstruction

	Chapter 18. Enums
	18.1. �Enum Declarations
	18.2. �Underlying Types
	18.3. �Enum Modifiers
	18.4. �Enum Members
	18.5. �Enum Operations

	Chapter 19. Classes
	19.1. �Class Declarations
	19.2. �Type Parameters
	19.3. �Base Classes
	19.4. �Static Constructors
	19.5. �Instance Constructors
	19.6. �Finalizers
	19.7. �Class Members
	19.8. �Constants
	19.9. �Class Fields
	19.10. �Methods
	19.11. �Properties
	19.12. �Indexers
	19.13. �Events
	19.14. �Operators
	19.15. �Operator Overloading
	19.16. �Nested Types

	Chapter 20. Records
	20.1. �Record Declaration
	20.2. �Inheritance
	20.3. �Primary Constructors
	20.4. �Immutability
	20.5. �Value Equality
	20.6. �Record Deconstruction
	20.7. �Non-Destructive Mutations

	Chapter 21. Structs
	21.1. �Struct Declarations
	21.2. �Struct Members
	21.3. �Ref Structs
	21.4. �Record Structs

	Chapter 22. Extension Methods
	22.1. �this Extension Methods
	22.2. �ref this Extension Methods
	22.3. �in this Extension Methods

	Chapter 23. The new Operator
	23.1. �New Array Expressions
	23.2. �New Object Expressions
	23.3. �Object Initializers
	23.4. �Collection Initializers
	23.5. �Anonymous Object Initializers
	23.6. �New Delegate Expressions

	Chapter 24. Expressions
	24.1. �Expression Statements
	24.2. The �checked and �unchecked Statements
	24.3. �Classifications of �C# Expressions
	24.4. The �Operator Precedence
	24.5. The �checked Operators
	24.6. �Arithmetic Operators
	24.7. �Relational Operators
	24.8. �Assignment Operators
	24.9. �Logical Operators
	24.10. �Bitwise Operators
	24.11. �Shift operators
	24.12. �True and False Operators
	24.13. �Conditional Operator
	24.14. The �Index and �Range Operators
	24.15. �Default Value Operator
	24.16. �Null-Testing Expressions
	24.17. The �nameof Operator
	24.18. The �sizeof Operator
	24.19. The �typeof Operator
	24.20. The �as Operator
	24.21. The �is Expression
	24.22. The �switch Expression

	Chapter 25. Lambda Expressions
	25.1. �Lambda Functions
	25.2. �Static Lambda Functions
	25.3. Closures

	Chapter 26. Statements
	26.1. �Empty Statement
	26.2. �Declaration Statement
	26.3. The �for Statement
	26.4. The �foreach Statement
	26.5. The �do Statement
	26.6. The �while Statement
	26.7. The �if Statement
	26.8. The �switch Statement
	26.9. �Labeled Statements
	26.10. The �goto Statement
	26.11. The �break Statement
	26.12. The �continue Statement
	26.13. The �return Statement
	26.14. The �lock Statement

	Chapter 27. Pattern Matching
	27.1. �Discard Pattern
	27.2. �Constant Pattern
	27.3. �Relational Pattern
	27.4. �Var Pattern
	27.5. �Type Pattern
	27.6. �Declaration Pattern
	27.7. �Logical Pattern
	27.8. �Parenthesized Pattern
	27.9. �Property Pattern
	27.10. �Positional Pattern
	27.11. �Tuple Pattern
	27.12. �List Pattern

	Chapter 28. Using & Disposable
	28.1. The �using Statement
	28.2. The �using Declaration

	Chapter 29. Exception Handling
	29.1. The �Exception Base Class
	29.2. The �throw Expression
	29.3. The �try - catch Statement

	Chapter 30. Attributes
	30.1. �Attribute Classes
	30.2. �Attribute Parameters
	30.3. �Attribute Specification

	A. How to Use This Book
	Index
	About the Author
	About the Series
	Community Support

